loocorez's picture
Upload folder using huggingface_hub
4d308e1 verified
"""
Sandboxed execution utilities for running Python code that comes out of an LLM.
Adapted from OpenAI HumanEval code:
https://github.com/openai/human-eval/blob/master/human_eval/execution.py
What is covered:
- Each execution runs in its own process (can be killed if it hangs or crashes)
- Execution is limited by a timeout to stop infinite loops
- Memory limits are enforced by default (256MB)
- stdout and stderr are captured and returned
- Code runs in a temporary directory that is deleted afterwards
- Dangerous functions are disabled (examples: os.system, os.kill, shutil.rmtree, subprocess.Popen)
What is not covered:
- Not a true security sandbox
- Network access is not blocked (e.g. sockets could be opened)
- Python's dynamic features (e.g. ctypes) could bypass restrictions
- No kernel-level isolation (no seccomp, no containers, no virtualization)
Overall this sandbox is good for evaluation of generated code and protects against
accidental destructive behavior, but it is not safe against malicious adversarial code.
"""
import contextlib
import faulthandler
import io
import multiprocessing
import os
import platform
import signal
import tempfile
from dataclasses import dataclass
from typing import Optional
# -----------------------------------------------------------------------------
@dataclass
class ExecutionResult:
"""Result of executing Python code in a sandbox."""
success: bool
stdout: str
stderr: str
error: Optional[str] = None
timeout: bool = False
memory_exceeded: bool = False
def __repr__(self):
parts = []
parts.append(f"ExecutionResult(success={self.success}")
if self.timeout:
parts.append(", timeout=True")
if self.memory_exceeded:
parts.append(", memory_exceeded=True")
if self.error:
parts.append(f", error={self.error!r}")
if self.stdout:
parts.append(f", stdout={self.stdout!r}")
if self.stderr:
parts.append(f", stderr={self.stderr!r}")
parts.append(")")
return "".join(parts)
@contextlib.contextmanager
def time_limit(seconds: float):
def signal_handler(signum, frame):
raise TimeoutException("Timed out!")
signal.setitimer(signal.ITIMER_REAL, seconds)
signal.signal(signal.SIGALRM, signal_handler)
try:
yield
finally:
signal.setitimer(signal.ITIMER_REAL, 0)
@contextlib.contextmanager
def capture_io():
"""Capture stdout and stderr, and disable stdin."""
stdout_capture = io.StringIO()
stderr_capture = io.StringIO()
stdin_block = WriteOnlyStringIO()
with contextlib.redirect_stdout(stdout_capture):
with contextlib.redirect_stderr(stderr_capture):
with redirect_stdin(stdin_block):
yield stdout_capture, stderr_capture
@contextlib.contextmanager
def create_tempdir():
with tempfile.TemporaryDirectory() as dirname:
with chdir(dirname):
yield dirname
class TimeoutException(Exception):
pass
class WriteOnlyStringIO(io.StringIO):
"""StringIO that throws an exception when it's read from"""
def read(self, *args, **kwargs):
raise IOError
def readline(self, *args, **kwargs):
raise IOError
def readlines(self, *args, **kwargs):
raise IOError
def readable(self, *args, **kwargs):
"""Returns True if the IO object can be read."""
return False
class redirect_stdin(contextlib._RedirectStream): # type: ignore
_stream = "stdin"
@contextlib.contextmanager
def chdir(root):
if root == ".":
yield
return
cwd = os.getcwd()
os.chdir(root)
try:
yield
except BaseException as exc:
raise exc
finally:
os.chdir(cwd)
def reliability_guard(maximum_memory_bytes: Optional[int] = None):
"""
This disables various destructive functions and prevents the generated code
from interfering with the test (e.g. fork bomb, killing other processes,
removing filesystem files, etc.)
WARNING
This function is NOT a security sandbox. Untrusted code, including, model-
generated code, should not be blindly executed outside of one. See the
Codex paper for more information about OpenAI's code sandbox, and proceed
with caution.
"""
if maximum_memory_bytes is not None:
import resource
resource.setrlimit(resource.RLIMIT_AS, (maximum_memory_bytes, maximum_memory_bytes))
resource.setrlimit(resource.RLIMIT_DATA, (maximum_memory_bytes, maximum_memory_bytes))
if not platform.uname().system == "Darwin":
resource.setrlimit(resource.RLIMIT_STACK, (maximum_memory_bytes, maximum_memory_bytes))
faulthandler.disable()
import builtins
builtins.exit = None
builtins.quit = None
import os
os.environ["OMP_NUM_THREADS"] = "1"
os.kill = None
os.system = None
os.putenv = None
os.remove = None
os.removedirs = None
os.rmdir = None
os.fchdir = None
os.setuid = None
os.fork = None
os.forkpty = None
os.killpg = None
os.rename = None
os.renames = None
os.truncate = None
os.replace = None
os.unlink = None
os.fchmod = None
os.fchown = None
os.chmod = None
os.chown = None
os.chroot = None
os.fchdir = None
os.lchflags = None
os.lchmod = None
os.lchown = None
os.getcwd = None
os.chdir = None
import shutil
shutil.rmtree = None
shutil.move = None
shutil.chown = None
import subprocess
subprocess.Popen = None # type: ignore
__builtins__["help"] = None
import sys
sys.modules["ipdb"] = None
sys.modules["joblib"] = None
sys.modules["resource"] = None
sys.modules["psutil"] = None
sys.modules["tkinter"] = None
def _unsafe_execute(code: str, timeout: float, maximum_memory_bytes: Optional[int], result_dict):
"""Execute code in a subprocess with safety guards. Results are written to result_dict."""
with create_tempdir():
# These system calls are needed when cleaning up tempdir.
import os
import shutil
rmtree = shutil.rmtree
rmdir = os.rmdir
chdir = os.chdir
# Disable functionalities that can make destructive changes to the test.
reliability_guard(maximum_memory_bytes=maximum_memory_bytes)
# Default to failure
result_dict.update({
"success": False,
"stdout": "",
"stderr": "",
"timeout": False,
"memory_exceeded": False,
"error": None,
})
try:
exec_globals = {}
with capture_io() as (stdout_capture, stderr_capture):
with time_limit(timeout):
# WARNING
# This program exists to execute untrusted model-generated code. Although
# it is highly unlikely that model-generated code will do something overtly
# malicious in response to this test suite, model-generated code may act
# destructively due to a lack of model capability or alignment.
# Users are strongly encouraged to sandbox this evaluation suite so that it
# does not perform destructive actions on their host or network. For more
# information on how OpenAI sandboxes its code, see the accompanying paper.
# Once you have read this disclaimer and taken appropriate precautions,
# uncomment the following line and proceed at your own risk:
exec(code, exec_globals)
result_dict.update({
"success": True,
"stdout": stdout_capture.getvalue(),
"stderr": stderr_capture.getvalue(),
})
except TimeoutException:
result_dict.update({
"timeout": True,
"error": "Execution timed out",
})
except MemoryError as e:
result_dict.update({
"memory_exceeded": True,
"error": f"Memory limit exceeded: {e}",
})
except BaseException as e:
result_dict.update({
"error": f"{type(e).__name__}: {e}",
})
# Needed for cleaning up.
shutil.rmtree = rmtree
os.rmdir = rmdir
os.chdir = chdir
def execute_code(
code: str,
timeout: float = 5.0, # 5 seconds default
maximum_memory_bytes: Optional[int] = 256 * 1024 * 1024, # 256MB default
) -> ExecutionResult:
"""
Execute Python code in a sandboxed environment.
Args:
code: Python code to execute as a string
timeout: Maximum execution time in seconds (default: 5.0)
maximum_memory_bytes: Memory limit in bytes (default: 256MB, None to disable)
Returns:
ExecutionResult with success status, stdout/stderr, and error information
Example:
>>> result = execute_code("print('hello world')")
>>> result.success
True
>>> result.stdout
'hello world\\n'
"""
manager = multiprocessing.Manager()
result_dict = manager.dict()
p = multiprocessing.Process(
target=_unsafe_execute,
args=(code, timeout, maximum_memory_bytes, result_dict)
)
p.start()
p.join(timeout=timeout + 1)
if p.is_alive():
p.kill()
return ExecutionResult(
success=False,
stdout="",
stderr="",
error="Execution timed out (process killed)",
timeout=True,
memory_exceeded=False,
)
if not result_dict:
return ExecutionResult(
success=False,
stdout="",
stderr="",
error="Execution failed (no result returned)",
timeout=True,
memory_exceeded=False,
)
return ExecutionResult(
success=result_dict["success"],
stdout=result_dict["stdout"],
stderr=result_dict["stderr"],
error=result_dict["error"],
timeout=result_dict["timeout"],
memory_exceeded=result_dict["memory_exceeded"],
)