Update app.py
Browse files
app.py
CHANGED
|
@@ -3,22 +3,61 @@ import os
|
|
| 3 |
import time
|
| 4 |
import sys
|
| 5 |
import subprocess
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
# Clone and install faster-whisper from GitHub
|
| 8 |
subprocess.run(["git", "clone", "https://github.com/SYSTRAN/faster-whisper.git"], check=True)
|
| 9 |
subprocess.run(["pip", "install", "-e", "./faster-whisper"], check=True)
|
|
|
|
| 10 |
|
| 11 |
# Add the faster-whisper directory to the Python path
|
| 12 |
sys.path.append("./faster-whisper")
|
| 13 |
|
| 14 |
from faster_whisper import WhisperModel
|
| 15 |
from faster_whisper.transcribe import BatchedInferencePipeline
|
|
|
|
| 16 |
|
| 17 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
# Initialize the model
|
| 19 |
model = WhisperModel("cstr/whisper-large-v3-turbo-int8_float32", device="auto", compute_type="int8")
|
| 20 |
batched_model = BatchedInferencePipeline(model=model)
|
| 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
# Benchmark transcription time
|
| 23 |
start_time = time.time()
|
| 24 |
segments, info = batched_model.transcribe(audio_path, batch_size=batch_size)
|
|
@@ -42,19 +81,27 @@ def transcribe_audio(audio_path, batch_size):
|
|
| 42 |
output += f"Real-time factor: {real_time_factor:.2f}x\n"
|
| 43 |
output += f"Audio file size: {audio_file_size:.2f} MB"
|
| 44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
return output
|
| 46 |
|
| 47 |
# Gradio interface
|
| 48 |
iface = gr.Interface(
|
| 49 |
fn=transcribe_audio,
|
| 50 |
inputs=[
|
| 51 |
-
gr.
|
| 52 |
gr.Slider(minimum=1, maximum=32, step=1, value=16, label="Batch Size")
|
| 53 |
],
|
| 54 |
outputs=gr.Textbox(label="Transcription and Metrics"),
|
| 55 |
-
title="Faster Whisper
|
| 56 |
-
description="
|
| 57 |
-
examples=[
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
)
|
| 59 |
|
| 60 |
iface.launch()
|
|
|
|
| 3 |
import time
|
| 4 |
import sys
|
| 5 |
import subprocess
|
| 6 |
+
import tempfile
|
| 7 |
+
import requests
|
| 8 |
+
from urllib.parse import urlparse
|
| 9 |
|
| 10 |
# Clone and install faster-whisper from GitHub
|
| 11 |
subprocess.run(["git", "clone", "https://github.com/SYSTRAN/faster-whisper.git"], check=True)
|
| 12 |
subprocess.run(["pip", "install", "-e", "./faster-whisper"], check=True)
|
| 13 |
+
subprocess.run(["pip", "install", "yt-dlp"], check=True)
|
| 14 |
|
| 15 |
# Add the faster-whisper directory to the Python path
|
| 16 |
sys.path.append("./faster-whisper")
|
| 17 |
|
| 18 |
from faster_whisper import WhisperModel
|
| 19 |
from faster_whisper.transcribe import BatchedInferencePipeline
|
| 20 |
+
import yt_dlp
|
| 21 |
|
| 22 |
+
def download_audio(url):
|
| 23 |
+
parsed_url = urlparse(url)
|
| 24 |
+
if parsed_url.netloc == 'www.youtube.com' or parsed_url.netloc == 'youtu.be':
|
| 25 |
+
# YouTube video
|
| 26 |
+
ydl_opts = {
|
| 27 |
+
'format': 'bestaudio/best',
|
| 28 |
+
'postprocessors': [{
|
| 29 |
+
'key': 'FFmpegExtractAudio',
|
| 30 |
+
'preferredcodec': 'mp3',
|
| 31 |
+
'preferredquality': '192',
|
| 32 |
+
}],
|
| 33 |
+
'outtmpl': '%(id)s.%(ext)s',
|
| 34 |
+
}
|
| 35 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
| 36 |
+
info = ydl.extract_info(url, download=True)
|
| 37 |
+
return f"{info['id']}.mp3"
|
| 38 |
+
else:
|
| 39 |
+
# Direct MP3 URL
|
| 40 |
+
response = requests.get(url)
|
| 41 |
+
if response.status_code == 200:
|
| 42 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_file:
|
| 43 |
+
temp_file.write(response.content)
|
| 44 |
+
return temp_file.name
|
| 45 |
+
else:
|
| 46 |
+
raise Exception(f"Failed to download audio from {url}")
|
| 47 |
+
|
| 48 |
+
def transcribe_audio(input_source, batch_size):
|
| 49 |
# Initialize the model
|
| 50 |
model = WhisperModel("cstr/whisper-large-v3-turbo-int8_float32", device="auto", compute_type="int8")
|
| 51 |
batched_model = BatchedInferencePipeline(model=model)
|
| 52 |
|
| 53 |
+
# Handle input source
|
| 54 |
+
if isinstance(input_source, str) and (input_source.startswith('http://') or input_source.startswith('https://')):
|
| 55 |
+
# It's a URL, download the audio
|
| 56 |
+
audio_path = download_audio(input_source)
|
| 57 |
+
else:
|
| 58 |
+
# It's a local file path
|
| 59 |
+
audio_path = input_source
|
| 60 |
+
|
| 61 |
# Benchmark transcription time
|
| 62 |
start_time = time.time()
|
| 63 |
segments, info = batched_model.transcribe(audio_path, batch_size=batch_size)
|
|
|
|
| 81 |
output += f"Real-time factor: {real_time_factor:.2f}x\n"
|
| 82 |
output += f"Audio file size: {audio_file_size:.2f} MB"
|
| 83 |
|
| 84 |
+
# Clean up downloaded file if it was a URL
|
| 85 |
+
if isinstance(input_source, str) and (input_source.startswith('http://') or input_source.startswith('https://')):
|
| 86 |
+
os.remove(audio_path)
|
| 87 |
+
|
| 88 |
return output
|
| 89 |
|
| 90 |
# Gradio interface
|
| 91 |
iface = gr.Interface(
|
| 92 |
fn=transcribe_audio,
|
| 93 |
inputs=[
|
| 94 |
+
gr.inputs.Textbox(label="Audio Source (Upload, MP3 URL, or YouTube URL)"),
|
| 95 |
gr.Slider(minimum=1, maximum=32, step=1, value=16, label="Batch Size")
|
| 96 |
],
|
| 97 |
outputs=gr.Textbox(label="Transcription and Metrics"),
|
| 98 |
+
title="Faster Whisper v3 turbo int8 transcription",
|
| 99 |
+
description="Enter an audio file path, MP3 URL, or YouTube URL to transcribe using Faster Whisper v3 turbo (int8). Adjust the batch size for performance tuning.",
|
| 100 |
+
examples=[
|
| 101 |
+
["https://www.youtube.com/watch?v=dQw4w9WgXcQ", 16],
|
| 102 |
+
["https://example.com/path/to/audio.mp3", 16],
|
| 103 |
+
["path/to/local/audio.mp3", 16]
|
| 104 |
+
],
|
| 105 |
)
|
| 106 |
|
| 107 |
iface.launch()
|