Spaces:
Running
Running
| import init, { Model } from "./build/m.js"; | |
| async function fetchArrayBuffer(url) { | |
| const cacheName = "llama2c-candle-cache"; | |
| const cache = await caches.open(cacheName); | |
| const cachedResponse = await cache.match(url); | |
| if (cachedResponse) { | |
| const data = await cachedResponse.arrayBuffer(); | |
| return new Uint8Array(data); | |
| } | |
| const res = await fetch(url, { cache: "force-cache" }); | |
| cache.put(url, res.clone()); | |
| return new Uint8Array(await res.arrayBuffer()); | |
| } | |
| class Llama2C { | |
| static instance = {}; | |
| static async getInstance(weightsURL, modelID, tokenizerURL) { | |
| // load individual modelID only once | |
| if (!this.instance[modelID]) { | |
| await init(); | |
| self.postMessage({ status: "loading", message: "Loading Model" }); | |
| const [weightsArrayU8, tokenizerArrayU8] = await Promise.all([ | |
| fetchArrayBuffer(weightsURL), | |
| fetchArrayBuffer(tokenizerURL), | |
| ]); | |
| this.instance[modelID] = new Model(weightsArrayU8, tokenizerArrayU8); | |
| } | |
| return this.instance[modelID]; | |
| } | |
| } | |
| let controller = null; | |
| self.addEventListener("message", (event) => { | |
| if (event.data.command === "start") { | |
| controller = new AbortController(); | |
| generate(event.data); | |
| } else if (event.data.command === "abort") { | |
| controller.abort(); | |
| } | |
| }); | |
| async function generate(data) { | |
| const { | |
| weightsURL, | |
| modelID, | |
| tokenizerURL, | |
| prompt, | |
| temp, | |
| top_p, | |
| repeatPenalty, | |
| seed, | |
| maxSeqLen, | |
| } = data; | |
| try { | |
| self.postMessage({ status: "loading", message: "Starting llama2.c" }); | |
| const model = await Llama2C.getInstance(weightsURL, modelID, tokenizerURL); | |
| self.postMessage({ status: "loading", message: "Initializing model" }); | |
| const firstToken = model.init_with_prompt( | |
| prompt, | |
| temp, | |
| top_p, | |
| repeatPenalty, | |
| seed | |
| ); | |
| const seq_len = model.get_seq_len(); | |
| let sentence = firstToken; | |
| let maxTokens = maxSeqLen ? maxSeqLen : seq_len - prompt.length - 1; | |
| let startTime = performance.now(); | |
| let tokensCount = 0; | |
| while (tokensCount < maxTokens) { | |
| await new Promise(async (resolve) => { | |
| if (controller && controller.signal.aborted) { | |
| self.postMessage({ | |
| status: "aborted", | |
| message: "Aborted", | |
| output: prompt + sentence, | |
| }); | |
| return; | |
| } | |
| const token = await model.next_token(); | |
| const tokensSec = | |
| ((tokensCount + 1) / (performance.now() - startTime)) * 1000; | |
| sentence += token; | |
| self.postMessage({ | |
| status: "generating", | |
| message: "Generating token", | |
| token: token, | |
| sentence: sentence, | |
| totalTime: performance.now() - startTime, | |
| tokensSec, | |
| prompt: prompt, | |
| }); | |
| setTimeout(resolve, 0); | |
| }); | |
| tokensCount++; | |
| } | |
| self.postMessage({ | |
| status: "complete", | |
| message: "complete", | |
| output: prompt + sentence, | |
| }); | |
| } catch (e) { | |
| self.postMessage({ error: e }); | |
| } | |
| } | |