File size: 14,892 Bytes
4d308e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
"""
Utilities for generating training report cards. More messy code than usual, will fix.
"""

import os
import re
import shutil
import subprocess
import socket
import datetime
import platform
import psutil
import torch

def run_command(cmd):
    """Run a shell command and return output, or None if it fails."""
    try:
        result = subprocess.run(cmd, shell=True, capture_output=True, text=True, timeout=5)
        if result.returncode == 0:
            return result.stdout.strip()
        return None
    except:
        return None

def get_git_info():
    """Get current git commit, branch, and dirty status."""
    info = {}
    info['commit'] = run_command("git rev-parse --short HEAD") or "unknown"
    info['branch'] = run_command("git rev-parse --abbrev-ref HEAD") or "unknown"

    # Check if repo is dirty (has uncommitted changes)
    status = run_command("git status --porcelain")
    info['dirty'] = bool(status) if status is not None else False

    # Get commit message
    info['message'] = run_command("git log -1 --pretty=%B") or ""
    info['message'] = info['message'].split('\n')[0][:80]  # First line, truncated

    return info

def get_gpu_info():
    """Get GPU information."""
    if not torch.cuda.is_available():
        return {"available": False}

    num_devices = torch.cuda.device_count()
    info = {
        "available": True,
        "count": num_devices,
        "names": [],
        "memory_gb": []
    }

    for i in range(num_devices):
        props = torch.cuda.get_device_properties(i)
        info["names"].append(props.name)
        info["memory_gb"].append(props.total_memory / (1024**3))

    # Get CUDA version
    info["cuda_version"] = torch.version.cuda or "unknown"

    return info

def get_system_info():
    """Get system information."""
    info = {}

    # Basic system info
    info['hostname'] = socket.gethostname()
    info['platform'] = platform.system()
    info['python_version'] = platform.python_version()
    info['torch_version'] = torch.__version__

    # CPU and memory
    info['cpu_count'] = psutil.cpu_count(logical=False)
    info['cpu_count_logical'] = psutil.cpu_count(logical=True)
    info['memory_gb'] = psutil.virtual_memory().total / (1024**3)

    # User and environment
    info['user'] = os.environ.get('USER', 'unknown')
    info['nanochat_base_dir'] = os.environ.get('NANOCHAT_BASE_DIR', 'out')
    info['working_dir'] = os.getcwd()

    return info

def estimate_cost(gpu_info, runtime_hours=None):
    """Estimate training cost based on GPU type and runtime."""

    # Rough pricing, from Lambda Cloud
    default_rate = 2.0
    gpu_hourly_rates = {
        "H100": 3.00,
        "A100": 1.79,
        "V100": 0.55,
    }

    if not gpu_info.get("available"):
        return None

    # Try to identify GPU type from name
    hourly_rate = None
    gpu_name = gpu_info["names"][0] if gpu_info["names"] else "unknown"
    for gpu_type, rate in gpu_hourly_rates.items():
        if gpu_type in gpu_name:
            hourly_rate = rate * gpu_info["count"]
            break

    if hourly_rate is None:
        hourly_rate = default_rate * gpu_info["count"]  # Default estimate

    return {
        "hourly_rate": hourly_rate,
        "gpu_type": gpu_name,
        "estimated_total": hourly_rate * runtime_hours if runtime_hours else None
    }

def generate_header():
    """Generate the header for a training report."""
    timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")

    git_info = get_git_info()
    gpu_info = get_gpu_info()
    sys_info = get_system_info()
    cost_info = estimate_cost(gpu_info)

    header = f"""# nanochat training report

Generated: {timestamp}

## Environment

### Git Information
- Branch: {git_info['branch']}
- Commit: {git_info['commit']} {"(dirty)" if git_info['dirty'] else "(clean)"}
- Message: {git_info['message']}

### Hardware
- Platform: {sys_info['platform']}
- CPUs: {sys_info['cpu_count']} cores ({sys_info['cpu_count_logical']} logical)
- Memory: {sys_info['memory_gb']:.1f} GB
"""

    if gpu_info.get("available"):
        gpu_names = ", ".join(set(gpu_info["names"]))
        total_vram = sum(gpu_info["memory_gb"])
        header += f"""- GPUs: {gpu_info['count']}x {gpu_names}
- GPU Memory: {total_vram:.1f} GB total
- CUDA Version: {gpu_info['cuda_version']}
"""
    else:
        header += "- GPUs: None available\n"

    if cost_info and cost_info["hourly_rate"] > 0:
        header += f"""- Hourly Rate: ${cost_info['hourly_rate']:.2f}/hour\n"""

    header += f"""
### Software
- Python: {sys_info['python_version']}
- PyTorch: {sys_info['torch_version']}

"""

    # bloat metrics: package all of the source code and assess its weight
    packaged = run_command('files-to-prompt . -e py -e md -e rs -e html -e toml -e sh --ignore "*target*" --cxml')
    num_chars = len(packaged)
    num_lines = len(packaged.split('\n'))
    num_files = len([x for x in packaged.split('\n') if x.startswith('<source>')])
    num_tokens = num_chars // 4 # assume approximately 4 chars per token

    # count dependencies via uv.lock
    uv_lock_lines = 0
    if os.path.exists('uv.lock'):
        with open('uv.lock', 'r') as f:
            uv_lock_lines = len(f.readlines())

    header += f"""
### Bloat
- Characters: {num_chars:,}
- Lines: {num_lines:,}
- Files: {num_files:,}
- Tokens (approx): {num_tokens:,}
- Dependencies (uv.lock lines): {uv_lock_lines:,}

"""
    return header

# -----------------------------------------------------------------------------

def slugify(text):
    """Slugify a text string."""
    return text.lower().replace(" ", "-")

# the expected files and their order
EXPECTED_FILES = [
    "tokenizer-training.md",
    "tokenizer-evaluation.md",
    "base-model-training.md",
    "base-model-loss.md",
    "base-model-evaluation.md",
    "midtraining.md",
    "chat-evaluation-mid.md",
    "chat-sft.md",
    "chat-evaluation-sft.md",
    "chat-rl.md",
    "chat-evaluation-rl.md",
]
# the metrics we're currently interested in
chat_metrics = ["ARC-Easy", "ARC-Challenge", "MMLU", "GSM8K", "HumanEval", "ChatCORE"]

def extract(section, keys):
    """simple def to extract a single key from a section"""
    if not isinstance(keys, list):
        keys = [keys] # convenience
    out = {}
    for line in section.split("\n"):
        for key in keys:
            if key in line:
                out[key] = line.split(":")[1].strip()
    return out

def extract_timestamp(content, prefix):
    """Extract timestamp from content with given prefix."""
    for line in content.split('\n'):
        if line.startswith(prefix):
            time_str = line.split(":", 1)[1].strip()
            try:
                return datetime.datetime.strptime(time_str, "%Y-%m-%d %H:%M:%S")
            except:
                pass
    return None

class Report:
    """Maintains a bunch of logs, generates a final markdown report."""

    def __init__(self, report_dir):
        os.makedirs(report_dir, exist_ok=True)
        self.report_dir = report_dir

    def log(self, section, data):
        """Log a section of data to the report."""
        slug = slugify(section)
        file_name = f"{slug}.md"
        file_path = os.path.join(self.report_dir, file_name)
        with open(file_path, "w") as f:
            f.write(f"## {section}\n")
            f.write(f"timestamp: {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n\n")
            for item in data:
                if not item:
                    # skip falsy values like None or empty dict etc.
                    continue
                if isinstance(item, str):
                    # directly write the string
                    f.write(item)
                else:
                    # render a dict
                    for k, v in item.items():
                        if isinstance(v, float):
                            vstr = f"{v:.4f}"
                        elif isinstance(v, int) and v >= 10000:
                            vstr = f"{v:,.0f}"
                        else:
                            vstr = str(v)
                        f.write(f"- {k}: {vstr}\n")
            f.write("\n")
        return file_path

    def generate(self):
        """Generate the final report."""
        report_dir = self.report_dir
        report_file = os.path.join(report_dir, "report.md")
        print(f"Generating report to {report_file}")
        final_metrics = {} # the most important final metrics we'll add as table at the end
        start_time = None
        end_time = None
        with open(report_file, "w") as out_file:
            # write the header first
            header_file = os.path.join(report_dir, "header.md")
            if os.path.exists(header_file):
                with open(header_file, "r") as f:
                    header_content = f.read()
                    out_file.write(header_content)
                    start_time = extract_timestamp(header_content, "Run started:")
                    # capture bloat data for summary later (the stuff after Bloat header and until \n\n)
                    bloat_data = re.search(r"### Bloat\n(.*?)\n\n", header_content, re.DOTALL)
                    bloat_data = bloat_data.group(1) if bloat_data else ""
            # process all the individual sections
            for file_name in EXPECTED_FILES:
                section_file = os.path.join(report_dir, file_name)
                if not os.path.exists(section_file):
                    print(f"Warning: {section_file} does not exist, skipping")
                    continue
                with open(section_file, "r") as in_file:
                    section = in_file.read()
                # Extract timestamp from this section (the last section's timestamp will "stick" as end_time)
                if "rl" not in file_name:
                    # Skip RL sections for end_time calculation because RL is experimental
                    end_time = extract_timestamp(section, "timestamp:")
                # extract the most important metrics from the sections
                if file_name == "base-model-evaluation.md":
                    final_metrics["base"] = extract(section, "CORE")
                if file_name == "chat-evaluation-mid.md":
                    final_metrics["mid"] = extract(section, chat_metrics)
                if file_name == "chat-evaluation-sft.md":
                    final_metrics["sft"] = extract(section, chat_metrics)
                if file_name == "chat-evaluation-rl.md":
                    final_metrics["rl"] = extract(section, "GSM8K") # RL only evals GSM8K
                # append this section of the report
                out_file.write(section)
                out_file.write("\n")
            # add the final metrics table
            out_file.write("## Summary\n\n")
            # Copy over the bloat metrics from the header
            out_file.write(bloat_data)
            out_file.write("\n\n")
            # Collect all unique metric names
            all_metrics = set()
            for stage_metrics in final_metrics.values():
                all_metrics.update(stage_metrics.keys())
            # Custom ordering: CORE first, ChatCORE last, rest in middle
            all_metrics = sorted(all_metrics, key=lambda x: (x != "CORE", x == "ChatCORE", x))
            # Fixed column widths
            stages = ["base", "mid", "sft", "rl"]
            metric_width = 15
            value_width = 8
            # Write table header
            header = f"| {'Metric'.ljust(metric_width)} |"
            for stage in stages:
                header += f" {stage.upper().ljust(value_width)} |"
            out_file.write(header + "\n")
            # Write separator
            separator = f"|{'-' * (metric_width + 2)}|"
            for stage in stages:
                separator += f"{'-' * (value_width + 2)}|"
            out_file.write(separator + "\n")
            # Write table rows
            for metric in all_metrics:
                row = f"| {metric.ljust(metric_width)} |"
                for stage in stages:
                    value = final_metrics.get(stage, {}).get(metric, "-")
                    row += f" {str(value).ljust(value_width)} |"
                out_file.write(row + "\n")
            out_file.write("\n")
            # Calculate and write total wall clock time
            if start_time and end_time:
                duration = end_time - start_time
                total_seconds = int(duration.total_seconds())
                hours = total_seconds // 3600
                minutes = (total_seconds % 3600) // 60
                out_file.write(f"Total wall clock time: {hours}h{minutes}m\n")
            else:
                out_file.write("Total wall clock time: unknown\n")
        # also cp the report.md file to current directory
        print(f"Copying report.md to current directory for convenience")
        shutil.copy(report_file, "report.md")
        return report_file

    def reset(self):
        """Reset the report."""
        # Remove section files
        for file_name in EXPECTED_FILES:
            file_path = os.path.join(self.report_dir, file_name)
            if os.path.exists(file_path):
                os.remove(file_path)
        # Remove report.md if it exists
        report_file = os.path.join(self.report_dir, "report.md")
        if os.path.exists(report_file):
            os.remove(report_file)
        # Generate and write the header section with start timestamp
        header_file = os.path.join(self.report_dir, "header.md")
        header = generate_header()
        start_time = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
        with open(header_file, "w") as f:
            f.write(header)
            f.write(f"Run started: {start_time}\n\n---\n\n")
        print(f"Reset report and wrote header to {header_file}")

# -----------------------------------------------------------------------------
# nanochat-specific convenience functions

class DummyReport:
    def log(self, *args, **kwargs):
        pass
    def reset(self, *args, **kwargs):
        pass

def get_report():
    # just for convenience, only rank 0 logs to report
    from nanochat.common import get_base_dir, get_dist_info
    ddp, ddp_rank, ddp_local_rank, ddp_world_size = get_dist_info()
    if ddp_rank == 0:
        report_dir = os.path.join(get_base_dir(), "report")
        return Report(report_dir)
    else:
        return DummyReport()

if __name__ == "__main__":
    import argparse
    parser = argparse.ArgumentParser(description="Generate or reset nanochat training reports.")
    parser.add_argument("command", nargs="?", default="generate", choices=["generate", "reset"], help="Operation to perform (default: generate)")
    args = parser.parse_args()
    if args.command == "generate":
        get_report().generate()
    elif args.command == "reset":
        get_report().reset()