Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +715 -0
- requirements.txt +13 -0
app.py
ADDED
|
@@ -0,0 +1,715 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
app.py
|
| 3 |
+
|
| 4 |
+
Document Analysis Gradio app — updated to support PDF, DOCX (Word), and PPTX (PowerPoint).
|
| 5 |
+
- robust file reading
|
| 6 |
+
- streaming PDF extraction
|
| 7 |
+
- docx/pptx extraction to pages_texts (one element per paragraph/slide)
|
| 8 |
+
- token-aware truncation, chunked summarization, sampled Q&A
|
| 9 |
+
- multi-file upload UI (processes first supported file)
|
| 10 |
+
"""
|
| 11 |
+
|
| 12 |
+
import os
|
| 13 |
+
# disable noisy HF symlink warning on Windows
|
| 14 |
+
os.environ.setdefault("HF_HUB_DISABLE_SYMLINKS_WARNING", "1")
|
| 15 |
+
|
| 16 |
+
import re
|
| 17 |
+
import io
|
| 18 |
+
import math
|
| 19 |
+
import tempfile
|
| 20 |
+
import threading
|
| 21 |
+
from pathlib import Path
|
| 22 |
+
from typing import List, Tuple, Optional
|
| 23 |
+
|
| 24 |
+
import gradio as gr
|
| 25 |
+
import pdfplumber
|
| 26 |
+
import nltk
|
| 27 |
+
from nltk.tokenize import sent_tokenize
|
| 28 |
+
from transformers import pipeline, AutoTokenizer
|
| 29 |
+
import torch
|
| 30 |
+
import pandas as pd
|
| 31 |
+
from tqdm.auto import tqdm
|
| 32 |
+
|
| 33 |
+
# Try to import docx and pptx; if not present, we'll handle gracefully at runtime.
|
| 34 |
+
try:
|
| 35 |
+
from docx import Document as DocxDocument # python-docx
|
| 36 |
+
except Exception:
|
| 37 |
+
DocxDocument = None
|
| 38 |
+
|
| 39 |
+
try:
|
| 40 |
+
from pptx import Presentation as PptxPresentation # python-pptx
|
| 41 |
+
except Exception:
|
| 42 |
+
PptxPresentation = None
|
| 43 |
+
|
| 44 |
+
# -------------------------
|
| 45 |
+
# NLTK: ensure punkt available, fallback later
|
| 46 |
+
# -------------------------
|
| 47 |
+
try:
|
| 48 |
+
nltk.download("punkt", quiet=True)
|
| 49 |
+
try:
|
| 50 |
+
nltk.download("punkt_tab", quiet=True)
|
| 51 |
+
except Exception:
|
| 52 |
+
pass
|
| 53 |
+
except Exception:
|
| 54 |
+
pass
|
| 55 |
+
|
| 56 |
+
# -------------------------
|
| 57 |
+
# Device detection
|
| 58 |
+
# -------------------------
|
| 59 |
+
DEVICE = 0 if torch.cuda.is_available() else -1
|
| 60 |
+
print("Device set to use", "cuda" if DEVICE >= 0 else "cpu")
|
| 61 |
+
|
| 62 |
+
# -------------------------
|
| 63 |
+
# Cached pipelines and tokenizers
|
| 64 |
+
# -------------------------
|
| 65 |
+
_models = {}
|
| 66 |
+
_tokenizers = {}
|
| 67 |
+
_models_lock = threading.Lock()
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
def get_pipeline(name: str, task: str):
|
| 71 |
+
"""Return a cached HF pipeline for given task and model name."""
|
| 72 |
+
key = f"{task}__{name}"
|
| 73 |
+
with _models_lock:
|
| 74 |
+
if key in _models:
|
| 75 |
+
return _models[key]
|
| 76 |
+
print(f"Loading pipeline: task={task}, model={name} ... (this may take a while on first run)")
|
| 77 |
+
p = pipeline(task, model=name, device=DEVICE)
|
| 78 |
+
_models[key] = p
|
| 79 |
+
try:
|
| 80 |
+
_tokenizers[name] = p.tokenizer
|
| 81 |
+
except Exception:
|
| 82 |
+
pass
|
| 83 |
+
return p
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
def get_tokenizer(name: str):
|
| 87 |
+
"""Return a cached tokenizer (fallback to AutoTokenizer if not present)."""
|
| 88 |
+
if name in _tokenizers:
|
| 89 |
+
return _tokenizers[name]
|
| 90 |
+
try:
|
| 91 |
+
tok = AutoTokenizer.from_pretrained(name)
|
| 92 |
+
_tokenizers[name] = tok
|
| 93 |
+
return tok
|
| 94 |
+
except Exception:
|
| 95 |
+
return None
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
# -------------------------
|
| 99 |
+
# Default models (adjust if you want smaller/faster ones)
|
| 100 |
+
# -------------------------
|
| 101 |
+
SUMMARIZER_MODEL = "t5-small"
|
| 102 |
+
QG_MODEL = "valhalla/t5-base-qg-hl"
|
| 103 |
+
QA_MODEL = "deepset/roberta-base-squad2"
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
# -------------------------
|
| 107 |
+
# Helpers: filenames / types
|
| 108 |
+
# -------------------------
|
| 109 |
+
SUPPORTED_EXTS = [".pdf", ".docx", ".pptx", ".txt", ".md", ".rtf", ".png", ".jpg", ".jpeg", ".tiff"]
|
| 110 |
+
|
| 111 |
+
def ext_of_name(name: str) -> str:
|
| 112 |
+
return Path(name).suffix.lower()
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
# -------------------------
|
| 116 |
+
# Robust file reading (supports lists)
|
| 117 |
+
# -------------------------
|
| 118 |
+
def read_uploaded_file_to_bytes(file_obj):
|
| 119 |
+
"""
|
| 120 |
+
Accept many shapes of Gradio file objects and return bytes.
|
| 121 |
+
Supports list/tuple (returns first readable file), dict-like, file-likes, paths, bytes.
|
| 122 |
+
"""
|
| 123 |
+
# If a list/tuple of uploaded files, try each candidate
|
| 124 |
+
if isinstance(file_obj, (list, tuple)):
|
| 125 |
+
last_err = None
|
| 126 |
+
for elem in file_obj:
|
| 127 |
+
try:
|
| 128 |
+
return read_uploaded_file_to_bytes(elem)
|
| 129 |
+
except Exception as e:
|
| 130 |
+
last_err = e
|
| 131 |
+
continue
|
| 132 |
+
raise ValueError(f"No readable file in list. Last error: {last_err}")
|
| 133 |
+
|
| 134 |
+
if file_obj is None:
|
| 135 |
+
raise ValueError("No file provided")
|
| 136 |
+
|
| 137 |
+
# if it's already bytes
|
| 138 |
+
if isinstance(file_obj, (bytes, bytearray)):
|
| 139 |
+
return bytes(file_obj)
|
| 140 |
+
|
| 141 |
+
# dict-like
|
| 142 |
+
if isinstance(file_obj, dict):
|
| 143 |
+
for key in ("file", "tmp_path", "name", "data", "path"):
|
| 144 |
+
val = file_obj.get(key)
|
| 145 |
+
if isinstance(val, (bytes, bytearray)):
|
| 146 |
+
return bytes(val)
|
| 147 |
+
if isinstance(val, str) and Path(val).exists():
|
| 148 |
+
return Path(val).read_bytes()
|
| 149 |
+
maybe = file_obj.get("file")
|
| 150 |
+
if hasattr(maybe, "read"):
|
| 151 |
+
data = maybe.read()
|
| 152 |
+
if isinstance(data, str):
|
| 153 |
+
return data.encode("utf-8")
|
| 154 |
+
return data
|
| 155 |
+
|
| 156 |
+
# string path
|
| 157 |
+
if isinstance(file_obj, str) and Path(file_obj).exists():
|
| 158 |
+
return Path(file_obj).read_bytes()
|
| 159 |
+
|
| 160 |
+
# has a .name attribute that points to a file
|
| 161 |
+
if hasattr(file_obj, "name") and isinstance(getattr(file_obj, "name"), str) and Path(file_obj.name).exists():
|
| 162 |
+
try:
|
| 163 |
+
return Path(file_obj.name).read_bytes()
|
| 164 |
+
except Exception:
|
| 165 |
+
pass
|
| 166 |
+
|
| 167 |
+
# file-like with .read()
|
| 168 |
+
if hasattr(file_obj, "read"):
|
| 169 |
+
try:
|
| 170 |
+
data = file_obj.read()
|
| 171 |
+
if isinstance(data, str):
|
| 172 |
+
return data.encode("utf-8")
|
| 173 |
+
return data
|
| 174 |
+
except Exception:
|
| 175 |
+
pass
|
| 176 |
+
|
| 177 |
+
# last resort: string representation -> path
|
| 178 |
+
try:
|
| 179 |
+
s = str(file_obj)
|
| 180 |
+
if Path(s).exists():
|
| 181 |
+
return Path(s).read_bytes()
|
| 182 |
+
except Exception:
|
| 183 |
+
pass
|
| 184 |
+
|
| 185 |
+
raise ValueError(f"Unsupported uploaded file object type: {type(file_obj)}")
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
def get_uploaded_filenames(file_obj) -> List[str]:
|
| 189 |
+
"""
|
| 190 |
+
Return a list of human-friendly filenames from uploaded file object(s).
|
| 191 |
+
"""
|
| 192 |
+
names = []
|
| 193 |
+
if file_obj is None:
|
| 194 |
+
return names
|
| 195 |
+
if isinstance(file_obj, (list, tuple)):
|
| 196 |
+
for elem in file_obj:
|
| 197 |
+
names.extend(get_uploaded_filenames(elem))
|
| 198 |
+
return names
|
| 199 |
+
if isinstance(file_obj, dict):
|
| 200 |
+
for key in ("name", "filename", "file", "tmp_path", "path"):
|
| 201 |
+
if key in file_obj:
|
| 202 |
+
val = file_obj.get(key)
|
| 203 |
+
if isinstance(val, str):
|
| 204 |
+
names.append(Path(val).name)
|
| 205 |
+
elif hasattr(val, "name"):
|
| 206 |
+
names.append(Path(val.name).name)
|
| 207 |
+
maybe = file_obj.get("file")
|
| 208 |
+
if maybe is not None:
|
| 209 |
+
if hasattr(maybe, "name"):
|
| 210 |
+
names.append(Path(maybe.name).name)
|
| 211 |
+
return names
|
| 212 |
+
if isinstance(file_obj, str):
|
| 213 |
+
return [Path(file_obj).name]
|
| 214 |
+
if hasattr(file_obj, "name"):
|
| 215 |
+
return [Path(getattr(file_obj, "name")).name]
|
| 216 |
+
return [str(file_obj)]
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
def find_first_supported_file(files) -> Tuple[Optional[object], Optional[str]]:
|
| 220 |
+
"""
|
| 221 |
+
From the uploaded list or single file-like object, find the first file with a supported extension.
|
| 222 |
+
Returns (file_obj, filename) or (None, None) if none supported.
|
| 223 |
+
"""
|
| 224 |
+
if not files:
|
| 225 |
+
return None, None
|
| 226 |
+
candidates = []
|
| 227 |
+
if isinstance(files, (list, tuple)):
|
| 228 |
+
for f in files:
|
| 229 |
+
names = get_uploaded_filenames(f)
|
| 230 |
+
for n in names:
|
| 231 |
+
candidates.append((f, n))
|
| 232 |
+
else:
|
| 233 |
+
names = get_uploaded_filenames(files)
|
| 234 |
+
for n in names:
|
| 235 |
+
candidates.append((files, n))
|
| 236 |
+
for fobj, name in candidates:
|
| 237 |
+
ext = ext_of_name(name)
|
| 238 |
+
if ext in SUPPORTED_EXTS:
|
| 239 |
+
return fobj, name
|
| 240 |
+
# fallback: if none matched, return first uploaded
|
| 241 |
+
if candidates:
|
| 242 |
+
return candidates[0]
|
| 243 |
+
return None, None
|
| 244 |
+
|
| 245 |
+
|
| 246 |
+
# -------------------------
|
| 247 |
+
# PDF extraction (streaming)
|
| 248 |
+
# -------------------------
|
| 249 |
+
def extract_text_from_pdf_streaming(file_bytes: bytes, do_ocr: bool = False, extracted_txt_path: str = None):
|
| 250 |
+
"""Write PDF bytes to temp file and extract each page's text; returns extracted_txt_path, pages_texts list"""
|
| 251 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp_pdf:
|
| 252 |
+
tmp_pdf.write(file_bytes)
|
| 253 |
+
tmp_pdf_path = tmp_pdf.name
|
| 254 |
+
|
| 255 |
+
if extracted_txt_path is None:
|
| 256 |
+
tmp_txt = tempfile.NamedTemporaryFile(delete=False, suffix=".txt", mode="w+", encoding="utf-8")
|
| 257 |
+
extracted_txt_path = tmp_txt.name
|
| 258 |
+
tmp_txt.close()
|
| 259 |
+
|
| 260 |
+
pages_texts = []
|
| 261 |
+
try:
|
| 262 |
+
with pdfplumber.open(tmp_pdf_path) as pdf:
|
| 263 |
+
for page in pdf.pages:
|
| 264 |
+
page_text = page.extract_text()
|
| 265 |
+
if (not page_text or page_text.strip() == "") and do_ocr:
|
| 266 |
+
try:
|
| 267 |
+
from pdf2image import convert_from_path
|
| 268 |
+
import pytesseract
|
| 269 |
+
images = convert_from_path(tmp_pdf_path, first_page=page.page_number, last_page=page.page_number)
|
| 270 |
+
if images:
|
| 271 |
+
page_text = pytesseract.image_to_string(images[0])
|
| 272 |
+
except Exception:
|
| 273 |
+
page_text = ""
|
| 274 |
+
if page_text is None:
|
| 275 |
+
page_text = ""
|
| 276 |
+
with open(extracted_txt_path, "a", encoding="utf-8") as fout:
|
| 277 |
+
fout.write(page_text)
|
| 278 |
+
fout.write("\n\n---PAGE_BREAK---\n\n")
|
| 279 |
+
pages_texts.append(page_text)
|
| 280 |
+
finally:
|
| 281 |
+
try:
|
| 282 |
+
os.remove(tmp_pdf_path)
|
| 283 |
+
except Exception:
|
| 284 |
+
pass
|
| 285 |
+
|
| 286 |
+
return extracted_txt_path, pages_texts
|
| 287 |
+
|
| 288 |
+
|
| 289 |
+
# -------------------------
|
| 290 |
+
# DOCX extraction
|
| 291 |
+
# -------------------------
|
| 292 |
+
def extract_text_from_docx_bytes(file_bytes: bytes) -> Tuple[str, List[str]]:
|
| 293 |
+
"""
|
| 294 |
+
Returns (tmp_text_path, pages_texts) where pages_texts is a list of paragraph groups.
|
| 295 |
+
We'll treat each paragraph as a small 'page' or group paragraphs into ~200-word chunks.
|
| 296 |
+
"""
|
| 297 |
+
if DocxDocument is None:
|
| 298 |
+
raise RuntimeError("python-docx not installed. Install with `pip install python-docx`")
|
| 299 |
+
|
| 300 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".docx") as tmp:
|
| 301 |
+
tmp.write(file_bytes)
|
| 302 |
+
tmp_path = tmp.name
|
| 303 |
+
|
| 304 |
+
pages_texts = []
|
| 305 |
+
try:
|
| 306 |
+
doc = DocxDocument(tmp_path)
|
| 307 |
+
# Collect non-empty paragraphs
|
| 308 |
+
paras = [p.text.strip() for p in doc.paragraphs if p.text and p.text.strip()]
|
| 309 |
+
# Group paragraphs into passages of ~200 words
|
| 310 |
+
current = []
|
| 311 |
+
cur_words = 0
|
| 312 |
+
for p in paras:
|
| 313 |
+
w = len(p.split())
|
| 314 |
+
if cur_words + w <= 200:
|
| 315 |
+
current.append(p)
|
| 316 |
+
cur_words += w
|
| 317 |
+
else:
|
| 318 |
+
pages_texts.append(" ".join(current).strip())
|
| 319 |
+
current = [p]
|
| 320 |
+
cur_words = w
|
| 321 |
+
if current:
|
| 322 |
+
pages_texts.append(" ".join(current).strip())
|
| 323 |
+
# write full extracted text to tmp file for download/debug if needed
|
| 324 |
+
tmp_txt = tempfile.NamedTemporaryFile(delete=False, suffix=".txt", mode="w+", encoding="utf-8")
|
| 325 |
+
with open(tmp_txt.name, "w", encoding="utf-8") as f:
|
| 326 |
+
f.write("\n\n".join(pages_texts))
|
| 327 |
+
txt_path = tmp_txt.name
|
| 328 |
+
finally:
|
| 329 |
+
try:
|
| 330 |
+
os.remove(tmp_path)
|
| 331 |
+
except Exception:
|
| 332 |
+
pass
|
| 333 |
+
|
| 334 |
+
return txt_path, pages_texts
|
| 335 |
+
|
| 336 |
+
|
| 337 |
+
# -------------------------
|
| 338 |
+
# PPTX extraction
|
| 339 |
+
# -------------------------
|
| 340 |
+
def extract_text_from_pptx_bytes(file_bytes: bytes) -> Tuple[str, List[str]]:
|
| 341 |
+
"""
|
| 342 |
+
Returns (tmp_text_path, pages_texts) where each slide's text is one element.
|
| 343 |
+
"""
|
| 344 |
+
if PptxPresentation is None:
|
| 345 |
+
raise RuntimeError("python-pptx not installed. Install with `pip install python-pptx`")
|
| 346 |
+
|
| 347 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".pptx") as tmp:
|
| 348 |
+
tmp.write(file_bytes)
|
| 349 |
+
tmp_path = tmp.name
|
| 350 |
+
|
| 351 |
+
pages_texts = []
|
| 352 |
+
try:
|
| 353 |
+
prs = PptxPresentation(tmp_path)
|
| 354 |
+
for slide in prs.slides:
|
| 355 |
+
texts = []
|
| 356 |
+
for shape in slide.shapes:
|
| 357 |
+
try:
|
| 358 |
+
if hasattr(shape, "text") and shape.text:
|
| 359 |
+
texts.append(shape.text.strip())
|
| 360 |
+
except Exception:
|
| 361 |
+
continue
|
| 362 |
+
slide_text = "\n".join([t for t in texts if t])
|
| 363 |
+
pages_texts.append(slide_text)
|
| 364 |
+
tmp_txt = tempfile.NamedTemporaryFile(delete=False, suffix=".txt", mode="w+", encoding="utf-8")
|
| 365 |
+
with open(tmp_txt.name, "w", encoding="utf-8") as f:
|
| 366 |
+
f.write("\n\n".join(pages_texts))
|
| 367 |
+
txt_path = tmp_txt.name
|
| 368 |
+
finally:
|
| 369 |
+
try:
|
| 370 |
+
os.remove(tmp_path)
|
| 371 |
+
except Exception:
|
| 372 |
+
pass
|
| 373 |
+
|
| 374 |
+
return txt_path, pages_texts
|
| 375 |
+
|
| 376 |
+
|
| 377 |
+
# -------------------------
|
| 378 |
+
# TXT/MD extraction
|
| 379 |
+
# -------------------------
|
| 380 |
+
def extract_text_from_txt_bytes(file_bytes: bytes) -> Tuple[str, List[str]]:
|
| 381 |
+
s = file_bytes.decode("utf-8", errors="ignore")
|
| 382 |
+
# split into passages by blank lines or ~200 words
|
| 383 |
+
paras = [p.strip() for p in re.split(r"\n\s*\n", s) if p.strip()]
|
| 384 |
+
pages_texts = []
|
| 385 |
+
cur = []
|
| 386 |
+
cur_words = 0
|
| 387 |
+
for p in paras:
|
| 388 |
+
w = len(p.split())
|
| 389 |
+
if cur_words + w <= 200:
|
| 390 |
+
cur.append(p)
|
| 391 |
+
cur_words += w
|
| 392 |
+
else:
|
| 393 |
+
pages_texts.append(" ".join(cur).strip())
|
| 394 |
+
cur = [p]
|
| 395 |
+
cur_words = w
|
| 396 |
+
if cur:
|
| 397 |
+
pages_texts.append(" ".join(cur).strip())
|
| 398 |
+
tmp_txt = tempfile.NamedTemporaryFile(delete=False, suffix=".txt", mode="w+", encoding="utf-8")
|
| 399 |
+
with open(tmp_txt.name, "w", encoding="utf-8") as f:
|
| 400 |
+
f.write("\n\n".join(pages_texts))
|
| 401 |
+
return tmp_txt.name, pages_texts
|
| 402 |
+
|
| 403 |
+
|
| 404 |
+
# -------------------------
|
| 405 |
+
# Token-aware truncation helpers
|
| 406 |
+
# -------------------------
|
| 407 |
+
def truncate_by_tokens(text: str, tokenizer, reserve: int = 64) -> str:
|
| 408 |
+
if not text:
|
| 409 |
+
return text
|
| 410 |
+
if tokenizer is None:
|
| 411 |
+
return text if len(text) <= 3000 else text[:3000]
|
| 412 |
+
try:
|
| 413 |
+
ids = tokenizer.encode(text, add_special_tokens=False)
|
| 414 |
+
max_len = getattr(tokenizer, "model_max_length", 512)
|
| 415 |
+
allowed = max(1, max_len - reserve)
|
| 416 |
+
if len(ids) > allowed:
|
| 417 |
+
ids = ids[:allowed]
|
| 418 |
+
return tokenizer.decode(ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)
|
| 419 |
+
return text
|
| 420 |
+
except Exception:
|
| 421 |
+
return text if len(text) <= 3000 else text[:3000]
|
| 422 |
+
|
| 423 |
+
|
| 424 |
+
# -------------------------
|
| 425 |
+
# Sentence tokenization fallback
|
| 426 |
+
# -------------------------
|
| 427 |
+
def safe_sentence_tokenize(text: str) -> List[str]:
|
| 428 |
+
try:
|
| 429 |
+
sents = sent_tokenize(text)
|
| 430 |
+
if isinstance(sents, list) and len(sents) > 0:
|
| 431 |
+
return sents
|
| 432 |
+
except Exception:
|
| 433 |
+
pass
|
| 434 |
+
pieces = re.split(r"(?<=[.!?])\s+", text.strip())
|
| 435 |
+
return [p.strip() for p in pieces if p.strip()]
|
| 436 |
+
|
| 437 |
+
|
| 438 |
+
# -------------------------
|
| 439 |
+
# Summarization (chunked, token-truncated)
|
| 440 |
+
# -------------------------
|
| 441 |
+
def summarize_text_chunked(summarizer, pages_texts: List[str], pages_per_chunk: int = 8) -> str:
|
| 442 |
+
if not pages_texts:
|
| 443 |
+
return "(no text)"
|
| 444 |
+
summaries = []
|
| 445 |
+
tokenizer = getattr(summarizer, "tokenizer", None) or get_tokenizer(SUMMARIZER_MODEL)
|
| 446 |
+
num_pages = len(pages_texts)
|
| 447 |
+
for i in range(0, num_pages, pages_per_chunk):
|
| 448 |
+
chunk_pages = pages_texts[i : i + pages_per_chunk]
|
| 449 |
+
chunk_text = "\n\n".join([p for p in chunk_pages if p.strip()])
|
| 450 |
+
if not chunk_text.strip():
|
| 451 |
+
continue
|
| 452 |
+
safe_chunk = truncate_by_tokens(chunk_text, tokenizer, reserve=64)
|
| 453 |
+
try:
|
| 454 |
+
out = summarizer(safe_chunk, max_length=150, min_length=30, do_sample=False, truncation=True)
|
| 455 |
+
summaries.append(out[0]["summary_text"])
|
| 456 |
+
except Exception:
|
| 457 |
+
summaries.append(safe_chunk[:800])
|
| 458 |
+
return "\n\n".join(summaries) if summaries else "(no summary produced)"
|
| 459 |
+
|
| 460 |
+
|
| 461 |
+
# -------------------------
|
| 462 |
+
# Passage splitting / QG / QA with token truncation
|
| 463 |
+
# -------------------------
|
| 464 |
+
def split_into_passages_from_pages(pages_texts: List[str], max_words: int = 200) -> List[str]:
|
| 465 |
+
all_passages = []
|
| 466 |
+
for page_text in pages_texts:
|
| 467 |
+
if not page_text or not page_text.strip():
|
| 468 |
+
continue
|
| 469 |
+
sents = safe_sentence_tokenize(page_text)
|
| 470 |
+
cur = []
|
| 471 |
+
cur_len = 0
|
| 472 |
+
for s in sents:
|
| 473 |
+
w = len(s.split())
|
| 474 |
+
if cur_len + w <= max_words:
|
| 475 |
+
cur.append(s)
|
| 476 |
+
cur_len += w
|
| 477 |
+
else:
|
| 478 |
+
if cur:
|
| 479 |
+
all_passages.append(" ".join(cur).strip())
|
| 480 |
+
cur = [s]
|
| 481 |
+
cur_len = w
|
| 482 |
+
if cur:
|
| 483 |
+
all_passages.append(" ".join(cur).strip())
|
| 484 |
+
return all_passages
|
| 485 |
+
|
| 486 |
+
|
| 487 |
+
def generate_questions_from_passage(qg_pipeline, passage: str, min_questions: int = 3) -> List[str]:
|
| 488 |
+
tok = getattr(qg_pipeline, "tokenizer", None) or get_tokenizer(QG_MODEL)
|
| 489 |
+
safe_passage = truncate_by_tokens(passage, tok, reserve=32)
|
| 490 |
+
prompt = f"generate questions: {safe_passage}"
|
| 491 |
+
try:
|
| 492 |
+
out = qg_pipeline(prompt, max_length=256, do_sample=False, truncation=True)
|
| 493 |
+
gen_text = out[0].get("generated_text") or out[0].get("text") or ""
|
| 494 |
+
except Exception:
|
| 495 |
+
gen_text = ""
|
| 496 |
+
candidates = []
|
| 497 |
+
if "<sep>" in gen_text:
|
| 498 |
+
candidates = gen_text.split("<sep>")
|
| 499 |
+
elif "\n" in gen_text:
|
| 500 |
+
candidates = [line.strip() for line in gen_text.splitlines() if line.strip()]
|
| 501 |
+
else:
|
| 502 |
+
parts = [p.strip() for p in gen_text.split("?") if p.strip()]
|
| 503 |
+
candidates = [p + "?" for p in parts]
|
| 504 |
+
questions = [q.strip() for q in candidates if q.strip()]
|
| 505 |
+
if len(questions) < min_questions:
|
| 506 |
+
sentences = safe_sentence_tokenize(safe_passage)
|
| 507 |
+
for i in range(len(sentences)):
|
| 508 |
+
if len(questions) >= min_questions:
|
| 509 |
+
break
|
| 510 |
+
small = ". ".join(sentences[i : i + 2])
|
| 511 |
+
try:
|
| 512 |
+
out2 = qg_pipeline(f"generate questions: {small}", max_length=128, do_sample=False, truncation=True)
|
| 513 |
+
txt = out2[0].get("generated_text") or out2[0].get("text") or ""
|
| 514 |
+
except Exception:
|
| 515 |
+
txt = ""
|
| 516 |
+
if "<sep>" in txt:
|
| 517 |
+
more = txt.split("<sep>")
|
| 518 |
+
else:
|
| 519 |
+
more = [l.strip() for l in txt.splitlines() if l.strip()]
|
| 520 |
+
for m in more:
|
| 521 |
+
if len(questions) >= min_questions:
|
| 522 |
+
break
|
| 523 |
+
maybe = m.strip()
|
| 524 |
+
if maybe and maybe not in questions:
|
| 525 |
+
questions.append(maybe)
|
| 526 |
+
return questions[:max(min_questions, len(questions))]
|
| 527 |
+
|
| 528 |
+
|
| 529 |
+
def answer_questions_for_passage(qa_pipeline, passage: str, questions: List[str]) -> List[Tuple[str, str, float]]:
|
| 530 |
+
results = []
|
| 531 |
+
tok = getattr(qa_pipeline, "tokenizer", None) or get_tokenizer(QA_MODEL)
|
| 532 |
+
for q in questions:
|
| 533 |
+
try:
|
| 534 |
+
safe_ctx = truncate_by_tokens(passage, tok, reserve=64)
|
| 535 |
+
res = qa_pipeline(question=q, context=safe_ctx)
|
| 536 |
+
answer = res.get("answer", "")
|
| 537 |
+
score = float(res.get("score", 0.0))
|
| 538 |
+
except Exception:
|
| 539 |
+
answer = ""
|
| 540 |
+
score = 0.0
|
| 541 |
+
results.append((q, answer, score))
|
| 542 |
+
return results
|
| 543 |
+
|
| 544 |
+
|
| 545 |
+
# -------------------------
|
| 546 |
+
# Unified extract_text_for_file: dispatch by extension
|
| 547 |
+
# -------------------------
|
| 548 |
+
def extract_text_for_file(file_bytes: bytes, filename: str, do_ocr: bool = False) -> Tuple[str, List[str]]:
|
| 549 |
+
"""
|
| 550 |
+
Given raw bytes and a filename, return (extracted_txt_path, pages_texts).
|
| 551 |
+
Supports PDF (streamed), DOCX, PPTX, TXT/MD. For images, attempt OCR if do_ocr True.
|
| 552 |
+
"""
|
| 553 |
+
ext = ext_of_name(filename)
|
| 554 |
+
if ext == ".pdf":
|
| 555 |
+
return extract_text_from_pdf_streaming(file_bytes, do_ocr=do_ocr)
|
| 556 |
+
if ext == ".docx":
|
| 557 |
+
return extract_text_from_docx_bytes(file_bytes)
|
| 558 |
+
if ext == ".pptx":
|
| 559 |
+
return extract_text_from_pptx_bytes(file_bytes)
|
| 560 |
+
if ext in (".txt", ".md", ".rtf"):
|
| 561 |
+
return extract_text_from_txt_bytes(file_bytes)
|
| 562 |
+
# images: try OCR if requested
|
| 563 |
+
if ext in (".png", ".jpg", ".jpeg", ".tiff", ".bmp") and do_ocr:
|
| 564 |
+
# write image bytes to temp file and run OCR with pytesseract if available
|
| 565 |
+
try:
|
| 566 |
+
from PIL import Image
|
| 567 |
+
import pytesseract
|
| 568 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=ext) as tmp:
|
| 569 |
+
tmp.write(file_bytes)
|
| 570 |
+
tmp_path = tmp.name
|
| 571 |
+
img = Image.open(tmp_path)
|
| 572 |
+
ocr_txt = pytesseract.image_to_string(img)
|
| 573 |
+
pages = [p.strip() for p in re.split(r"\n\s*\n", ocr_txt) if p.strip()]
|
| 574 |
+
tmp_txt = tempfile.NamedTemporaryFile(delete=False, suffix=".txt", mode="w+", encoding="utf-8")
|
| 575 |
+
with open(tmp_txt.name, "w", encoding="utf-8") as f:
|
| 576 |
+
f.write("\n\n".join(pages))
|
| 577 |
+
try:
|
| 578 |
+
os.remove(tmp_path)
|
| 579 |
+
except Exception:
|
| 580 |
+
pass
|
| 581 |
+
return tmp_txt.name, pages
|
| 582 |
+
except Exception:
|
| 583 |
+
# fallback: treat as empty
|
| 584 |
+
tmp_txt = tempfile.NamedTemporaryFile(delete=False, suffix=".txt", mode="w+", encoding="utf-8")
|
| 585 |
+
with open(tmp_txt.name, "w", encoding="utf-8") as f:
|
| 586 |
+
f.write("")
|
| 587 |
+
return tmp_txt.name, [""]
|
| 588 |
+
# unsupported extension: write bytes to txt and return raw decode
|
| 589 |
+
tmp_txt = tempfile.NamedTemporaryFile(delete=False, suffix=".txt", mode="w+", encoding="utf-8")
|
| 590 |
+
try:
|
| 591 |
+
s = file_bytes.decode("utf-8", errors="ignore")
|
| 592 |
+
except Exception:
|
| 593 |
+
s = ""
|
| 594 |
+
with open(tmp_txt.name, "w", encoding="utf-8") as f:
|
| 595 |
+
f.write(s)
|
| 596 |
+
pages = [p.strip() for p in re.split(r"\n\s*\n", s) if p.strip()]
|
| 597 |
+
return tmp_txt.name, pages if pages else [s]
|
| 598 |
+
|
| 599 |
+
|
| 600 |
+
# -------------------------
|
| 601 |
+
# Main analyze function
|
| 602 |
+
# -------------------------
|
| 603 |
+
def analyze_document(file_obj, filename: str, do_ocr: bool, max_passages_for_qa: int = 5):
|
| 604 |
+
"""
|
| 605 |
+
file_obj: uploaded object
|
| 606 |
+
filename: filename string (to detect extension)
|
| 607 |
+
"""
|
| 608 |
+
try:
|
| 609 |
+
file_bytes = read_uploaded_file_to_bytes(file_obj)
|
| 610 |
+
except Exception as e:
|
| 611 |
+
return f"(error reading file: {e})", "", []
|
| 612 |
+
|
| 613 |
+
extracted_txt_path, pages_texts = extract_text_for_file(file_bytes, filename, do_ocr=do_ocr)
|
| 614 |
+
|
| 615 |
+
# preview
|
| 616 |
+
preview_chars = 20000
|
| 617 |
+
extracted_preview = ""
|
| 618 |
+
try:
|
| 619 |
+
with open(extracted_txt_path, "r", encoding="utf-8", errors="ignore") as f:
|
| 620 |
+
extracted_preview = f.read(preview_chars)
|
| 621 |
+
if len(extracted_preview) >= preview_chars:
|
| 622 |
+
extracted_preview += "\n\n... (preview truncated) ..."
|
| 623 |
+
except Exception:
|
| 624 |
+
extracted_preview = "(could not read extracted text preview)"
|
| 625 |
+
|
| 626 |
+
summarizer = get_pipeline(SUMMARIZER_MODEL, "summarization")
|
| 627 |
+
combined_summary = summarize_text_chunked(summarizer, pages_texts, pages_per_chunk=8)
|
| 628 |
+
|
| 629 |
+
all_passages = split_into_passages_from_pages(pages_texts, max_words=200)
|
| 630 |
+
total = len(all_passages)
|
| 631 |
+
if total == 0:
|
| 632 |
+
return extracted_preview, combined_summary, []
|
| 633 |
+
|
| 634 |
+
if total <= max_passages_for_qa:
|
| 635 |
+
chosen_passages = list(enumerate(all_passages))
|
| 636 |
+
else:
|
| 637 |
+
step = max(1, math.floor(total / max_passages_for_qa))
|
| 638 |
+
chosen_passages = [(i, all_passages[i]) for i in range(0, total, step)][:max_passages_for_qa]
|
| 639 |
+
|
| 640 |
+
qg = get_pipeline(QG_MODEL, "text2text-generation")
|
| 641 |
+
qa = get_pipeline(QA_MODEL, "question-answering")
|
| 642 |
+
|
| 643 |
+
answered = []
|
| 644 |
+
answered_set = set()
|
| 645 |
+
for (p_idx, passage) in chosen_passages:
|
| 646 |
+
if not passage.strip():
|
| 647 |
+
continue
|
| 648 |
+
questions = generate_questions_from_passage(qg, passage, min_questions=3)
|
| 649 |
+
unique_questions = [q for q in questions if q not in answered_set]
|
| 650 |
+
if not unique_questions:
|
| 651 |
+
continue
|
| 652 |
+
answers = answer_questions_for_passage(qa, passage, unique_questions)
|
| 653 |
+
for q, a, score in answers:
|
| 654 |
+
answered.append({"passage_idx": int(p_idx), "question": q, "answer": a, "score": float(score)})
|
| 655 |
+
answered_set.add(q)
|
| 656 |
+
|
| 657 |
+
return extracted_preview, combined_summary, answered
|
| 658 |
+
|
| 659 |
+
|
| 660 |
+
# -------------------------
|
| 661 |
+
# Gradio UI
|
| 662 |
+
# -------------------------
|
| 663 |
+
def build_demo():
|
| 664 |
+
with gr.Blocks(title="Document Analysis (LLMs)") as demo:
|
| 665 |
+
gr.Markdown("# Document Analysis using LLMs\nUpload a supported file (PDF, DOCX, PPTX, TXT) and get summary + Q&A.")
|
| 666 |
+
with gr.Row():
|
| 667 |
+
with gr.Column(scale=1):
|
| 668 |
+
files_in = gr.File(label="Upload files (PDF, DOCX, PPTX, TXT, images...)", file_count="multiple")
|
| 669 |
+
do_ocr = gr.Checkbox(label="Try OCR for images/PDF pages (requires OCR libs)", value=False)
|
| 670 |
+
max_pass = gr.Slider(label="Max passages to run Q&A on (lower = faster)", minimum=1, maximum=20, step=1, value=5)
|
| 671 |
+
run_btn = gr.Button("Analyze Document")
|
| 672 |
+
|
| 673 |
+
with gr.Column(scale=2):
|
| 674 |
+
tabs = gr.Tabs()
|
| 675 |
+
with tabs:
|
| 676 |
+
with gr.TabItem("Uploaded files"):
|
| 677 |
+
uploaded_list = gr.Textbox(label="Uploaded filenames", lines=4)
|
| 678 |
+
with gr.TabItem("Extracted Text"):
|
| 679 |
+
extracted_out = gr.Textbox(label="Extracted text (preview)", lines=15)
|
| 680 |
+
with gr.TabItem("Summary"):
|
| 681 |
+
summary_out = gr.Textbox(label="Summary", lines=8)
|
| 682 |
+
with gr.TabItem("Q&A"):
|
| 683 |
+
qa_out = gr.Dataframe(headers=["passage_idx", "question", "answer", "score"],
|
| 684 |
+
datatype=["number", "text", "text", "number"])
|
| 685 |
+
|
| 686 |
+
def _run(files, do_ocr_val, max_pass_val):
|
| 687 |
+
names = get_uploaded_filenames(files)
|
| 688 |
+
uploaded_str = "\n".join(names) if names else "(no files uploaded)"
|
| 689 |
+
|
| 690 |
+
fobj, fname = find_first_supported_file(files)
|
| 691 |
+
if fobj is None or fname is None:
|
| 692 |
+
return uploaded_str, "(no supported file found)", "", pd.DataFrame(columns=["passage_idx", "question", "answer", "score"])
|
| 693 |
+
|
| 694 |
+
text, summary, qa = analyze_document(fobj, fname, do_ocr=do_ocr_val, max_passages_for_qa=int(max_pass_val))
|
| 695 |
+
if not qa:
|
| 696 |
+
qa_df = pd.DataFrame(columns=["passage_idx", "question", "answer", "score"])
|
| 697 |
+
else:
|
| 698 |
+
qa_df = pd.DataFrame(qa)
|
| 699 |
+
qa_df = qa_df.loc[:, ["passage_idx", "question", "answer", "score"]]
|
| 700 |
+
qa_df["passage_idx"] = qa_df["passage_idx"].astype(int)
|
| 701 |
+
qa_df["question"] = qa_df["question"].astype(str)
|
| 702 |
+
qa_df["answer"] = qa_df["answer"].astype(str)
|
| 703 |
+
qa_df["score"] = qa_df["score"].astype(float)
|
| 704 |
+
|
| 705 |
+
return uploaded_str, text or "(no text extracted)", summary or "(no summary)", qa_df
|
| 706 |
+
|
| 707 |
+
run_btn.click(_run, inputs=[files_in, do_ocr, max_pass], outputs=[uploaded_list, extracted_out, summary_out, qa_out])
|
| 708 |
+
|
| 709 |
+
return demo
|
| 710 |
+
|
| 711 |
+
|
| 712 |
+
if __name__ == "__main__":
|
| 713 |
+
demo = build_demo()
|
| 714 |
+
demo.launch()
|
| 715 |
+
# demo.launch(server_name="0.0.0.0")
|
requirements.txt
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio>=3.30
|
| 2 |
+
transformers>=4.30.0
|
| 3 |
+
torch>=2.0.0
|
| 4 |
+
pdfplumber>=0.11
|
| 5 |
+
pandas
|
| 6 |
+
tqdm
|
| 7 |
+
nltk>=3.8
|
| 8 |
+
sentencepiece
|
| 9 |
+
python-docx
|
| 10 |
+
python-pptx
|
| 11 |
+
Pillow
|
| 12 |
+
pytesseract
|
| 13 |
+
pdf2image
|