Spaces:
Sleeping
Sleeping
File size: 27,267 Bytes
2567e32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 |
"""
app.py
Document Analysis Gradio app — updated to support PDF, DOCX (Word), and PPTX (PowerPoint).
- robust file reading
- streaming PDF extraction
- docx/pptx extraction to pages_texts (one element per paragraph/slide)
- token-aware truncation, chunked summarization, sampled Q&A
- multi-file upload UI (processes first supported file)
"""
import os
# disable noisy HF symlink warning on Windows
os.environ.setdefault("HF_HUB_DISABLE_SYMLINKS_WARNING", "1")
import re
import io
import math
import tempfile
import threading
from pathlib import Path
from typing import List, Tuple, Optional
import gradio as gr
import pdfplumber
import nltk
from nltk.tokenize import sent_tokenize
from transformers import pipeline, AutoTokenizer
import torch
import pandas as pd
from tqdm.auto import tqdm
# Try to import docx and pptx; if not present, we'll handle gracefully at runtime.
try:
from docx import Document as DocxDocument # python-docx
except Exception:
DocxDocument = None
try:
from pptx import Presentation as PptxPresentation # python-pptx
except Exception:
PptxPresentation = None
# -------------------------
# NLTK: ensure punkt available, fallback later
# -------------------------
try:
nltk.download("punkt", quiet=True)
try:
nltk.download("punkt_tab", quiet=True)
except Exception:
pass
except Exception:
pass
# -------------------------
# Device detection
# -------------------------
DEVICE = 0 if torch.cuda.is_available() else -1
print("Device set to use", "cuda" if DEVICE >= 0 else "cpu")
# -------------------------
# Cached pipelines and tokenizers
# -------------------------
_models = {}
_tokenizers = {}
_models_lock = threading.Lock()
def get_pipeline(name: str, task: str):
"""Return a cached HF pipeline for given task and model name."""
key = f"{task}__{name}"
with _models_lock:
if key in _models:
return _models[key]
print(f"Loading pipeline: task={task}, model={name} ... (this may take a while on first run)")
p = pipeline(task, model=name, device=DEVICE)
_models[key] = p
try:
_tokenizers[name] = p.tokenizer
except Exception:
pass
return p
def get_tokenizer(name: str):
"""Return a cached tokenizer (fallback to AutoTokenizer if not present)."""
if name in _tokenizers:
return _tokenizers[name]
try:
tok = AutoTokenizer.from_pretrained(name)
_tokenizers[name] = tok
return tok
except Exception:
return None
# -------------------------
# Default models (adjust if you want smaller/faster ones)
# -------------------------
# -------------------------
# Default models (adjusted for speed)
# -------------------------
SUMMARIZER_MODEL = "t5-small" # This is already fast
QG_MODEL = "valhalla/t5-small-qg-hl" # Use the 'small' version
QA_MODEL = "distilbert-base-cased-distilled-squad" # Much faster than RoBERTa
# -------------------------
# Helpers: filenames / types
# -------------------------
SUPPORTED_EXTS = [".pdf", ".docx", ".pptx", ".txt", ".md", ".rtf", ".png", ".jpg", ".jpeg", ".tiff"]
def ext_of_name(name: str) -> str:
return Path(name).suffix.lower()
def read_uploaded_file_to_bytes(file_obj):
"""
Accept many shapes of Gradio file objects and return bytes.
Supports list/tuple (returns first readable file), dict-like, file-likes, paths, bytes.
"""
# If a list/tuple of uploaded files, try each candidate
if isinstance(file_obj, (list, tuple)):
last_err = None
for elem in file_obj:
try:
return read_uploaded_file_to_bytes(elem)
except Exception as e:
last_err = e
continue
raise ValueError(f"No readable file in list. Last error: {last_err}")
if file_obj is None:
raise ValueError("No file provided")
# if it's already bytes
if isinstance(file_obj, (bytes, bytearray)):
return bytes(file_obj)
# dict-like
if isinstance(file_obj, dict):
for key in ("file", "tmp_path", "name", "data", "path"):
val = file_obj.get(key)
if isinstance(val, (bytes, bytearray)):
return bytes(val)
if isinstance(val, str) and Path(val).exists():
return Path(val).read_bytes()
maybe = file_obj.get("file")
if hasattr(maybe, "read"):
data = maybe.read()
if isinstance(data, str):
return data.encode("utf-8")
return data
# string path
if isinstance(file_obj, str) and Path(file_obj).exists():
return Path(file_obj).read_bytes()
# has a .name attribute that points to a file
if hasattr(file_obj, "name") and isinstance(getattr(file_obj, "name"), str) and Path(file_obj.name).exists():
try:
return Path(file_obj.name).read_bytes()
except Exception:
pass
# file-like with .read()
if hasattr(file_obj, "read"):
try:
data = file_obj.read()
if isinstance(data, str):
return data.encode("utf-8")
return data
except Exception:
pass
# last resort: string representation -> path
try:
s = str(file_obj)
if Path(s).exists():
return Path(s).read_bytes()
except Exception:
pass
raise ValueError(f"Unsupported uploaded file object type: {type(file_obj)}")
def get_uploaded_filenames(file_obj) -> List[str]:
"""
Return a list of human-friendly filenames from uploaded file object(s).
"""
names = []
if file_obj is None:
return names
if isinstance(file_obj, (list, tuple)):
for elem in file_obj:
names.extend(get_uploaded_filenames(elem))
return names
if isinstance(file_obj, dict):
for key in ("name", "filename", "file", "tmp_path", "path"):
if key in file_obj:
val = file_obj.get(key)
if isinstance(val, str):
names.append(Path(val).name)
elif hasattr(val, "name"):
names.append(Path(val.name).name)
maybe = file_obj.get("file")
if maybe is not None:
if hasattr(maybe, "name"):
names.append(Path(maybe.name).name)
return names
if isinstance(file_obj, str):
return [Path(file_obj).name]
if hasattr(file_obj, "name"):
return [Path(getattr(file_obj, "name")).name]
return [str(file_obj)]
def find_first_supported_file(files) -> Tuple[Optional[object], Optional[str]]:
"""
From the uploaded list or single file-like object, find the first file with a supported extension.
Returns (file_obj, filename) or (None, None) if none supported.
"""
if not files:
return None, None
candidates = []
if isinstance(files, (list, tuple)):
for f in files:
names = get_uploaded_filenames(f)
for n in names:
candidates.append((f, n))
else:
names = get_uploaded_filenames(files)
for n in names:
candidates.append((files, n))
for fobj, name in candidates:
ext = ext_of_name(name)
if ext in SUPPORTED_EXTS:
return fobj, name
# fallback: if none matched, return first uploaded
if candidates:
return candidates[0]
return None, None
# -------------------------
# PDF extraction (streaming)
# -------------------------
def extract_text_from_pdf_streaming(file_bytes: bytes, do_ocr: bool = False, extracted_txt_path: str = None):
"""Write PDF bytes to temp file and extract each page's text; returns extracted_txt_path, pages_texts list"""
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp_pdf:
tmp_pdf.write(file_bytes)
tmp_pdf_path = tmp_pdf.name
if extracted_txt_path is None:
tmp_txt = tempfile.NamedTemporaryFile(delete=False, suffix=".txt", mode="w+", encoding="utf-8")
extracted_txt_path = tmp_txt.name
tmp_txt.close()
pages_texts = []
try:
with pdfplumber.open(tmp_pdf_path) as pdf:
for page in pdf.pages:
page_text = page.extract_text()
if (not page_text or page_text.strip() == "") and do_ocr:
try:
from pdf2image import convert_from_path
import pytesseract
images = convert_from_path(tmp_pdf_path, first_page=page.page_number, last_page=page.page_number)
if images:
page_text = pytesseract.image_to_string(images[0])
except Exception:
page_text = ""
if page_text is None:
page_text = ""
with open(extracted_txt_path, "a", encoding="utf-8") as fout:
fout.write(page_text)
fout.write("\n\n---PAGE_BREAK---\n\n")
pages_texts.append(page_text)
finally:
try:
os.remove(tmp_pdf_path)
except Exception:
pass
return extracted_txt_path, pages_texts
# -------------------------
# DOCX extraction
# -------------------------
def extract_text_from_docx_bytes(file_bytes: bytes) -> Tuple[str, List[str]]:
"""
Returns (tmp_text_path, pages_texts) where pages_texts is a list of paragraph groups.
We'll treat each paragraph as a small 'page' or group paragraphs into ~200-word chunks.
"""
if DocxDocument is None:
raise RuntimeError("python-docx not installed. Install with `pip install python-docx`")
with tempfile.NamedTemporaryFile(delete=False, suffix=".docx") as tmp:
tmp.write(file_bytes)
tmp_path = tmp.name
pages_texts = []
try:
doc = DocxDocument(tmp_path)
# Collect non-empty paragraphs
paras = [p.text.strip() for p in doc.paragraphs if p.text and p.text.strip()]
# Group paragraphs into passages of ~200 words
current = []
cur_words = 0
for p in paras:
w = len(p.split())
if cur_words + w <= 200:
current.append(p)
cur_words += w
else:
pages_texts.append(" ".join(current).strip())
current = [p]
cur_words = w
if current:
pages_texts.append(" ".join(current).strip())
# write full extracted text to tmp file for download/debug if needed
tmp_txt = tempfile.NamedTemporaryFile(delete=False, suffix=".txt", mode="w+", encoding="utf-8")
with open(tmp_txt.name, "w", encoding="utf-8") as f:
f.write("\n\n".join(pages_texts))
txt_path = tmp_txt.name
finally:
try:
os.remove(tmp_path)
except Exception:
pass
return txt_path, pages_texts
# -------------------------
# PPTX extraction
# -------------------------
def extract_text_from_pptx_bytes(file_bytes: bytes) -> Tuple[str, List[str]]:
"""
Returns (tmp_text_path, pages_texts) where each slide's text is one element.
"""
if PptxPresentation is None:
raise RuntimeError("python-pptx not installed. Install with `pip install python-pptx`")
with tempfile.NamedTemporaryFile(delete=False, suffix=".pptx") as tmp:
tmp.write(file_bytes)
tmp_path = tmp.name
pages_texts = []
try:
prs = PptxPresentation(tmp_path)
for slide in prs.slides:
texts = []
for shape in slide.shapes:
try:
if hasattr(shape, "text") and shape.text:
texts.append(shape.text.strip())
except Exception:
continue
slide_text = "\n".join([t for t in texts if t])
pages_texts.append(slide_text)
tmp_txt = tempfile.NamedTemporaryFile(delete=False, suffix=".txt", mode="w+", encoding="utf-8")
with open(tmp_txt.name, "w", encoding="utf-8") as f:
f.write("\n\n".join(pages_texts))
txt_path = tmp_txt.name
finally:
try:
os.remove(tmp_path)
except Exception:
pass
return txt_path, pages_texts
# -------------------------
# TXT/MD extraction
# -------------------------
def extract_text_from_txt_bytes(file_bytes: bytes) -> Tuple[str, List[str]]:
s = file_bytes.decode("utf-8", errors="ignore")
# split into passages by blank lines or ~200 words
paras = [p.strip() for p in re.split(r"\n\s*\n", s) if p.strip()]
pages_texts = []
cur = []
cur_words = 0
for p in paras:
w = len(p.split())
if cur_words + w <= 200:
cur.append(p)
cur_words += w
else:
pages_texts.append(" ".join(cur).strip())
cur = [p]
cur_words = w
if cur:
pages_texts.append(" ".join(cur).strip())
tmp_txt = tempfile.NamedTemporaryFile(delete=False, suffix=".txt", mode="w+", encoding="utf-8")
with open(tmp_txt.name, "w", encoding="utf-8") as f:
f.write("\n\n".join(pages_texts))
return tmp_txt.name, pages_texts
# -------------------------
# Token-aware truncation helpers
# -------------------------
def truncate_by_tokens(text: str, tokenizer, reserve: int = 64) -> str:
if not text:
return text
if tokenizer is None:
return text if len(text) <= 3000 else text[:3000]
try:
ids = tokenizer.encode(text, add_special_tokens=False)
max_len = getattr(tokenizer, "model_max_length", 512)
allowed = max(1, max_len - reserve)
if len(ids) > allowed:
ids = ids[:allowed]
return tokenizer.decode(ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)
return text
except Exception:
return text if len(text) <= 3000 else text[:3000]
# -------------------------
# Sentence tokenization fallback
# -------------------------
def safe_sentence_tokenize(text: str) -> List[str]:
try:
sents = sent_tokenize(text)
if isinstance(sents, list) and len(sents) > 0:
return sents
except Exception:
pass
pieces = re.split(r"(?<=[.!?])\s+", text.strip())
return [p.strip() for p in pieces if p.strip()]
# -------------------------
# Summarization (chunked, token-truncated)
# -------------------------
def summarize_text_chunked(summarizer, pages_texts: List[str], pages_per_chunk: int = 8) -> str:
if not pages_texts:
return "(no text)"
summaries = []
tokenizer = getattr(summarizer, "tokenizer", None) or get_tokenizer(SUMMARIZER_MODEL)
num_pages = len(pages_texts)
for i in range(0, num_pages, pages_per_chunk):
chunk_pages = pages_texts[i : i + pages_per_chunk]
chunk_text = "\n\n".join([p for p in chunk_pages if p.strip()])
if not chunk_text.strip():
continue
safe_chunk = truncate_by_tokens(chunk_text, tokenizer, reserve=64)
try:
out = summarizer(safe_chunk, max_length=150, min_length=30, do_sample=False, truncation=True)
summaries.append(out[0]["summary_text"])
except Exception:
summaries.append(safe_chunk[:800])
return "\n\n".join(summaries) if summaries else "(no summary produced)"
# -------------------------
# Passage splitting / QG / QA with token truncation
# -------------------------
def split_into_passages_from_pages(pages_texts: List[str], max_words: int = 200) -> List[str]:
all_passages = []
for page_text in pages_texts:
if not page_text or not page_text.strip():
continue
sents = safe_sentence_tokenize(page_text)
cur = []
cur_len = 0
for s in sents:
w = len(s.split())
if cur_len + w <= max_words:
cur.append(s)
cur_len += w
else:
if cur:
all_passages.append(" ".join(cur).strip())
cur = [s]
cur_len = w
if cur:
all_passages.append(" ".join(cur).strip())
return all_passages
def generate_questions_from_passage(qg_pipeline, passage: str, min_questions: int = 3) -> List[str]:
tok = getattr(qg_pipeline, "tokenizer", None) or get_tokenizer(QG_MODEL)
safe_passage = truncate_by_tokens(passage, tok, reserve=32)
prompt = f"generate questions: {safe_passage}"
try:
out = qg_pipeline(prompt, max_length=256, do_sample=False, truncation=True)
gen_text = out[0].get("generated_text") or out[0].get("text") or ""
except Exception:
gen_text = ""
candidates = []
if "<sep>" in gen_text:
candidates = gen_text.split("<sep>")
elif "\n" in gen_text:
candidates = [line.strip() for line in gen_text.splitlines() if line.strip()]
else:
parts = [p.strip() for p in gen_text.split("?") if p.strip()]
candidates = [p + "?" for p in parts]
questions = [q.strip() for q in candidates if q.strip()]
if len(questions) < min_questions:
sentences = safe_sentence_tokenize(safe_passage)
for i in range(len(sentences)):
if len(questions) >= min_questions:
break
small = ". ".join(sentences[i : i + 2])
try:
out2 = qg_pipeline(f"generate questions: {small}", max_length=128, do_sample=False, truncation=True)
txt = out2[0].get("generated_text") or out2[0].get("text") or ""
except Exception:
txt = ""
if "<sep>" in txt:
more = txt.split("<sep>")
else:
more = [l.strip() for l in txt.splitlines() if l.strip()]
for m in more:
if len(questions) >= min_questions:
break
maybe = m.strip()
if maybe and maybe not in questions:
questions.append(maybe)
return questions[:max(min_questions, len(questions))]
def answer_questions_for_passage(qa_pipeline, passage: str, questions: List[str]) -> List[Tuple[str, str, float]]:
results = []
tok = getattr(qa_pipeline, "tokenizer", None) or get_tokenizer(QA_MODEL)
for q in questions:
try:
safe_ctx = truncate_by_tokens(passage, tok, reserve=64)
res = qa_pipeline(question=q, context=safe_ctx)
answer = res.get("answer", "")
score = float(res.get("score", 0.0))
except Exception:
answer = ""
score = 0.0
results.append((q, answer, score))
return results
# -------------------------
# Unified extract_text_for_file: dispatch by extension
# -------------------------
def extract_text_for_file(file_bytes: bytes, filename: str, do_ocr: bool = False) -> Tuple[str, List[str]]:
"""
Given raw bytes and a filename, return (extracted_txt_path, pages_texts).
Supports PDF (streamed), DOCX, PPTX, TXT/MD. For images, attempt OCR if do_ocr True.
"""
ext = ext_of_name(filename)
if ext == ".pdf":
return extract_text_from_pdf_streaming(file_bytes, do_ocr=do_ocr)
if ext == ".docx":
return extract_text_from_docx_bytes(file_bytes)
if ext == ".pptx":
return extract_text_from_pptx_bytes(file_bytes)
if ext in (".txt", ".md", ".rtf"):
return extract_text_from_txt_bytes(file_bytes)
# images: try OCR if requested
if ext in (".png", ".jpg", ".jpeg", ".tiff", ".bmp") and do_ocr:
# write image bytes to temp file and run OCR with pytesseract if available
try:
from PIL import Image
import pytesseract
with tempfile.NamedTemporaryFile(delete=False, suffix=ext) as tmp:
tmp.write(file_bytes)
tmp_path = tmp.name
img = Image.open(tmp_path)
ocr_txt = pytesseract.image_to_string(img)
pages = [p.strip() for p in re.split(r"\n\s*\n", ocr_txt) if p.strip()]
tmp_txt = tempfile.NamedTemporaryFile(delete=False, suffix=".txt", mode="w+", encoding="utf-8")
with open(tmp_txt.name, "w", encoding="utf-8") as f:
f.write("\n\n".join(pages))
try:
os.remove(tmp_path)
except Exception:
pass
return tmp_txt.name, pages
except Exception:
# fallback: treat as empty
tmp_txt = tempfile.NamedTemporaryFile(delete=False, suffix=".txt", mode="w+", encoding="utf-8")
with open(tmp_txt.name, "w", encoding="utf-8") as f:
f.write("")
return tmp_txt.name, [""]
# unsupported extension: write bytes to txt and return raw decode
tmp_txt = tempfile.NamedTemporaryFile(delete=False, suffix=".txt", mode="w+", encoding="utf-8")
try:
s = file_bytes.decode("utf-8", errors="ignore")
except Exception:
s = ""
with open(tmp_txt.name, "w", encoding="utf-8") as f:
f.write(s)
pages = [p.strip() for p in re.split(r"\n\s*\n", s) if p.strip()]
return tmp_txt.name, pages if pages else [s]
# -------------------------
# Main analyze function
# -------------------------
def analyze_document(file_obj, filename: str, do_ocr: bool, max_passages_for_qa: int = 5):
"""
file_obj: uploaded object
filename: filename string (to detect extension)
"""
try:
file_bytes = read_uploaded_file_to_bytes(file_obj)
except Exception as e:
return f"(error reading file: {e})", "", []
extracted_txt_path, pages_texts = extract_text_for_file(file_bytes, filename, do_ocr=do_ocr)
# preview
preview_chars = 20000
extracted_preview = ""
try:
with open(extracted_txt_path, "r", encoding="utf-8", errors="ignore") as f:
extracted_preview = f.read(preview_chars)
if len(extracted_preview) >= preview_chars:
extracted_preview += "\n\n... (preview truncated) ..."
except Exception:
extracted_preview = "(could not read extracted text preview)"
summarizer = get_pipeline(SUMMARIZER_MODEL, "summarization")
combined_summary = summarize_text_chunked(summarizer, pages_texts, pages_per_chunk=8)
all_passages = split_into_passages_from_pages(pages_texts, max_words=200)
total = len(all_passages)
if total == 0:
return extracted_preview, combined_summary, []
if total <= max_passages_for_qa:
chosen_passages = list(enumerate(all_passages))
else:
step = max(1, math.floor(total / max_passages_for_qa))
chosen_passages = [(i, all_passages[i]) for i in range(0, total, step)][:max_passages_for_qa]
qg = get_pipeline(QG_MODEL, "text2text-generation")
qa = get_pipeline(QA_MODEL, "question-answering")
answered = []
answered_set = set()
for (p_idx, passage) in chosen_passages:
if not passage.strip():
continue
questions = generate_questions_from_passage(qg, passage, min_questions=3)
unique_questions = [q for q in questions if q not in answered_set]
if not unique_questions:
continue
answers = answer_questions_for_passage(qa, passage, unique_questions)
for q, a, score in answers:
answered.append({"passage_idx": int(p_idx), "question": q, "answer": a, "score": float(score)})
answered_set.add(q)
return extracted_preview, combined_summary, answered
# -------------------------
# Gradio UI
# -------------------------
def build_demo():
with gr.Blocks(title="Document Analysis (LLMs)") as demo:
gr.Markdown("# Document Analysis using LLMs\nUpload a supported file (PDF, DOCX, PPTX, TXT) and get summary + Q&A.")
with gr.Row():
with gr.Column(scale=1):
files_in = gr.File(label="Upload files (PDF, DOCX, PPTX, TXT, images...)", file_count="multiple")
do_ocr = gr.Checkbox(label="Try OCR for images/PDF pages (requires OCR libs)", value=False)
max_pass = gr.Slider(label="Max passages to run Q&A on (lower = faster)", minimum=1, maximum=20, step=1, value=5)
run_btn = gr.Button("Analyze Document")
with gr.Column(scale=2):
tabs = gr.Tabs()
with tabs:
with gr.TabItem("Uploaded files"):
uploaded_list = gr.Textbox(label="Uploaded filenames", lines=4)
with gr.TabItem("Extracted Text"):
extracted_out = gr.Textbox(label="Extracted text (preview)", lines=15)
with gr.TabItem("Summary"):
summary_out = gr.Textbox(label="Summary", lines=8)
with gr.TabItem("Q&A"):
qa_out = gr.Dataframe(headers=["passage_idx", "question", "answer", "score"],
datatype=["number", "text", "text", "number"])
def _run(files, do_ocr_val, max_pass_val):
names = get_uploaded_filenames(files)
uploaded_str = "\n".join(names) if names else "(no files uploaded)"
fobj, fname = find_first_supported_file(files)
if fobj is None or fname is None:
return uploaded_str, "(no supported file found)", "", pd.DataFrame(columns=["passage_idx", "question", "answer", "score"])
text, summary, qa = analyze_document(fobj, fname, do_ocr=do_ocr_val, max_passages_for_qa=int(max_pass_val))
if not qa:
qa_df = pd.DataFrame(columns=["passage_idx", "question", "answer", "score"])
else:
qa_df = pd.DataFrame(qa)
qa_df = qa_df.loc[:, ["passage_idx", "question", "answer", "score"]]
qa_df["passage_idx"] = qa_df["passage_idx"].astype(int)
qa_df["question"] = qa_df["question"].astype(str)
qa_df["answer"] = qa_df["answer"].astype(str)
qa_df["score"] = qa_df["score"].astype(float)
return uploaded_str, text or "(no text extracted)", summary or "(no summary)", qa_df
run_btn.click(_run, inputs=[files_in, do_ocr, max_pass], outputs=[uploaded_list, extracted_out, summary_out, qa_out])
return demo
if __name__ == "__main__":
demo = build_demo()
demo.launch()
# demo.launch(server_name="0.0.0.0")
|