Spaces:
Running
Running
| import argparse | |
| import os | |
| from pathlib import Path | |
| import pandas as pd | |
| import torchaudio | |
| from tqdm import tqdm | |
| min_length_sec = 8.1 | |
| max_segments_per_clip = 5 | |
| parser = argparse.ArgumentParser(description='Process audio clips.') | |
| parser.add_argument('--data_dir', | |
| type=Path, | |
| help='Path to the directory containing audio files', | |
| default='./training/example_audios') | |
| parser.add_argument('--output_dir', | |
| type=Path, | |
| help='Path to the output tsv file', | |
| default='./training/example_output/clips.tsv') | |
| parser.add_argument('--start', type=int, help='Start index for processing files', default=0) | |
| parser.add_argument('--end', type=int, help='End index for processing files', default=-1) | |
| args = parser.parse_args() | |
| data_dir = args.data_dir | |
| output_dir = args.output_dir | |
| start = args.start | |
| end = args.end | |
| output_data = [] | |
| blacklisted = 0 | |
| if end == -1: | |
| end = len(os.listdir(data_dir)) | |
| audio_files = sorted(os.listdir(data_dir))[start:end] | |
| print(f'Processing {len(audio_files)} files from {start} to {end}') | |
| for audio_file in tqdm(audio_files): | |
| audio_file_path = data_dir / audio_file | |
| audio_name = audio_file_path.stem | |
| waveform, sample_rate = torchaudio.load(audio_file_path) | |
| # waveform: (1/2) * length | |
| if waveform.shape[1] < sample_rate * min_length_sec: | |
| continue | |
| # try to partition the audio into segments, each with length of min_length_sec | |
| segment_length = int(sample_rate * min_length_sec) | |
| total_length = waveform.shape[1] | |
| num_segments = min(max_segments_per_clip, total_length // segment_length) | |
| if num_segments > 1: | |
| segment_interval = (total_length - segment_length) // (num_segments - 1) | |
| else: | |
| segment_interval = 0 | |
| for i in range(num_segments): | |
| start_sample = i * segment_interval | |
| end_sample = start_sample + segment_length | |
| audio_id = f'{audio_name}_{i}' | |
| output_data.append((audio_id, audio_name, start_sample, end_sample)) | |
| output_dir.parent.mkdir(parents=True, exist_ok=True) | |
| output_df = pd.DataFrame(output_data, columns=['id', 'name', 'start_sample', 'end_sample']) | |
| output_df.to_csv(output_dir, index=False, sep='\t') | |