Spaces:
Runtime error
Runtime error
| import argparse | |
| import torch | |
| import os | |
| import json | |
| from tqdm import tqdm | |
| import shortuuid | |
| from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN | |
| from llava.conversation import conv_templates, SeparatorStyle | |
| from llava.model.builder import load_pretrained_model | |
| from llava.utils import disable_torch_init | |
| from llava.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria | |
| from llava.constants import IGNORE_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, IMAGE_TOKEN_INDEX | |
| from typing import Dict, Optional, Sequence, List | |
| import transformers | |
| import re | |
| from PIL import Image | |
| import math | |
| def split_list(lst, n): | |
| """Split a list into n (roughly) equal-sized chunks""" | |
| chunk_size = math.ceil(len(lst) / n) # integer division | |
| return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)] | |
| def get_chunk(lst, n, k): | |
| chunks = split_list(lst, n) | |
| return chunks[k] | |
| def preprocess_qwen(sources, tokenizer: transformers.PreTrainedTokenizer, has_image: bool = False, max_len=2048, system_message: str = "You are a helpful assistant.") -> Dict: | |
| roles = {"human": "<|im_start|>user", "gpt": "<|im_start|>assistant"} | |
| im_start, im_end = tokenizer.additional_special_tokens_ids | |
| nl_tokens = tokenizer("\n").input_ids | |
| _system = tokenizer("system").input_ids + nl_tokens | |
| _user = tokenizer("user").input_ids + nl_tokens | |
| _assistant = tokenizer("assistant").input_ids + nl_tokens | |
| # Apply prompt templates | |
| input_ids, targets = [], [] | |
| source = sources | |
| if roles[source[0]["from"]] != roles["human"]: | |
| source = source[1:] | |
| input_id, target = [], [] | |
| system = [im_start] + _system + tokenizer(system_message).input_ids + [im_end] + nl_tokens | |
| input_id += system | |
| target += [im_start] + [IGNORE_INDEX] * (len(system) - 3) + [im_end] + nl_tokens | |
| assert len(input_id) == len(target) | |
| for j, sentence in enumerate(source): | |
| role = roles[sentence["from"]] | |
| if has_image and sentence["value"] is not None and "<image>" in sentence["value"]: | |
| num_image = len(re.findall(DEFAULT_IMAGE_TOKEN, sentence["value"])) | |
| texts = sentence["value"].split('<image>') | |
| _input_id = tokenizer(role).input_ids + nl_tokens | |
| for i,text in enumerate(texts): | |
| _input_id += tokenizer(text).input_ids | |
| if i<len(texts)-1: | |
| _input_id += [IMAGE_TOKEN_INDEX] + nl_tokens | |
| _input_id += [im_end] + nl_tokens | |
| assert sum([i==IMAGE_TOKEN_INDEX for i in _input_id])==num_image | |
| else: | |
| if sentence["value"] is None: | |
| _input_id = tokenizer(role).input_ids + nl_tokens | |
| else: | |
| _input_id = tokenizer(role).input_ids + nl_tokens + tokenizer(sentence["value"]).input_ids + [im_end] + nl_tokens | |
| input_id += _input_id | |
| if role == "<|im_start|>user": | |
| _target = [im_start] + [IGNORE_INDEX] * (len(_input_id) - 3) + [im_end] + nl_tokens | |
| elif role == "<|im_start|>assistant": | |
| _target = [im_start] + [IGNORE_INDEX] * len(tokenizer(role).input_ids) + _input_id[len(tokenizer(role).input_ids) + 1 : -2] + [im_end] + nl_tokens | |
| else: | |
| raise NotImplementedError | |
| target += _target | |
| input_ids.append(input_id) | |
| targets.append(target) | |
| input_ids = torch.tensor(input_ids, dtype=torch.long) | |
| targets = torch.tensor(targets, dtype=torch.long) | |
| return input_ids | |
| def eval_model(args): | |
| # Model | |
| disable_torch_init() | |
| model_path = os.path.expanduser(args.model_path) | |
| model_name = get_model_name_from_path(model_path) | |
| tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name) | |
| # Data | |
| with open(os.path.expanduser(args.question_file)) as f: | |
| questions = json.load(f) | |
| questions = get_chunk(questions, args.num_chunks, args.chunk_idx) | |
| answers_file = os.path.expanduser(args.answers_file) | |
| os.makedirs(os.path.dirname(answers_file), exist_ok=True) | |
| ans_file = open(answers_file, "w") | |
| for line in tqdm(questions): | |
| idx = line["sample_id"] | |
| question_type = line["metadata"]["question_type"] | |
| dataset_name = line["metadata"]["dataset"] | |
| gt = line["conversations"][1]["value"] | |
| image_files = line["image"] | |
| qs = line["conversations"][0]["value"] | |
| cur_prompt = args.extra_prompt + qs | |
| args.conv_mode = "qwen_1_5" | |
| conv = conv_templates[args.conv_mode].copy() | |
| conv.append_message(conv.roles[0], qs) | |
| conv.append_message(conv.roles[1], None) | |
| prompt = conv.get_prompt() | |
| input_ids = preprocess_qwen([line["conversations"][0],{'from': 'gpt','value': None}], tokenizer, has_image=True).cuda() | |
| img_num = list(input_ids.squeeze()).count(IMAGE_TOKEN_INDEX) | |
| image_tensors = [] | |
| for image_file in image_files: | |
| image = Image.open(os.path.join(args.image_folder, image_file)) | |
| image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'] | |
| image_tensors.append(image_tensor.half().cuda()) | |
| # image_tensors = torch.cat(image_tensors, dim=0) | |
| stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 | |
| keywords = [stop_str] | |
| stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) | |
| with torch.inference_mode(): | |
| output_ids = model.generate( | |
| input_ids, | |
| images=image_tensors, | |
| do_sample=True if args.temperature > 0 else False, | |
| temperature=args.temperature, | |
| top_p=args.top_p, | |
| num_beams=args.num_beams, | |
| # no_repeat_ngram_size=3, | |
| max_new_tokens=1024, | |
| use_cache=True) | |
| outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0] | |
| outputs = outputs.strip() | |
| if outputs.endswith(stop_str): | |
| outputs = outputs[:-len(stop_str)] | |
| outputs = outputs.strip() | |
| ans_id = shortuuid.uuid() | |
| ans_file.write(json.dumps({ | |
| "dataset": dataset_name, | |
| "sample_id": idx, | |
| "prompt": cur_prompt, | |
| "pred_response": outputs, | |
| "gt_response": gt, | |
| "shortuuid": ans_id, | |
| "model_id": model_name, | |
| "question_type": question_type, | |
| }) + "\n") | |
| ans_file.flush() | |
| if len(line["conversations"]) > 2: | |
| for i in range(2, len(line["conversations"]), 2): | |
| input_ids = torch.cat((input_ids, output_ids), dim=1) | |
| gt = line["conversations"][i + 1]["value"] | |
| qs = line["conversations"][i]["value"] | |
| cur_prompt = args.extra_prompt + qs | |
| args.conv_mode = "qwen_1_5" | |
| conv = conv_templates[args.conv_mode].copy() | |
| conv.append_message(conv.roles[0], qs) | |
| conv.append_message(conv.roles[1], None) | |
| prompt = conv.get_prompt() | |
| input_ids_new = preprocess_qwen([line["conversations"][i],{'from': 'gpt','value': None}], tokenizer, has_image=True).cuda() | |
| input_ids = torch.cat((input_ids, input_ids_new), dim=1) | |
| img_num = list(input_ids_new.squeeze()).count(IMAGE_TOKEN_INDEX) | |
| stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 | |
| keywords = [stop_str] | |
| stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) | |
| with torch.inference_mode(): | |
| output_ids = model.generate( | |
| input_ids, | |
| images=image_tensors, | |
| do_sample=True if args.temperature > 0 else False, | |
| temperature=args.temperature, | |
| top_p=args.top_p, | |
| num_beams=args.num_beams, | |
| # no_repeat_ngram_size=3, | |
| max_new_tokens=1024, | |
| use_cache=True) | |
| outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0] | |
| outputs = outputs.strip() | |
| if outputs.endswith(stop_str): | |
| outputs = outputs[:-len(stop_str)] | |
| outputs = outputs.strip() | |
| ans_id = shortuuid.uuid() | |
| ans_file.write(json.dumps({ | |
| "dataset": dataset_name, | |
| "sample_id": idx, | |
| "prompt": cur_prompt, | |
| "pred_response": outputs, | |
| "gt_response": gt, | |
| "shortuuid": ans_id, | |
| "model_id": model_name, | |
| "question_type": question_type, | |
| }) + "\n") | |
| ans_file.flush() | |
| ans_file.close() | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--model-path", type=str, default="facebook/opt-350m") | |
| parser.add_argument("--model-base", type=str, default=None) | |
| parser.add_argument("--image-folder", type=str, default="") | |
| parser.add_argument("--extra-prompt", type=str, default="") | |
| parser.add_argument("--question-file", type=str, default="tables/question.jsonl") | |
| parser.add_argument("--answers-file", type=str, default="answer.jsonl") | |
| parser.add_argument("--conv-mode", type=str, default="llava_v1") | |
| parser.add_argument("--num-chunks", type=int, default=1) | |
| parser.add_argument("--chunk-idx", type=int, default=0) | |
| parser.add_argument("--temperature", type=float, default=0.2) | |
| parser.add_argument("--top_p", type=float, default=None) | |
| parser.add_argument("--num_beams", type=int, default=1) | |
| parser.add_argument("--test_size", type=int, default=10000000) | |
| args = parser.parse_args() | |
| eval_model(args) |