Update app.py
Browse files
app.py
CHANGED
|
@@ -12,8 +12,20 @@ import yt_dlp
|
|
| 12 |
|
| 13 |
logging.basicConfig(level=logging.INFO)
|
| 14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
sys.path.append("./faster-whisper")
|
| 16 |
-
|
|
|
|
|
|
|
| 17 |
|
| 18 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 19 |
|
|
@@ -143,10 +155,49 @@ def save_transcription(transcription):
|
|
| 143 |
f.write(transcription)
|
| 144 |
return file_path
|
| 145 |
|
| 146 |
-
def transcribe_audio(input_source, batch_size, download_method, start_time=None, end_time=None, verbose=False):
|
| 147 |
try:
|
| 148 |
-
|
| 149 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
|
| 151 |
if isinstance(input_source, str) and (input_source.startswith('http://') or input_source.startswith('https://')):
|
| 152 |
audio_path = download_audio(input_source, download_method)
|
|
@@ -160,19 +211,21 @@ def transcribe_audio(input_source, batch_size, download_method, start_time=None,
|
|
| 160 |
trimmed_audio_path = trim_audio(audio_path, start_time or 0, end_time)
|
| 161 |
audio_path = trimmed_audio_path
|
| 162 |
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
|
| 167 |
transcription_time = end_time_perf - start_time_perf
|
| 168 |
-
real_time_factor = info.duration / transcription_time
|
| 169 |
audio_file_size = os.path.getsize(audio_path) / (1024 * 1024)
|
| 170 |
|
| 171 |
metrics_output = (
|
| 172 |
-
f"Language: {info.language}, Probability: {info.language_probability:.2f}\n"
|
| 173 |
-
f"Duration: {info.duration:.2f}s, Duration after VAD: {info.duration_after_vad:.2f}s\n"
|
| 174 |
f"Transcription time: {transcription_time:.2f} seconds\n"
|
| 175 |
-
f"Real-time factor: {real_time_factor:.2f}x\n"
|
| 176 |
f"Audio file size: {audio_file_size:.2f} MB\n"
|
| 177 |
)
|
| 178 |
|
|
@@ -182,7 +235,10 @@ def transcribe_audio(input_source, batch_size, download_method, start_time=None,
|
|
| 182 |
transcription = ""
|
| 183 |
|
| 184 |
for segment in segments:
|
| 185 |
-
|
|
|
|
|
|
|
|
|
|
| 186 |
transcription += transcription_segment
|
| 187 |
|
| 188 |
if verbose:
|
|
@@ -205,14 +261,15 @@ def transcribe_audio(input_source, batch_size, download_method, start_time=None,
|
|
| 205 |
os.remove(trimmed_audio_path)
|
| 206 |
except:
|
| 207 |
pass
|
| 208 |
-
|
| 209 |
iface = gr.Interface(
|
| 210 |
fn=transcribe_audio,
|
| 211 |
inputs=[
|
| 212 |
gr.Textbox(label="Audio Source (Upload, URL, or YouTube URL)"),
|
|
|
|
| 213 |
gr.Slider(minimum=1, maximum=32, step=1, value=16, label="Batch Size"),
|
| 214 |
gr.Dropdown(choices=["yt-dlp", "pytube", "youtube-dl", "yt-dlp-alt", "ffmpeg", "aria2", "wget"], label="Download Method", value="yt-dlp"),
|
| 215 |
-
gr.Number(label="Start Time (seconds)", value=0),
|
| 216 |
gr.Number(label="End Time (seconds)", value=0),
|
| 217 |
gr.Checkbox(label="Verbose Output", value=False)
|
| 218 |
],
|
|
@@ -222,11 +279,11 @@ iface = gr.Interface(
|
|
| 222 |
gr.File(label="Download Transcription")
|
| 223 |
],
|
| 224 |
title="Multi-Model Transcription",
|
| 225 |
-
description="Transcribe audio using
|
| 226 |
examples=[
|
| 227 |
-
["https://www.youtube.com/watch?v=daQ_hqA6HDo", 16, "yt-dlp", 0, None, False],
|
| 228 |
-
["https://mcdn.podbean.com/mf/web/dir5wty678b6g4vg/HoP_453_-_The_Price_is_Right_-_Law_and_Economics_in_the_Second_Scholastic5yxzh.mp3", 16, "ffmpeg", 0, 300, True],
|
| 229 |
-
["path/to/local/audio.mp3", 16, "yt-dlp", 60, 180, False]
|
| 230 |
],
|
| 231 |
cache_examples=False,
|
| 232 |
live=True
|
|
|
|
| 12 |
|
| 13 |
logging.basicConfig(level=logging.INFO)
|
| 14 |
|
| 15 |
+
# Clone and install faster-whisper from GitHub
|
| 16 |
+
# (we should be able to do this in build.sh in a hf space)
|
| 17 |
+
try:
|
| 18 |
+
subprocess.run(["git", "clone", "https://github.com/SYSTRAN/faster-whisper.git"], check=True)
|
| 19 |
+
subprocess.run(["pip", "install", "-e", "./faster-whisper"], check=True)
|
| 20 |
+
except subprocess.CalledProcessError as e:
|
| 21 |
+
print(f"Error during faster-whisper installation: {e}")
|
| 22 |
+
sys.exit(1)
|
| 23 |
+
|
| 24 |
+
# Add the faster-whisper directory to the Python path
|
| 25 |
sys.path.append("./faster-whisper")
|
| 26 |
+
|
| 27 |
+
from faster_whisper import WhisperModel
|
| 28 |
+
from faster_whisper.transcribe import BatchedInferencePipeline
|
| 29 |
|
| 30 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 31 |
|
|
|
|
| 155 |
f.write(transcription)
|
| 156 |
return file_path
|
| 157 |
|
| 158 |
+
def transcribe_audio(input_source, model_choice, batch_size, download_method, start_time=None, end_time=None, verbose=False):
|
| 159 |
try:
|
| 160 |
+
if model_choice == "faster-whisper":
|
| 161 |
+
model = WhisperModel("cstr/whisper-large-v3-turbo-int8_float32", device="auto", compute_type="int8")
|
| 162 |
+
batched_model = BatchedInferencePipeline(model=model)
|
| 163 |
+
elif model_choice == "primeline/whisper-large-v3-german":
|
| 164 |
+
model_id = "primeline/whisper-large-v3-german"
|
| 165 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
| 166 |
+
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
| 167 |
+
)
|
| 168 |
+
model.to(device)
|
| 169 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
| 170 |
+
pipe = pipeline(
|
| 171 |
+
"automatic-speech-recognition",
|
| 172 |
+
model=model,
|
| 173 |
+
tokenizer=processor.tokenizer,
|
| 174 |
+
feature_extractor=processor.feature_extractor,
|
| 175 |
+
max_new_tokens=128,
|
| 176 |
+
chunk_length_s=30,
|
| 177 |
+
batch_size=batch_size,
|
| 178 |
+
return_timestamps=True,
|
| 179 |
+
torch_dtype=torch_dtype,
|
| 180 |
+
device=device,
|
| 181 |
+
)
|
| 182 |
+
elif model_choice == "openai/whisper-large-v3":
|
| 183 |
+
model_id = "openai/whisper-large-v3"
|
| 184 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
| 185 |
+
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
| 186 |
+
)
|
| 187 |
+
model.to(device)
|
| 188 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
| 189 |
+
pipe = pipeline(
|
| 190 |
+
"automatic-speech-recognition",
|
| 191 |
+
model=model,
|
| 192 |
+
tokenizer=processor.tokenizer,
|
| 193 |
+
feature_extractor=processor.feature_extractor,
|
| 194 |
+
torch_dtype=torch_dtype,
|
| 195 |
+
device=device,
|
| 196 |
+
)
|
| 197 |
+
else:
|
| 198 |
+
raise ValueError("Invalid model choice")
|
| 199 |
+
|
| 200 |
+
# Rest of the code remains the same
|
| 201 |
|
| 202 |
if isinstance(input_source, str) and (input_source.startswith('http://') or input_source.startswith('https://')):
|
| 203 |
audio_path = download_audio(input_source, download_method)
|
|
|
|
| 211 |
trimmed_audio_path = trim_audio(audio_path, start_time or 0, end_time)
|
| 212 |
audio_path = trimmed_audio_path
|
| 213 |
|
| 214 |
+
if model_choice == "faster-whisper":
|
| 215 |
+
start_time_perf = time.time()
|
| 216 |
+
segments, info = batched_model.transcribe(audio_path, batch_size=batch_size, initial_prompt=None)
|
| 217 |
+
end_time_perf = time.time()
|
| 218 |
+
else:
|
| 219 |
+
start_time_perf = time.time()
|
| 220 |
+
result = pipe(audio_path)
|
| 221 |
+
segments = result["chunks"]
|
| 222 |
+
end_time_perf = time.time()
|
| 223 |
|
| 224 |
transcription_time = end_time_perf - start_time_perf
|
|
|
|
| 225 |
audio_file_size = os.path.getsize(audio_path) / (1024 * 1024)
|
| 226 |
|
| 227 |
metrics_output = (
|
|
|
|
|
|
|
| 228 |
f"Transcription time: {transcription_time:.2f} seconds\n"
|
|
|
|
| 229 |
f"Audio file size: {audio_file_size:.2f} MB\n"
|
| 230 |
)
|
| 231 |
|
|
|
|
| 235 |
transcription = ""
|
| 236 |
|
| 237 |
for segment in segments:
|
| 238 |
+
if model_choice == "faster-whisper":
|
| 239 |
+
transcription_segment = f"[{segment.start:.2f}s -> {segment.end:.2f}s] {segment.text}\n"
|
| 240 |
+
else:
|
| 241 |
+
transcription_segment = f"[{segment['timestamp'][0]:.2f}s -> {segment['timestamp'][1]:.2f}s] {segment['text']}\n"
|
| 242 |
transcription += transcription_segment
|
| 243 |
|
| 244 |
if verbose:
|
|
|
|
| 261 |
os.remove(trimmed_audio_path)
|
| 262 |
except:
|
| 263 |
pass
|
| 264 |
+
|
| 265 |
iface = gr.Interface(
|
| 266 |
fn=transcribe_audio,
|
| 267 |
inputs=[
|
| 268 |
gr.Textbox(label="Audio Source (Upload, URL, or YouTube URL)"),
|
| 269 |
+
gr.Dropdown(choices=["faster-whisper", "primeline/whisper-large-v3-german", "openai/whisper-large-v3"], label="Model Choice", value="faster-whisper"),
|
| 270 |
gr.Slider(minimum=1, maximum=32, step=1, value=16, label="Batch Size"),
|
| 271 |
gr.Dropdown(choices=["yt-dlp", "pytube", "youtube-dl", "yt-dlp-alt", "ffmpeg", "aria2", "wget"], label="Download Method", value="yt-dlp"),
|
| 272 |
+
gr.Number(label="Start Time (seconds)", value=0),
|
| 273 |
gr.Number(label="End Time (seconds)", value=0),
|
| 274 |
gr.Checkbox(label="Verbose Output", value=False)
|
| 275 |
],
|
|
|
|
| 279 |
gr.File(label="Download Transcription")
|
| 280 |
],
|
| 281 |
title="Multi-Model Transcription",
|
| 282 |
+
description="Transcribe audio using multiple models.",
|
| 283 |
examples=[
|
| 284 |
+
["https://www.youtube.com/watch?v=daQ_hqA6HDo", "faster-whisper", 16, "yt-dlp", 0, None, False],
|
| 285 |
+
["https://mcdn.podbean.com/mf/web/dir5wty678b6g4vg/HoP_453_-_The_Price_is_Right_-_Law_and_Economics_in_the_Second_Scholastic5yxzh.mp3", "primeline/whisper-large-v3-german", 16, "ffmpeg", 0, 300, True],
|
| 286 |
+
["path/to/local/audio.mp3", "openai/whisper-large-v3", 16, "yt-dlp", 60, 180, False]
|
| 287 |
],
|
| 288 |
cache_examples=False,
|
| 289 |
live=True
|