File size: 3,047 Bytes
880bf35
 
 
 
 
 
 
 
 
 
 
 
 
7d7ef5b
 
 
 
880bf35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import os
os.environ.setdefault("HF_HOME", "/tmp/hf")
os.environ.setdefault("HF_HUB_CACHE", "/tmp/hf/hub")
os.environ.setdefault("TRANSFORMERS_CACHE", "/tmp/hf/transformers")
os.environ.setdefault("NANOCHAT_BASE_DIR", "/tmp/nanochat")

from huggingface_hub import hf_hub_download
import torch
import gradio as gr

from nanochat.checkpoint_manager import load_model_from_dir
from nanochat.engine import Engine

# Hardcoded model selection for this Space
MODEL_REPO = "loocorez/nanochat-base-d20-step21400"
STEP = "021400"
DEPTH = "20"

ckpt_dir = f"/tmp/ckpt/d{DEPTH}"
os.makedirs(ckpt_dir, exist_ok=True)

# tokenizer (where nanochat expects it)
tokenizer_dir = "/tmp/nanochat/tokenizer"
os.makedirs(tokenizer_dir, exist_ok=True)
hf_hub_download(MODEL_REPO, "tokenizer/tokenizer.pkl", local_dir=tokenizer_dir, local_dir_use_symlinks=False)

# base checkpoint
hf_hub_download(MODEL_REPO, f"base_checkpoints/d{DEPTH}/model_{STEP}.pt", local_dir=ckpt_dir, local_dir_use_symlinks=False)
hf_hub_download(MODEL_REPO, f"base_checkpoints/d{DEPTH}/meta_{STEP}.json", local_dir=ckpt_dir, local_dir_use_symlinks=False)

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model, tokenizer, _ = load_model_from_dir(ckpt_dir, device, phase="eval")
engine = Engine(model, tokenizer)

def chat_fn(history, temperature=0.8, top_k=50, max_new_tokens=256):
    bos = tokenizer.get_bos_token_id()
    user_start = tokenizer.encode_special("<|user_start|>")
    user_end = tokenizer.encode_special("<|user_end|>")
    assistant_start = tokenizer.encode_special("<|assistant_start|>")
    assistant_end = tokenizer.encode_special("<|assistant_end|>")

    tokens = [bos]
    for role, content in history:
        if role == "user":
            tokens += [user_start] + tokenizer.encode(content) + [user_end]
        else:
            tokens += [assistant_start] + tokenizer.encode(content) + [assistant_end]
    tokens += [assistant_start]

    with torch.amp.autocast(device_type="cuda" if device.type == "cuda" else "cpu", dtype=torch.bfloat16 if device.type == "cuda" else torch.float32):
        token_column, _ = next(engine.generate(tokens, num_samples=1, max_tokens=max_new_tokens, temperature=temperature, top_k=top_k))
    new_tokens = token_column[len(tokens):]
    return tokenizer.decode(new_tokens)

with gr.Blocks() as demo:
    gr.Markdown("# NanoChat BASE")
    chat = gr.Chatbot(type="tuple")
    msg = gr.Textbox()
    temp = gr.Slider(0.0, 1.5, value=0.8, step=0.05, label="Temperature")
    topk = gr.Slider(1, 200, value=50, step=1, label="Top-k")
    max_toks = gr.Slider(16, 1024, value=256, step=16, label="Max new tokens")

    def respond(user_message, chat_history, temperature, top_k, max_new_tokens):
        chat_history = chat_history + [("user", user_message)]
        reply = chat_fn(chat_history, temperature, top_k, max_new_tokens)
        chat_history = chat_history + [("assistant", reply)]
        return "", chat_history

    msg.submit(respond, [msg, chat, temp, topk, max_toks], [msg, chat])

demo.launch()