Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from transformers import AutoModelForCausalLM, AutoProcessor | |
| import librosa | |
| def split_audio(audio_arrays, chunk_limit=480000): | |
| CHUNK_LIM = chunk_limit | |
| audio_splits = [] | |
| # Split the loaded audio to 30s chunks and extend the messages content | |
| for i in range( | |
| 0, | |
| len(audio_arrays), | |
| CHUNK_LIM, | |
| ): | |
| audio_splits.append(audio_arrays[i : i + CHUNK_LIM]) | |
| return audio_splits | |
| # Placeholder for your actual LLM processing API call | |
| def process_audio(audio, text, chat_history): | |
| conversation = [ | |
| { | |
| "role": "user", | |
| "content": [ | |
| ], | |
| }, | |
| ] | |
| audio = librosa.load(audio, sr=16000)[0] | |
| if audio is not None: | |
| splitted_audio = split_audio(audio) | |
| for au in splitted_audio: | |
| conversation[0]["content"].append( | |
| { | |
| "type": "audio_url", | |
| "audio": "placeholder", | |
| } | |
| ) | |
| chat_history.append({"role": "user", "content": gr.Audio(value=(16000, audio))}) | |
| conversation[0]["content"].append( | |
| { | |
| "type": "text", | |
| "text": text, | |
| } | |
| ) | |
| chat_history.append({"role": "user", "content": text}) | |
| prompt = processor.apply_chat_template(conversation, add_generation_prompt=True) | |
| inputs = processor(text=prompt, audios=splitted_audio, sampling_rate=16000, return_tensors="pt", padding=True) | |
| inputs = {k: v.to("cuda") for k, v in inputs.items()} | |
| outputs = model.generate(**inputs, eos_token_id=151645, pad_token_id=151643, max_new_tokens=4096) | |
| cont = outputs[:, inputs["input_ids"].shape[-1] :] | |
| result = processor.batch_decode(cont, skip_special_tokens=True)[0] | |
| chat_history.append( | |
| { | |
| "role": "assistant", | |
| "content": result, | |
| } | |
| ) | |
| return chat_history | |
| with gr.Blocks() as demo: | |
| gr.Markdown("## ποΈ Aero-1-Audio") | |
| gr.Markdown( | |
| """ | |
| Aero-1-Audio is a compact audio model. With only 1.5B parameters and 50k hours training data, it can perform a variety of tasks, including: | |
| ASR, basic Audio Understanding, Audio Instruction Following, and scene analysis | |
| We provide several examples such as: | |
| - nvidia conference and a show from elon musk for long ASR | |
| - Simple Audio Instruction Following | |
| - Audio Understanding for weather and music | |
| The model might not be able to follow your instruction in multiple cases and might be wrong in many times | |
| """ | |
| ) | |
| chatbot = gr.Chatbot(type="messages") | |
| with gr.Row(variant="compact", equal_height=True): | |
| audio_input = gr.Audio(label="Speak Here", type="filepath") | |
| text_input = gr.Textbox(label="Text Input", placeholder="Type here", interactive=True) | |
| with gr.Row(): | |
| chatbot_clear = gr.ClearButton([text_input, audio_input, chatbot], value="Clear") | |
| chatbot_submit = gr.Button("Submit", variant="primary") | |
| chatbot_submit.click( | |
| process_audio, | |
| inputs=[audio_input, text_input, chatbot], | |
| outputs=[chatbot], | |
| ) | |
| gr.Examples( | |
| [ | |
| ["Please transcribe the audio for me", "./examples/elon_musk.mp3"], | |
| ["Please transcribe the audio for me", "./examples/nvidia_conference.mp3"], | |
| ["Please transcribe the audio for me", "./examples/nuggets.mp3"], | |
| ["Please follow the instruction in the audio", "./examples/audio_instruction.wav"], | |
| ["What is the primary instrument featured in the solo of this track?", "./examples/music_under.wav"], | |
| ["What weather condition can be heard in the audio?", "./examples/audio_understand.wav"], | |
| ], | |
| inputs=[text_input, audio_input], | |
| label="Examples", | |
| ) | |
| if __name__ == "__main__": | |
| processor = AutoProcessor.from_pretrained("lmms-lab/Aero-1-Audio-1.5B", trust_remote_code=True) | |
| model = AutoModelForCausalLM.from_pretrained("lmms-lab/Aero-1-Audio-1.5B", device_map="cuda", torch_dtype="auto", attn_implementation="sdpa", trust_remote_code=True) | |
| demo.launch() | |