loocorez's picture
Upload folder using huggingface_hub
4d308e1 verified
"""
GPT model (rewrite, a lot simpler)
Notable features:
- rotary embeddings (and no positional embeddings)
- QK norm
- untied weights for token embedding and lm_head
- relu^2 activation in MLP
- norm after token embedding
- no learnable params in rmsnorm
- no bias in linear layers
- Multi-Query Attention (MQA) support for more efficient inference
"""
import math
from functools import partial
from dataclasses import dataclass
import torch
import torch.nn as nn
import torch.nn.functional as F
from nanochat.common import get_dist_info, print0
from nanochat.muon import Muon, DistMuon
from nanochat.adamw import DistAdamW
@dataclass
class GPTConfig:
sequence_len: int = 1024
vocab_size: int = 50304
n_layer: int = 12
n_head: int = 6 # number of query heads
n_kv_head: int = 6 # number of key/value heads (MQA)
n_embd: int = 768
def norm(x):
# Purely functional rmsnorm with no learnable params
return F.rms_norm(x, (x.size(-1),))
def apply_rotary_emb(x, cos, sin):
assert x.ndim == 4 # multihead attention
d = x.shape[3] // 2
x1, x2 = x[..., :d], x[..., d:] # split up last time into two halves
y1 = x1 * cos + x2 * sin # rotate pairs of dims
y2 = x1 * (-sin) + x2 * cos
out = torch.cat([y1, y2], 3) # re-assemble
out = out.to(x.dtype) # ensure input/output dtypes match
return out
def repeat_kv(x, n_rep):
"""torch.repeat_interleave(x, dim=1, repeats=n_rep)"""
if n_rep == 1:
return x
bs, n_kv_heads, slen, head_dim = x.shape
return (
x[:, :, None, :, :]
.expand(bs, n_kv_heads, n_rep, slen, head_dim)
.reshape(bs, n_kv_heads * n_rep, slen, head_dim)
)
class CausalSelfAttention(nn.Module):
def __init__(self, config, layer_idx):
super().__init__()
self.layer_idx = layer_idx
self.n_head = config.n_head
self.n_kv_head = config.n_kv_head
self.n_embd = config.n_embd
self.head_dim = self.n_embd // self.n_head
assert self.n_embd % self.n_head == 0
assert self.n_kv_head <= self.n_head and self.n_head % self.n_kv_head == 0
self.c_q = nn.Linear(self.n_embd, self.n_head * self.head_dim, bias=False)
self.c_k = nn.Linear(self.n_embd, self.n_kv_head * self.head_dim, bias=False)
self.c_v = nn.Linear(self.n_embd, self.n_kv_head * self.head_dim, bias=False)
self.c_proj = nn.Linear(self.n_embd, self.n_embd, bias=False)
def forward(self, x, cos_sin, kv_cache):
B, T, C = x.size()
# Project the input to get queries, keys, and values
q = self.c_q(x).view(B, T, self.n_head, self.head_dim)
k = self.c_k(x).view(B, T, self.n_kv_head, self.head_dim)
v = self.c_v(x).view(B, T, self.n_kv_head, self.head_dim)
# Apply Rotary Embeddings to queries and keys to get relative positional encoding
cos, sin = cos_sin
q, k = apply_rotary_emb(q, cos, sin), apply_rotary_emb(k, cos, sin) # QK rotary embedding
q, k = norm(q), norm(k) # QK norm
q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2) # make head be batch dim, i.e. (B, T, H, D) -> (B, H, T, D)
# Apply KV cache: insert current k,v into cache, get the full view so far
if kv_cache is not None:
k, v = kv_cache.insert_kv(self.layer_idx, k, v)
Tq = q.size(2) # number of queries in this forward pass
Tk = k.size(2) # number of keys/values in total (in the cache + current forward pass)
# Apply MQA: replicate the key/value heads for each query head
nrep = self.n_head // self.n_kv_head
k, v = repeat_kv(k, nrep), repeat_kv(v, nrep)
# Attention: queries attend to keys/values autoregressively. A few cases to handle:
if kv_cache is None or Tq == Tk:
# During training (no KV cache), attend as usual with causal attention
# And even if there is KV cache, we can still use this simple version when Tq == Tk
y = F.scaled_dot_product_attention(q, k, v, is_causal=True)
elif Tq == 1:
# During inference but with a single query in this forward pass:
# The query has to attend to all the keys/values in the cache
y = F.scaled_dot_product_attention(q, k, v, is_causal=False)
else:
# During inference AND we have a chunk of queries in this forward pass:
# First, each query attends to all the cached keys/values (i.e. full prefix)
attn_mask = torch.zeros((Tq, Tk), dtype=torch.bool, device=q.device) # True = keep, False = mask
prefix_len = Tk - Tq
if prefix_len > 0: # can't be negative but could be zero
attn_mask[:, :prefix_len] = True
# Then, causal attention within this chunk
attn_mask[:, prefix_len:] = torch.tril(torch.ones((Tq, Tq), dtype=torch.bool, device=q.device))
y = F.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask)
# Re-assemble the heads side by side and project back to residual stream
y = y.transpose(1, 2).contiguous().view(B, T, -1)
y = self.c_proj(y)
return y
class MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=False)
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=False)
def forward(self, x):
x = self.c_fc(x)
x = F.relu(x).square()
x = self.c_proj(x)
return x
class Block(nn.Module):
def __init__(self, config, layer_idx):
super().__init__()
self.attn = CausalSelfAttention(config, layer_idx)
self.mlp = MLP(config)
def forward(self, x, cos_sin, kv_cache):
x = x + self.attn(norm(x), cos_sin, kv_cache)
x = x + self.mlp(norm(x))
return x
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.transformer = nn.ModuleDict({
"wte": nn.Embedding(config.vocab_size, config.n_embd),
"h": nn.ModuleList([Block(config, layer_idx) for layer_idx in range(config.n_layer)]),
})
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
# To support meta device initialization, we init the rotary embeddings here, but it's fake
# As for rotary_seq_len, these rotary embeddings are pretty small/cheap in memory,
# so let's just over-compute them, but assert fail if we ever reach that amount.
# In the future we can dynamically grow the cache, for now it's fine.
self.rotary_seq_len = config.sequence_len * 10 # 10X over-compute should be enough, TODO make nicer?
head_dim = config.n_embd // config.n_head
cos, sin = self._precompute_rotary_embeddings(self.rotary_seq_len, head_dim)
self.register_buffer("cos", cos, persistent=False) # persistent=False means it's not saved to the checkpoint
self.register_buffer("sin", sin, persistent=False)
# Cast the embeddings from fp32 to bf16: optim can tolerate it and it saves memory: both in the model and the activations
self.transformer.wte.to(dtype=torch.bfloat16)
def init_weights(self):
self.apply(self._init_weights)
# zero out classifier weights
torch.nn.init.zeros_(self.lm_head.weight)
# zero out c_proj weights in all blocks
for block in self.transformer.h:
torch.nn.init.zeros_(block.mlp.c_proj.weight)
torch.nn.init.zeros_(block.attn.c_proj.weight)
# init the rotary embeddings
head_dim = self.config.n_embd // self.config.n_head
cos, sin = self._precompute_rotary_embeddings(self.rotary_seq_len, head_dim)
self.cos, self.sin = cos, sin
def _init_weights(self, module):
if isinstance(module, nn.Linear):
# https://arxiv.org/pdf/2310.17813
fan_out = module.weight.size(0)
fan_in = module.weight.size(1)
std = 1.0 / math.sqrt(fan_in) * min(1.0, math.sqrt(fan_out / fan_in))
torch.nn.init.normal_(module.weight, mean=0.0, std=std)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=1.0)
# TODO: bump base theta more, e.g. 100K is more common more recently
def _precompute_rotary_embeddings(self, seq_len, head_dim, base=10000, device=None):
# autodetect the device from model embeddings
if device is None:
device = self.transformer.wte.weight.device
# stride the channels
channel_range = torch.arange(0, head_dim, 2, dtype=torch.float32, device=device)
inv_freq = 1.0 / (base ** (channel_range / head_dim))
# stride the time steps
t = torch.arange(seq_len, dtype=torch.float32, device=device)
# calculate the rotation frequencies at each (time, channel) pair
freqs = torch.outer(t, inv_freq)
cos, sin = freqs.cos(), freqs.sin()
cos, sin = cos.bfloat16(), sin.bfloat16() # keep them in bfloat16
cos, sin = cos[None, :, None, :], sin[None, :, None, :] # add batch and head dims for later broadcasting
return cos, sin
def get_device(self):
return self.transformer.wte.weight.device
def estimate_flops(self):
""" Return the estimated FLOPs per token for the model. Ref: https://arxiv.org/abs/2204.02311 """
nparams = sum(p.numel() for p in self.parameters())
nparams_embedding = self.transformer.wte.weight.numel()
l, h, q, t = self.config.n_layer, self.config.n_head, self.config.n_embd // self.config.n_head, self.config.sequence_len
num_flops_per_token = 6 * (nparams - nparams_embedding) + 12 * l * h * q * t
return num_flops_per_token
def setup_optimizers(self, unembedding_lr=0.004, embedding_lr=0.2, matrix_lr=0.02, weight_decay=0.0):
model_dim = self.config.n_embd
ddp, rank, local_rank, world_size = get_dist_info()
# Separate out all parameters into 3 groups (matrix, embedding, lm_head)
matrix_params = list(self.transformer.h.parameters())
embedding_params = list(self.transformer.wte.parameters())
lm_head_params = list(self.lm_head.parameters())
assert len(list(self.parameters())) == len(matrix_params) + len(embedding_params) + len(lm_head_params)
# Create the AdamW optimizer for the embedding and lm_head
# Scale the LR for the AdamW parameters by ∝1/√dmodel (having tuned the LRs for 768 dim model)
dmodel_lr_scale = (model_dim / 768) ** -0.5
if rank == 0:
print(f"Scaling the LR for the AdamW parameters ∝1/√({model_dim}/768) = {dmodel_lr_scale:.6f}")
adam_groups = [
dict(params=lm_head_params, lr=unembedding_lr * dmodel_lr_scale),
dict(params=embedding_params, lr=embedding_lr * dmodel_lr_scale),
]
adamw_kwargs = dict(betas=(0.8, 0.95), eps=1e-10, weight_decay=weight_decay)
AdamWFactory = DistAdamW if ddp else partial(torch.optim.AdamW, fused=True)
adamw_optimizer = AdamWFactory(adam_groups, **adamw_kwargs)
# Create the Muon optimizer for the linear layers
muon_kwargs = dict(lr=matrix_lr, momentum=0.95)
MuonFactory = DistMuon if ddp else Muon
muon_optimizer = MuonFactory(matrix_params, **muon_kwargs)
# Combine them the two optimizers into one list
optimizers = [adamw_optimizer, muon_optimizer]
for opt in optimizers:
for group in opt.param_groups:
group["initial_lr"] = group["lr"]
return optimizers
def forward(self, idx, targets=None, kv_cache=None, loss_reduction='mean'):
B, T = idx.size()
# Grab the rotary embeddings for the current sequence length (they are of shape (1, seq_len, 1, head_dim))
assert T <= self.cos.size(1), f"Sequence length grew beyond the rotary embeddings cache: {T} > {self.cos.size(1)}"
assert idx.device == self.cos.device, f"Rotary embeddings and idx are on different devices: {idx.device} != {self.cos.device}"
assert self.cos.dtype == torch.bfloat16, "Rotary embeddings must be in bfloat16"
# if kv cache exists, we need to offset the rotary embeddings to the current position in the cache
T0 = 0 if kv_cache is None else kv_cache.get_pos()
cos_sin = self.cos[:, T0:T0+T], self.sin[:, T0:T0+T] # truncate cache to current sequence length
# Forward the trunk of the Transformer
x = self.transformer.wte(idx)
x = norm(x)
for block in self.transformer.h:
x = block(x, cos_sin, kv_cache)
x = norm(x)
# Forward the lm_head (compute logits)
softcap = 15
if targets is not None:
# training mode: compute and return the loss
# TODO: experiment with Liger Kernels / chunked cross-entropy etc.
logits = self.lm_head(x)
logits = softcap * torch.tanh(logits / softcap) # logits softcap
logits = logits.float() # use tf32/fp32 for logits
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1, reduction=loss_reduction)
return loss
else:
# inference mode: compute and return the logits
logits = self.lm_head(x)
logits = softcap * torch.tanh(logits / softcap) # logits softcap
return logits
@torch.inference_mode()
def generate(self, tokens, max_tokens, temperature=1.0, top_k=None, seed=42):
"""
Naive autoregressive streaming inference.
To make it super simple, let's assume:
- batch size is 1
- ids and the yielded tokens are simple Python lists and ints
"""
assert isinstance(tokens, list)
device = self.get_device()
rng = None
if temperature > 0:
rng = torch.Generator(device=device)
rng.manual_seed(seed)
ids = torch.tensor([tokens], dtype=torch.long, device=device) # add batch dim
for _ in range(max_tokens):
logits = self.forward(ids) # (B, T, vocab_size)
logits = logits[:, -1, :] # (B, vocab_size)
if top_k is not None:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
logits[logits < v[:, [-1]]] = -float('Inf')
if temperature > 0:
logits = logits / temperature
probs = F.softmax(logits, dim=-1)
next_ids = torch.multinomial(probs, num_samples=1, generator=rng)
else:
next_ids = torch.argmax(logits, dim=-1, keepdim=True)
ids = torch.cat((ids, next_ids), dim=1)
token = next_ids.item()
yield token