opt funcs
Browse files
app.py
CHANGED
|
@@ -72,21 +72,19 @@ def download_youtube_audio(url, method_choice):
|
|
| 72 |
|
| 73 |
Args:
|
| 74 |
url (str): The YouTube URL.
|
| 75 |
-
method_choice (str): The method to use for downloading ('yt-dlp', 'pytube'
|
| 76 |
|
| 77 |
Returns:
|
| 78 |
str: Path to the downloaded audio file, or None if failed.
|
| 79 |
"""
|
| 80 |
methods = {
|
| 81 |
-
'yt-dlp':
|
| 82 |
'pytube': pytube_method,
|
| 83 |
-
'youtube-dl': youtube_dl_classic_method,
|
| 84 |
-
'yt-dlp-alt': youtube_dl_alternative_method,
|
| 85 |
}
|
| 86 |
method = methods.get(method_choice)
|
| 87 |
if method is None:
|
| 88 |
logging.warning(f"Invalid download method for YouTube: {method_choice}. Defaulting to 'yt-dlp'.")
|
| 89 |
-
method =
|
| 90 |
try:
|
| 91 |
logging.info(f"Attempting to download YouTube audio using {method_choice}")
|
| 92 |
return method(url)
|
|
@@ -115,17 +113,64 @@ def youtube_dl_method(url):
|
|
| 115 |
logging.error(f"Error in youtube_dl_method: {str(e)}")
|
| 116 |
return None
|
| 117 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
def pytube_method(url):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
logging.info("Using pytube method")
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
|
| 130 |
def youtube_dl_classic_method(url):
|
| 131 |
logging.info("Using youtube-dl classic method")
|
|
@@ -179,6 +224,32 @@ def aria2_method(url):
|
|
| 179 |
logging.info(f"Downloaded audio to: {output_file}")
|
| 180 |
return output_file
|
| 181 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
def download_direct_audio(url, method_choice):
|
| 183 |
"""
|
| 184 |
Downloads audio from a direct URL using the specified method.
|
|
@@ -191,35 +262,44 @@ def download_direct_audio(url, method_choice):
|
|
| 191 |
str: Path to the downloaded audio file, or None if failed.
|
| 192 |
"""
|
| 193 |
logging.info(f"Downloading direct audio from: {url} using method: {method_choice}")
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
raise Exception(f"Failed to download audio from {url} with status code {response.status_code}")
|
| 208 |
-
except Exception as e:
|
| 209 |
-
logging.error(f"Error downloading direct audio: {str(e)}")
|
| 210 |
-
return None
|
| 211 |
|
| 212 |
def wget_method(url):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 213 |
logging.info("Using wget method")
|
| 214 |
-
output_file = tempfile.mktemp(suffix='.mp3')
|
| 215 |
command = ['wget', '-O', output_file, url]
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 219 |
|
| 220 |
def trim_audio(audio_path, start_time, end_time):
|
| 221 |
"""
|
| 222 |
-
Trims an audio file to the specified start and end times.
|
| 223 |
|
| 224 |
Args:
|
| 225 |
audio_path (str): Path to the audio file.
|
|
@@ -230,7 +310,7 @@ def trim_audio(audio_path, start_time, end_time):
|
|
| 230 |
str: Path to the trimmed audio file.
|
| 231 |
|
| 232 |
Raises:
|
| 233 |
-
gr.Error: If invalid start or end times are provided.
|
| 234 |
"""
|
| 235 |
try:
|
| 236 |
logging.info(f"Trimming audio from {start_time} to {end_time}")
|
|
@@ -256,6 +336,9 @@ def trim_audio(audio_path, start_time, end_time):
|
|
| 256 |
trimmed_audio.export(temp_audio_file.name, format="wav")
|
| 257 |
logging.info(f"Trimmed audio saved to: {temp_audio_file.name}")
|
| 258 |
return temp_audio_file.name
|
|
|
|
|
|
|
|
|
|
| 259 |
except Exception as e:
|
| 260 |
logging.error(f"Error trimming audio: {str(e)}")
|
| 261 |
raise gr.Error(f"Error trimming audio: {str(e)}")
|
|
@@ -319,7 +402,7 @@ def transcribe_audio(input_source, pipeline_type, model_id, dtype, batch_size, d
|
|
| 319 |
logging.getLogger().setLevel(logging.INFO)
|
| 320 |
else:
|
| 321 |
logging.getLogger().setLevel(logging.WARNING)
|
| 322 |
-
|
| 323 |
logging.info(f"Transcription parameters: pipeline_type={pipeline_type}, model_id={model_id}, dtype={dtype}, batch_size={batch_size}, download_method={download_method}")
|
| 324 |
verbose_messages = f"Starting transcription with parameters:\nPipeline Type: {pipeline_type}\nModel ID: {model_id}\nData Type: {dtype}\nBatch Size: {batch_size}\nDownload Method: {download_method}\n"
|
| 325 |
|
|
@@ -371,21 +454,26 @@ def transcribe_audio(input_source, pipeline_type, model_id, dtype, batch_size, d
|
|
| 371 |
elif pipeline_type == "faster-sequenced":
|
| 372 |
model_or_pipeline = WhisperModel(model_id, device=device, compute_type=dtype)
|
| 373 |
elif pipeline_type == "transformers":
|
| 374 |
-
torch_dtype
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 375 |
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
| 376 |
-
model_id, torch_dtype=torch_dtype
|
| 377 |
)
|
| 378 |
-
model.to(device)
|
| 379 |
processor = AutoProcessor.from_pretrained(model_id)
|
| 380 |
model_or_pipeline = pipeline(
|
| 381 |
-
|
| 382 |
model=model,
|
| 383 |
tokenizer=processor.tokenizer,
|
| 384 |
feature_extractor=processor.feature_extractor,
|
| 385 |
chunk_length_s=30,
|
| 386 |
batch_size=batch_size,
|
| 387 |
return_timestamps=True,
|
| 388 |
-
torch_dtype=torch_dtype,
|
| 389 |
device=device,
|
| 390 |
)
|
| 391 |
else:
|
|
@@ -432,11 +520,9 @@ def transcribe_audio(input_source, pipeline_type, model_id, dtype, batch_size, d
|
|
| 432 |
yield f"An error occurred: {str(e)}", "", None
|
| 433 |
|
| 434 |
finally:
|
| 435 |
-
# Clean up temporary files
|
| 436 |
if audio_path and is_temp_file and os.path.exists(audio_path):
|
| 437 |
os.remove(audio_path)
|
| 438 |
-
if 'transcription_file' in locals() and transcription_file and os.path.exists(transcription_file):
|
| 439 |
-
os.remove(transcription_file)
|
| 440 |
|
| 441 |
with gr.Blocks() as iface:
|
| 442 |
gr.Markdown("# Multi-Pipeline Transcription")
|
|
|
|
| 72 |
|
| 73 |
Args:
|
| 74 |
url (str): The YouTube URL.
|
| 75 |
+
method_choice (str): The method to use for downloading ('yt-dlp', 'pytube').
|
| 76 |
|
| 77 |
Returns:
|
| 78 |
str: Path to the downloaded audio file, or None if failed.
|
| 79 |
"""
|
| 80 |
methods = {
|
| 81 |
+
'yt-dlp': yt_dlp_method,
|
| 82 |
'pytube': pytube_method,
|
|
|
|
|
|
|
| 83 |
}
|
| 84 |
method = methods.get(method_choice)
|
| 85 |
if method is None:
|
| 86 |
logging.warning(f"Invalid download method for YouTube: {method_choice}. Defaulting to 'yt-dlp'.")
|
| 87 |
+
method = yt_dlp_method
|
| 88 |
try:
|
| 89 |
logging.info(f"Attempting to download YouTube audio using {method_choice}")
|
| 90 |
return method(url)
|
|
|
|
| 113 |
logging.error(f"Error in youtube_dl_method: {str(e)}")
|
| 114 |
return None
|
| 115 |
|
| 116 |
+
def yt_dlp_method(url):
|
| 117 |
+
"""
|
| 118 |
+
Downloads audio using yt-dlp.
|
| 119 |
+
|
| 120 |
+
Args:
|
| 121 |
+
url (str): The YouTube URL.
|
| 122 |
+
|
| 123 |
+
Returns:
|
| 124 |
+
str: Path to the downloaded audio file, or None if failed.
|
| 125 |
+
"""
|
| 126 |
+
logging.info("Using yt-dlp method")
|
| 127 |
+
try:
|
| 128 |
+
ydl_opts = {
|
| 129 |
+
'format': 'bestaudio/best',
|
| 130 |
+
'postprocessors': [{
|
| 131 |
+
'key': 'FFmpegExtractAudio',
|
| 132 |
+
'preferredcodec': 'mp3',
|
| 133 |
+
'preferredquality': '192',
|
| 134 |
+
}],
|
| 135 |
+
'outtmpl': '%(id)s.%(ext)s',
|
| 136 |
+
'quiet': True,
|
| 137 |
+
'no_warnings': True,
|
| 138 |
+
}
|
| 139 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
| 140 |
+
info = ydl.extract_info(url, download=True)
|
| 141 |
+
output_file = ydl.prepare_filename(info)
|
| 142 |
+
if output_file.endswith('.webm') or output_file.endswith('.mp4'):
|
| 143 |
+
output_file = output_file.rsplit('.', 1)[0] + '.mp3'
|
| 144 |
+
logging.info(f"Downloaded YouTube audio: {output_file}")
|
| 145 |
+
return output_file
|
| 146 |
+
except Exception as e:
|
| 147 |
+
logging.error(f"Error in yt_dlp_method: {str(e)}")
|
| 148 |
+
return None
|
| 149 |
+
|
| 150 |
def pytube_method(url):
|
| 151 |
+
"""
|
| 152 |
+
Downloads audio using pytube.
|
| 153 |
+
|
| 154 |
+
Args:
|
| 155 |
+
url (str): The YouTube URL.
|
| 156 |
+
|
| 157 |
+
Returns:
|
| 158 |
+
str: Path to the downloaded audio file, or None if failed.
|
| 159 |
+
"""
|
| 160 |
logging.info("Using pytube method")
|
| 161 |
+
try:
|
| 162 |
+
from pytube import YouTube
|
| 163 |
+
yt = YouTube(url)
|
| 164 |
+
audio_stream = yt.streams.filter(only_audio=True).first()
|
| 165 |
+
out_file = audio_stream.download()
|
| 166 |
+
base, ext = os.path.splitext(out_file)
|
| 167 |
+
new_file = base + '.mp3'
|
| 168 |
+
os.rename(out_file, new_file)
|
| 169 |
+
logging.info(f"Downloaded and converted audio to: {new_file}")
|
| 170 |
+
return new_file
|
| 171 |
+
except Exception as e:
|
| 172 |
+
logging.error(f"Error in pytube_method: {str(e)}")
|
| 173 |
+
return None
|
| 174 |
|
| 175 |
def youtube_dl_classic_method(url):
|
| 176 |
logging.info("Using youtube-dl classic method")
|
|
|
|
| 224 |
logging.info(f"Downloaded audio to: {output_file}")
|
| 225 |
return output_file
|
| 226 |
|
| 227 |
+
def requests_method(url):
|
| 228 |
+
"""
|
| 229 |
+
Downloads audio using the requests library.
|
| 230 |
+
|
| 231 |
+
Args:
|
| 232 |
+
url (str): The URL of the audio file.
|
| 233 |
+
|
| 234 |
+
Returns:
|
| 235 |
+
str: Path to the downloaded audio file, or None if failed.
|
| 236 |
+
"""
|
| 237 |
+
try:
|
| 238 |
+
response = requests.get(url, stream=True)
|
| 239 |
+
if response.status_code == 200:
|
| 240 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_file:
|
| 241 |
+
for chunk in response.iter_content(chunk_size=8192):
|
| 242 |
+
if chunk:
|
| 243 |
+
temp_file.write(chunk)
|
| 244 |
+
logging.info(f"Downloaded direct audio to: {temp_file.name}")
|
| 245 |
+
return temp_file.name
|
| 246 |
+
else:
|
| 247 |
+
logging.error(f"Failed to download audio from {url} with status code {response.status_code}")
|
| 248 |
+
return None
|
| 249 |
+
except Exception as e:
|
| 250 |
+
logging.error(f"Error in requests_method: {str(e)}")
|
| 251 |
+
return None
|
| 252 |
+
|
| 253 |
def download_direct_audio(url, method_choice):
|
| 254 |
"""
|
| 255 |
Downloads audio from a direct URL using the specified method.
|
|
|
|
| 262 |
str: Path to the downloaded audio file, or None if failed.
|
| 263 |
"""
|
| 264 |
logging.info(f"Downloading direct audio from: {url} using method: {method_choice}")
|
| 265 |
+
methods = {
|
| 266 |
+
'wget': wget_method,
|
| 267 |
+
'requests': requests_method,
|
| 268 |
+
}
|
| 269 |
+
method = methods.get(method_choice)
|
| 270 |
+
if method is None:
|
| 271 |
+
logging.warning(f"Invalid download method: {method_choice}. Defaulting to 'requests'.")
|
| 272 |
+
method = requests_method
|
| 273 |
+
try:
|
| 274 |
+
return method(url)
|
| 275 |
+
except Exception as e:
|
| 276 |
+
logging.error(f"Error downloading direct audio: {str(e)}")
|
| 277 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
| 278 |
|
| 279 |
def wget_method(url):
|
| 280 |
+
"""
|
| 281 |
+
Downloads audio using the wget command-line tool.
|
| 282 |
+
|
| 283 |
+
Args:
|
| 284 |
+
url (str): The URL of the audio file.
|
| 285 |
+
|
| 286 |
+
Returns:
|
| 287 |
+
str: Path to the downloaded audio file, or None if failed.
|
| 288 |
+
"""
|
| 289 |
logging.info("Using wget method")
|
| 290 |
+
output_file = tempfile.mktemp(suffix='.mp3')
|
| 291 |
command = ['wget', '-O', output_file, url]
|
| 292 |
+
try:
|
| 293 |
+
subprocess.run(command, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
| 294 |
+
logging.info(f"Downloaded audio to: {output_file}")
|
| 295 |
+
return output_file
|
| 296 |
+
except Exception as e:
|
| 297 |
+
logging.error(f"Error in wget_method: {str(e)}")
|
| 298 |
+
return None
|
| 299 |
|
| 300 |
def trim_audio(audio_path, start_time, end_time):
|
| 301 |
"""
|
| 302 |
+
Trims an audio file to the specified start and end times using pydub.
|
| 303 |
|
| 304 |
Args:
|
| 305 |
audio_path (str): Path to the audio file.
|
|
|
|
| 310 |
str: Path to the trimmed audio file.
|
| 311 |
|
| 312 |
Raises:
|
| 313 |
+
gr.Error: If invalid start or end times are provided or if FFmpeg is not found.
|
| 314 |
"""
|
| 315 |
try:
|
| 316 |
logging.info(f"Trimming audio from {start_time} to {end_time}")
|
|
|
|
| 336 |
trimmed_audio.export(temp_audio_file.name, format="wav")
|
| 337 |
logging.info(f"Trimmed audio saved to: {temp_audio_file.name}")
|
| 338 |
return temp_audio_file.name
|
| 339 |
+
except FileNotFoundError as e:
|
| 340 |
+
logging.error(f"FFmpeg not found: {str(e)}")
|
| 341 |
+
raise gr.Error("FFmpeg not found. Please ensure that FFmpeg is installed and in your system PATH.")
|
| 342 |
except Exception as e:
|
| 343 |
logging.error(f"Error trimming audio: {str(e)}")
|
| 344 |
raise gr.Error(f"Error trimming audio: {str(e)}")
|
|
|
|
| 402 |
logging.getLogger().setLevel(logging.INFO)
|
| 403 |
else:
|
| 404 |
logging.getLogger().setLevel(logging.WARNING)
|
| 405 |
+
|
| 406 |
logging.info(f"Transcription parameters: pipeline_type={pipeline_type}, model_id={model_id}, dtype={dtype}, batch_size={batch_size}, download_method={download_method}")
|
| 407 |
verbose_messages = f"Starting transcription with parameters:\nPipeline Type: {pipeline_type}\nModel ID: {model_id}\nData Type: {dtype}\nBatch Size: {batch_size}\nDownload Method: {download_method}\n"
|
| 408 |
|
|
|
|
| 454 |
elif pipeline_type == "faster-sequenced":
|
| 455 |
model_or_pipeline = WhisperModel(model_id, device=device, compute_type=dtype)
|
| 456 |
elif pipeline_type == "transformers":
|
| 457 |
+
# Adjust torch_dtype based on dtype and device
|
| 458 |
+
if dtype == "float16" and device == "cpu":
|
| 459 |
+
torch_dtype = torch.float32
|
| 460 |
+
elif dtype == "float16":
|
| 461 |
+
torch_dtype = torch.float16
|
| 462 |
+
else:
|
| 463 |
+
torch_dtype = torch.float32
|
| 464 |
+
|
| 465 |
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
| 466 |
+
model_id, torch_dtype=torch_dtype
|
| 467 |
)
|
|
|
|
| 468 |
processor = AutoProcessor.from_pretrained(model_id)
|
| 469 |
model_or_pipeline = pipeline(
|
| 470 |
+
"automatic-speech-recognition",
|
| 471 |
model=model,
|
| 472 |
tokenizer=processor.tokenizer,
|
| 473 |
feature_extractor=processor.feature_extractor,
|
| 474 |
chunk_length_s=30,
|
| 475 |
batch_size=batch_size,
|
| 476 |
return_timestamps=True,
|
|
|
|
| 477 |
device=device,
|
| 478 |
)
|
| 479 |
else:
|
|
|
|
| 520 |
yield f"An error occurred: {str(e)}", "", None
|
| 521 |
|
| 522 |
finally:
|
| 523 |
+
# Clean up temporary audio files
|
| 524 |
if audio_path and is_temp_file and os.path.exists(audio_path):
|
| 525 |
os.remove(audio_path)
|
|
|
|
|
|
|
| 526 |
|
| 527 |
with gr.Blocks() as iface:
|
| 528 |
gr.Markdown("# Multi-Pipeline Transcription")
|