|
|
""" |
|
|
GPT model (rewrite, a lot simpler) |
|
|
Notable features: |
|
|
- rotary embeddings (and no positional embeddings) |
|
|
- QK norm |
|
|
- untied weights for token embedding and lm_head |
|
|
- relu^2 activation in MLP |
|
|
- norm after token embedding |
|
|
- no learnable params in rmsnorm |
|
|
- no bias in linear layers |
|
|
- Multi-Query Attention (MQA) support for more efficient inference |
|
|
""" |
|
|
|
|
|
import math |
|
|
from functools import partial |
|
|
from dataclasses import dataclass |
|
|
|
|
|
import torch |
|
|
import torch.nn as nn |
|
|
import torch.nn.functional as F |
|
|
|
|
|
from nanochat.common import get_dist_info, print0 |
|
|
from nanochat.muon import Muon, DistMuon |
|
|
from nanochat.adamw import DistAdamW |
|
|
|
|
|
@dataclass |
|
|
class GPTConfig: |
|
|
sequence_len: int = 1024 |
|
|
vocab_size: int = 50304 |
|
|
n_layer: int = 12 |
|
|
n_head: int = 6 |
|
|
n_kv_head: int = 6 |
|
|
n_embd: int = 768 |
|
|
|
|
|
|
|
|
def norm(x): |
|
|
|
|
|
return F.rms_norm(x, (x.size(-1),)) |
|
|
|
|
|
|
|
|
def apply_rotary_emb(x, cos, sin): |
|
|
assert x.ndim == 4 |
|
|
d = x.shape[3] // 2 |
|
|
x1, x2 = x[..., :d], x[..., d:] |
|
|
y1 = x1 * cos + x2 * sin |
|
|
y2 = x1 * (-sin) + x2 * cos |
|
|
out = torch.cat([y1, y2], 3) |
|
|
out = out.to(x.dtype) |
|
|
return out |
|
|
|
|
|
|
|
|
def repeat_kv(x, n_rep): |
|
|
"""torch.repeat_interleave(x, dim=1, repeats=n_rep)""" |
|
|
if n_rep == 1: |
|
|
return x |
|
|
bs, n_kv_heads, slen, head_dim = x.shape |
|
|
return ( |
|
|
x[:, :, None, :, :] |
|
|
.expand(bs, n_kv_heads, n_rep, slen, head_dim) |
|
|
.reshape(bs, n_kv_heads * n_rep, slen, head_dim) |
|
|
) |
|
|
|
|
|
|
|
|
class CausalSelfAttention(nn.Module): |
|
|
def __init__(self, config, layer_idx): |
|
|
super().__init__() |
|
|
self.layer_idx = layer_idx |
|
|
self.n_head = config.n_head |
|
|
self.n_kv_head = config.n_kv_head |
|
|
self.n_embd = config.n_embd |
|
|
self.head_dim = self.n_embd // self.n_head |
|
|
assert self.n_embd % self.n_head == 0 |
|
|
assert self.n_kv_head <= self.n_head and self.n_head % self.n_kv_head == 0 |
|
|
self.c_q = nn.Linear(self.n_embd, self.n_head * self.head_dim, bias=False) |
|
|
self.c_k = nn.Linear(self.n_embd, self.n_kv_head * self.head_dim, bias=False) |
|
|
self.c_v = nn.Linear(self.n_embd, self.n_kv_head * self.head_dim, bias=False) |
|
|
self.c_proj = nn.Linear(self.n_embd, self.n_embd, bias=False) |
|
|
|
|
|
def forward(self, x, cos_sin, kv_cache): |
|
|
B, T, C = x.size() |
|
|
|
|
|
|
|
|
q = self.c_q(x).view(B, T, self.n_head, self.head_dim) |
|
|
k = self.c_k(x).view(B, T, self.n_kv_head, self.head_dim) |
|
|
v = self.c_v(x).view(B, T, self.n_kv_head, self.head_dim) |
|
|
|
|
|
|
|
|
cos, sin = cos_sin |
|
|
q, k = apply_rotary_emb(q, cos, sin), apply_rotary_emb(k, cos, sin) |
|
|
q, k = norm(q), norm(k) |
|
|
q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2) |
|
|
|
|
|
|
|
|
if kv_cache is not None: |
|
|
k, v = kv_cache.insert_kv(self.layer_idx, k, v) |
|
|
Tq = q.size(2) |
|
|
Tk = k.size(2) |
|
|
|
|
|
|
|
|
nrep = self.n_head // self.n_kv_head |
|
|
k, v = repeat_kv(k, nrep), repeat_kv(v, nrep) |
|
|
|
|
|
|
|
|
if kv_cache is None or Tq == Tk: |
|
|
|
|
|
|
|
|
y = F.scaled_dot_product_attention(q, k, v, is_causal=True) |
|
|
elif Tq == 1: |
|
|
|
|
|
|
|
|
y = F.scaled_dot_product_attention(q, k, v, is_causal=False) |
|
|
else: |
|
|
|
|
|
|
|
|
attn_mask = torch.zeros((Tq, Tk), dtype=torch.bool, device=q.device) |
|
|
prefix_len = Tk - Tq |
|
|
if prefix_len > 0: |
|
|
attn_mask[:, :prefix_len] = True |
|
|
|
|
|
attn_mask[:, prefix_len:] = torch.tril(torch.ones((Tq, Tq), dtype=torch.bool, device=q.device)) |
|
|
y = F.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask) |
|
|
|
|
|
|
|
|
y = y.transpose(1, 2).contiguous().view(B, T, -1) |
|
|
y = self.c_proj(y) |
|
|
return y |
|
|
|
|
|
|
|
|
class MLP(nn.Module): |
|
|
def __init__(self, config): |
|
|
super().__init__() |
|
|
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=False) |
|
|
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=False) |
|
|
|
|
|
def forward(self, x): |
|
|
x = self.c_fc(x) |
|
|
x = F.relu(x).square() |
|
|
x = self.c_proj(x) |
|
|
return x |
|
|
|
|
|
|
|
|
class Block(nn.Module): |
|
|
def __init__(self, config, layer_idx): |
|
|
super().__init__() |
|
|
self.attn = CausalSelfAttention(config, layer_idx) |
|
|
self.mlp = MLP(config) |
|
|
|
|
|
def forward(self, x, cos_sin, kv_cache): |
|
|
x = x + self.attn(norm(x), cos_sin, kv_cache) |
|
|
x = x + self.mlp(norm(x)) |
|
|
return x |
|
|
|
|
|
|
|
|
class GPT(nn.Module): |
|
|
def __init__(self, config): |
|
|
super().__init__() |
|
|
self.config = config |
|
|
self.transformer = nn.ModuleDict({ |
|
|
"wte": nn.Embedding(config.vocab_size, config.n_embd), |
|
|
"h": nn.ModuleList([Block(config, layer_idx) for layer_idx in range(config.n_layer)]), |
|
|
}) |
|
|
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.rotary_seq_len = config.sequence_len * 10 |
|
|
head_dim = config.n_embd // config.n_head |
|
|
cos, sin = self._precompute_rotary_embeddings(self.rotary_seq_len, head_dim) |
|
|
self.register_buffer("cos", cos, persistent=False) |
|
|
self.register_buffer("sin", sin, persistent=False) |
|
|
|
|
|
self.transformer.wte.to(dtype=torch.bfloat16) |
|
|
|
|
|
def init_weights(self): |
|
|
self.apply(self._init_weights) |
|
|
|
|
|
torch.nn.init.zeros_(self.lm_head.weight) |
|
|
|
|
|
for block in self.transformer.h: |
|
|
torch.nn.init.zeros_(block.mlp.c_proj.weight) |
|
|
torch.nn.init.zeros_(block.attn.c_proj.weight) |
|
|
|
|
|
head_dim = self.config.n_embd // self.config.n_head |
|
|
cos, sin = self._precompute_rotary_embeddings(self.rotary_seq_len, head_dim) |
|
|
self.cos, self.sin = cos, sin |
|
|
|
|
|
def _init_weights(self, module): |
|
|
if isinstance(module, nn.Linear): |
|
|
|
|
|
fan_out = module.weight.size(0) |
|
|
fan_in = module.weight.size(1) |
|
|
std = 1.0 / math.sqrt(fan_in) * min(1.0, math.sqrt(fan_out / fan_in)) |
|
|
torch.nn.init.normal_(module.weight, mean=0.0, std=std) |
|
|
if module.bias is not None: |
|
|
torch.nn.init.zeros_(module.bias) |
|
|
elif isinstance(module, nn.Embedding): |
|
|
torch.nn.init.normal_(module.weight, mean=0.0, std=1.0) |
|
|
|
|
|
|
|
|
def _precompute_rotary_embeddings(self, seq_len, head_dim, base=10000, device=None): |
|
|
|
|
|
if device is None: |
|
|
device = self.transformer.wte.weight.device |
|
|
|
|
|
channel_range = torch.arange(0, head_dim, 2, dtype=torch.float32, device=device) |
|
|
inv_freq = 1.0 / (base ** (channel_range / head_dim)) |
|
|
|
|
|
t = torch.arange(seq_len, dtype=torch.float32, device=device) |
|
|
|
|
|
freqs = torch.outer(t, inv_freq) |
|
|
cos, sin = freqs.cos(), freqs.sin() |
|
|
cos, sin = cos.bfloat16(), sin.bfloat16() |
|
|
cos, sin = cos[None, :, None, :], sin[None, :, None, :] |
|
|
return cos, sin |
|
|
|
|
|
def get_device(self): |
|
|
return self.transformer.wte.weight.device |
|
|
|
|
|
def estimate_flops(self): |
|
|
""" Return the estimated FLOPs per token for the model. Ref: https://arxiv.org/abs/2204.02311 """ |
|
|
nparams = sum(p.numel() for p in self.parameters()) |
|
|
nparams_embedding = self.transformer.wte.weight.numel() |
|
|
l, h, q, t = self.config.n_layer, self.config.n_head, self.config.n_embd // self.config.n_head, self.config.sequence_len |
|
|
num_flops_per_token = 6 * (nparams - nparams_embedding) + 12 * l * h * q * t |
|
|
return num_flops_per_token |
|
|
|
|
|
def setup_optimizers(self, unembedding_lr=0.004, embedding_lr=0.2, matrix_lr=0.02, weight_decay=0.0): |
|
|
model_dim = self.config.n_embd |
|
|
ddp, rank, local_rank, world_size = get_dist_info() |
|
|
|
|
|
matrix_params = list(self.transformer.h.parameters()) |
|
|
embedding_params = list(self.transformer.wte.parameters()) |
|
|
lm_head_params = list(self.lm_head.parameters()) |
|
|
assert len(list(self.parameters())) == len(matrix_params) + len(embedding_params) + len(lm_head_params) |
|
|
|
|
|
|
|
|
dmodel_lr_scale = (model_dim / 768) ** -0.5 |
|
|
if rank == 0: |
|
|
print(f"Scaling the LR for the AdamW parameters ∝1/√({model_dim}/768) = {dmodel_lr_scale:.6f}") |
|
|
adam_groups = [ |
|
|
dict(params=lm_head_params, lr=unembedding_lr * dmodel_lr_scale), |
|
|
dict(params=embedding_params, lr=embedding_lr * dmodel_lr_scale), |
|
|
] |
|
|
adamw_kwargs = dict(betas=(0.8, 0.95), eps=1e-10, weight_decay=weight_decay) |
|
|
AdamWFactory = DistAdamW if ddp else partial(torch.optim.AdamW, fused=True) |
|
|
adamw_optimizer = AdamWFactory(adam_groups, **adamw_kwargs) |
|
|
|
|
|
muon_kwargs = dict(lr=matrix_lr, momentum=0.95) |
|
|
MuonFactory = DistMuon if ddp else Muon |
|
|
muon_optimizer = MuonFactory(matrix_params, **muon_kwargs) |
|
|
|
|
|
optimizers = [adamw_optimizer, muon_optimizer] |
|
|
for opt in optimizers: |
|
|
for group in opt.param_groups: |
|
|
group["initial_lr"] = group["lr"] |
|
|
return optimizers |
|
|
|
|
|
def forward(self, idx, targets=None, kv_cache=None, loss_reduction='mean'): |
|
|
B, T = idx.size() |
|
|
|
|
|
|
|
|
assert T <= self.cos.size(1), f"Sequence length grew beyond the rotary embeddings cache: {T} > {self.cos.size(1)}" |
|
|
assert idx.device == self.cos.device, f"Rotary embeddings and idx are on different devices: {idx.device} != {self.cos.device}" |
|
|
assert self.cos.dtype == torch.bfloat16, "Rotary embeddings must be in bfloat16" |
|
|
|
|
|
T0 = 0 if kv_cache is None else kv_cache.get_pos() |
|
|
cos_sin = self.cos[:, T0:T0+T], self.sin[:, T0:T0+T] |
|
|
|
|
|
|
|
|
x = self.transformer.wte(idx) |
|
|
x = norm(x) |
|
|
for block in self.transformer.h: |
|
|
x = block(x, cos_sin, kv_cache) |
|
|
x = norm(x) |
|
|
|
|
|
|
|
|
softcap = 15 |
|
|
if targets is not None: |
|
|
|
|
|
|
|
|
logits = self.lm_head(x) |
|
|
logits = softcap * torch.tanh(logits / softcap) |
|
|
logits = logits.float() |
|
|
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1, reduction=loss_reduction) |
|
|
return loss |
|
|
else: |
|
|
|
|
|
logits = self.lm_head(x) |
|
|
logits = softcap * torch.tanh(logits / softcap) |
|
|
return logits |
|
|
|
|
|
@torch.inference_mode() |
|
|
def generate(self, tokens, max_tokens, temperature=1.0, top_k=None, seed=42): |
|
|
""" |
|
|
Naive autoregressive streaming inference. |
|
|
To make it super simple, let's assume: |
|
|
- batch size is 1 |
|
|
- ids and the yielded tokens are simple Python lists and ints |
|
|
""" |
|
|
assert isinstance(tokens, list) |
|
|
device = self.get_device() |
|
|
rng = None |
|
|
if temperature > 0: |
|
|
rng = torch.Generator(device=device) |
|
|
rng.manual_seed(seed) |
|
|
ids = torch.tensor([tokens], dtype=torch.long, device=device) |
|
|
for _ in range(max_tokens): |
|
|
logits = self.forward(ids) |
|
|
logits = logits[:, -1, :] |
|
|
if top_k is not None: |
|
|
v, _ = torch.topk(logits, min(top_k, logits.size(-1))) |
|
|
logits[logits < v[:, [-1]]] = -float('Inf') |
|
|
if temperature > 0: |
|
|
logits = logits / temperature |
|
|
probs = F.softmax(logits, dim=-1) |
|
|
next_ids = torch.multinomial(probs, num_samples=1, generator=rng) |
|
|
else: |
|
|
next_ids = torch.argmax(logits, dim=-1, keepdim=True) |
|
|
ids = torch.cat((ids, next_ids), dim=1) |
|
|
token = next_ids.item() |
|
|
yield token |
|
|
|