Spaces:
Runtime error
Runtime error
| """ | |
| Taken from https://github.com/lucidrains/flamingo-pytorch | |
| """ | |
| import torch | |
| from einops import rearrange, repeat | |
| try: | |
| from einops_exts import rearrange_many | |
| except: | |
| pass | |
| from torch import einsum, nn | |
| def exists(val): | |
| return val is not None | |
| def FeedForward(dim, mult=4): | |
| inner_dim = int(dim * mult) | |
| return nn.Sequential( | |
| nn.LayerNorm(dim), | |
| nn.Linear(dim, inner_dim, bias=False), | |
| nn.GELU(), | |
| nn.Linear(inner_dim, dim, bias=False), | |
| ) | |
| class PerceiverAttention(nn.Module): | |
| def __init__(self, *, dim, dim_head=64, heads=8): | |
| super().__init__() | |
| self.scale = dim_head**-0.5 | |
| self.heads = heads | |
| inner_dim = dim_head * heads | |
| self.norm_media = nn.LayerNorm(dim) | |
| self.norm_latents = nn.LayerNorm(dim) | |
| self.to_q = nn.Linear(dim, inner_dim, bias=False) | |
| self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False) | |
| self.to_out = nn.Linear(inner_dim, dim, bias=False) | |
| def forward(self, x, latents): | |
| """ | |
| Args: | |
| x (torch.Tensor): image features | |
| shape (b, T, n1, D) | |
| latent (torch.Tensor): latent features | |
| shape (b, T, n2, D) | |
| """ | |
| x = self.norm_media(x) | |
| latents = self.norm_latents(latents) | |
| h = self.heads | |
| q = self.to_q(latents) | |
| kv_input = torch.cat((x, latents), dim=-2) | |
| k, v = self.to_kv(kv_input).chunk(2, dim=-1) | |
| q, k, v = rearrange_many((q, k, v), "b t n (h d) -> b h t n d", h=h) | |
| q = q * self.scale | |
| # attention | |
| sim = einsum("... i d, ... j d -> ... i j", q, k) | |
| sim = sim - sim.amax(dim=-1, keepdim=True).detach() | |
| attn = sim.softmax(dim=-1) | |
| out = einsum("... i j, ... j d -> ... i d", attn, v) | |
| out = rearrange(out, "b h t n d -> b t n (h d)", h=h) | |
| return self.to_out(out) | |
| class PerceiverResamplerModule(nn.Module): | |
| def __init__( | |
| self, | |
| *, | |
| dim, | |
| depth=6, | |
| dim_head=64, | |
| heads=8, | |
| num_latents=64, | |
| max_num_media=None, | |
| max_num_frames=None, | |
| ff_mult=4, | |
| ): | |
| super().__init__() | |
| self.latents = nn.Parameter(torch.randn(num_latents, dim)) | |
| self.frame_embs = nn.Parameter(torch.randn(max_num_frames, dim)) if exists(max_num_frames) else None | |
| self.media_time_embs = nn.Parameter(torch.randn(max_num_media, 1, dim)) if exists(max_num_media) else None | |
| self.layers = nn.ModuleList([]) | |
| for _ in range(depth): | |
| self.layers.append( | |
| nn.ModuleList( | |
| [ | |
| PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads), | |
| FeedForward(dim=dim, mult=ff_mult) if ff_mult > 0 else nn.Identity(), | |
| ] | |
| ) | |
| ) | |
| self.norm = nn.LayerNorm(dim) | |
| def forward(self, x): | |
| """ | |
| Args: | |
| x (torch.Tensor): image features | |
| shape (b, T, F, v, D) | |
| Returns: | |
| shape (b, T, n, D) where n is self.num_latents | |
| """ | |
| b, T, F, v = x.shape[:4] | |
| # frame and media time embeddings | |
| if exists(self.frame_embs): | |
| frame_embs = repeat(self.frame_embs[:F], "F d -> b T F v d", b=b, T=T, v=v) | |
| x = x + frame_embs | |
| x = rearrange(x, "b T F v d -> b T (F v) d") # flatten the frame and spatial dimensions | |
| if exists(self.media_time_embs): | |
| x = x + self.media_time_embs[:T] | |
| # blocks | |
| latents = repeat(self.latents, "n d -> b T n d", b=b, T=T) | |
| for attn, ff in self.layers: | |
| latents = attn(x, latents) + latents | |
| latents = ff(latents) + latents | |
| return self.norm(latents) | |
| class PerceiverResampler(nn.Module): | |
| def __init__(self, model_args, vision_tower): | |
| super().__init__() | |
| self.depth = model_args.mm_perceiver_depth | |
| self.num_latents = model_args.mm_perceiver_latents | |
| self.ff_mult = model_args.mm_perceiver_ff_mult | |
| self.pretrained = model_args.mm_perceiver_pretrained | |
| self.perceiver = PerceiverResamplerModule(dim=vision_tower.hidden_size, depth=self.depth, num_latents=self.num_latents, ff_mult=self.ff_mult) | |
| if self.pretrained is not None: | |
| self.load_state_dict(torch.load(self.pretrained)) | |
| def forward(self, image_features, *args, **kwargs): | |
| return self.perceiver(image_features[:, None, None]).squeeze(1) | |
| def config(self): | |
| return { | |
| "mm_resampler_type": "perceiver", | |
| "mm_perceiver_depth": self.depth, | |
| "mm_perceiver_latents": self.num_latents, | |
| "mm_perceiver_ff_mult": self.ff_mult, | |
| "mm_perceiver_pretrained": self.pretrained, | |
| } | |