Spaces:
Running
Running
gradio infer
Browse files- F5-TTS/src/f5_tts/infer/infer_cli_test.py +27 -22
- MMAudio/demo.py +35 -16
- app.py +35 -14
F5-TTS/src/f5_tts/infer/infer_cli_test.py
CHANGED
|
@@ -21,7 +21,7 @@ from f5_tts.infer.utils_infer import (
|
|
| 21 |
mel_spec_type,
|
| 22 |
target_rms,
|
| 23 |
cross_fade_duration,
|
| 24 |
-
nfe_step,
|
| 25 |
cfg_strength,
|
| 26 |
sway_sampling_coef,
|
| 27 |
speed,
|
|
@@ -68,7 +68,7 @@ parser.add_argument(
|
|
| 68 |
"--ckpt_file",
|
| 69 |
type=str,
|
| 70 |
help="The path to model checkpoint .pt, leave blank to use default",
|
| 71 |
-
default="",
|
| 72 |
)
|
| 73 |
parser.add_argument(
|
| 74 |
"-v",
|
|
@@ -143,11 +143,11 @@ parser.add_argument(
|
|
| 143 |
type=float,
|
| 144 |
help=f"Duration of cross-fade between audio segments in seconds, default {cross_fade_duration}",
|
| 145 |
)
|
| 146 |
-
parser.add_argument(
|
| 147 |
-
"--nfe_step",
|
| 148 |
-
type=int,
|
| 149 |
-
help=f"The number of function evaluation (denoising steps), default {nfe_step}",
|
| 150 |
-
)
|
| 151 |
parser.add_argument(
|
| 152 |
"--cfg_strength",
|
| 153 |
type=float,
|
|
@@ -177,7 +177,7 @@ parser.add_argument(
|
|
| 177 |
parser.add_argument(
|
| 178 |
"--end",
|
| 179 |
type=int,
|
| 180 |
-
default=
|
| 181 |
)
|
| 182 |
parser.add_argument(
|
| 183 |
"--v2a_path",
|
|
@@ -239,7 +239,7 @@ ref_text = (
|
|
| 239 |
gen_text = args.gen_text or config.get("gen_text", "Here we generate something just for test.")
|
| 240 |
gen_file = args.gen_file or config.get("gen_file", "")
|
| 241 |
|
| 242 |
-
output_dir = args.output_dir or config.get("output_dir", "tests")
|
| 243 |
output_file = args.output_file or config.get(
|
| 244 |
"output_file", f"infer_cli_{datetime.now().strftime(r'%Y%m%d_%H%M%S')}.wav"
|
| 245 |
)
|
|
@@ -251,13 +251,13 @@ load_vocoder_from_local = args.load_vocoder_from_local or config.get("load_vocod
|
|
| 251 |
vocoder_name = args.vocoder_name or config.get("vocoder_name", mel_spec_type)
|
| 252 |
target_rms = args.target_rms or config.get("target_rms", target_rms)
|
| 253 |
cross_fade_duration = args.cross_fade_duration or config.get("cross_fade_duration", cross_fade_duration)
|
| 254 |
-
nfe_step = args.nfe_step or config.get("nfe_step", nfe_step)
|
| 255 |
cfg_strength = args.cfg_strength or config.get("cfg_strength", cfg_strength)
|
| 256 |
sway_sampling_coef = args.sway_sampling_coef or config.get("sway_sampling_coef", sway_sampling_coef)
|
| 257 |
speed = args.speed or config.get("speed", speed)
|
| 258 |
fix_duration = args.fix_duration or config.get("fix_duration", fix_duration)
|
| 259 |
|
| 260 |
-
print("############nfe_step", nfe_step, vocoder_name)
|
| 261 |
|
| 262 |
|
| 263 |
# patches for pip pkg user
|
|
@@ -280,12 +280,12 @@ if gen_file:
|
|
| 280 |
|
| 281 |
# output path
|
| 282 |
|
| 283 |
-
wave_path = Path(output_dir) / output_file
|
| 284 |
-
|
| 285 |
-
if save_chunk:
|
| 286 |
-
output_chunk_dir = os.path.join(output_dir, f"{Path(output_file).stem}_chunks")
|
| 287 |
-
if not os.path.exists(output_chunk_dir):
|
| 288 |
-
os.makedirs(output_chunk_dir)
|
| 289 |
|
| 290 |
|
| 291 |
# load vocoder
|
|
@@ -335,7 +335,7 @@ ema_model = load_model(model_cls, model_cfg, ckpt_file, mel_spec_type=vocoder_na
|
|
| 335 |
# inference process
|
| 336 |
|
| 337 |
|
| 338 |
-
def main(ref_audio, ref_text, gen_text, energy):
|
| 339 |
main_voice = {"ref_audio": ref_audio, "ref_text": ref_text}
|
| 340 |
if "voices" not in config:
|
| 341 |
voices = {"main": main_voice}
|
|
@@ -431,9 +431,14 @@ def normalize_wav(waveform, waveform_ref):
|
|
| 431 |
return waveform
|
| 432 |
|
| 433 |
|
| 434 |
-
if __name__ == "__main__":
|
| 435 |
-
|
| 436 |
-
v2a_path = args.v2a_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 437 |
|
| 438 |
if args.wav_p == "":
|
| 439 |
scp = args.infer_list
|
|
@@ -493,7 +498,7 @@ if __name__ == "__main__":
|
|
| 493 |
####wav_gen, sr_gen = main(wav_p, txt_p, txt, [torch.zeros_like(energy_p), torch.zeros_like(energy)])
|
| 494 |
####wav_gen, sr_gen = main(wav_p, txt_p, txt, None)
|
| 495 |
####wav_gen, sr_gen = main(wav, txt, txt, None)
|
| 496 |
-
wav_gen, sr_gen = main(wav_p, txt_p, txt, [energy_p, energy])
|
| 497 |
####wav_gen, sr_gen = main(wav, txt, txt, [energy.clone(), energy])
|
| 498 |
wav_gen = torch.from_numpy(wav_gen).unsqueeze(0)
|
| 499 |
assert(sr_gen == 24000)
|
|
|
|
| 21 |
mel_spec_type,
|
| 22 |
target_rms,
|
| 23 |
cross_fade_duration,
|
| 24 |
+
#nfe_step,
|
| 25 |
cfg_strength,
|
| 26 |
sway_sampling_coef,
|
| 27 |
speed,
|
|
|
|
| 68 |
"--ckpt_file",
|
| 69 |
type=str,
|
| 70 |
help="The path to model checkpoint .pt, leave blank to use default",
|
| 71 |
+
default="./F5-TTS/ckpts/v2c/v2c_s44.pt",
|
| 72 |
)
|
| 73 |
parser.add_argument(
|
| 74 |
"-v",
|
|
|
|
| 143 |
type=float,
|
| 144 |
help=f"Duration of cross-fade between audio segments in seconds, default {cross_fade_duration}",
|
| 145 |
)
|
| 146 |
+
#parser.add_argument(
|
| 147 |
+
# "--nfe_step",
|
| 148 |
+
# type=int,
|
| 149 |
+
# help=f"The number of function evaluation (denoising steps), default {nfe_step}",
|
| 150 |
+
#)
|
| 151 |
parser.add_argument(
|
| 152 |
"--cfg_strength",
|
| 153 |
type=float,
|
|
|
|
| 177 |
parser.add_argument(
|
| 178 |
"--end",
|
| 179 |
type=int,
|
| 180 |
+
default=1,
|
| 181 |
)
|
| 182 |
parser.add_argument(
|
| 183 |
"--v2a_path",
|
|
|
|
| 239 |
gen_text = args.gen_text or config.get("gen_text", "Here we generate something just for test.")
|
| 240 |
gen_file = args.gen_file or config.get("gen_file", "")
|
| 241 |
|
| 242 |
+
#output_dir = args.output_dir or config.get("output_dir", "tests")
|
| 243 |
output_file = args.output_file or config.get(
|
| 244 |
"output_file", f"infer_cli_{datetime.now().strftime(r'%Y%m%d_%H%M%S')}.wav"
|
| 245 |
)
|
|
|
|
| 251 |
vocoder_name = args.vocoder_name or config.get("vocoder_name", mel_spec_type)
|
| 252 |
target_rms = args.target_rms or config.get("target_rms", target_rms)
|
| 253 |
cross_fade_duration = args.cross_fade_duration or config.get("cross_fade_duration", cross_fade_duration)
|
| 254 |
+
#nfe_step = args.nfe_step or config.get("nfe_step", nfe_step)
|
| 255 |
cfg_strength = args.cfg_strength or config.get("cfg_strength", cfg_strength)
|
| 256 |
sway_sampling_coef = args.sway_sampling_coef or config.get("sway_sampling_coef", sway_sampling_coef)
|
| 257 |
speed = args.speed or config.get("speed", speed)
|
| 258 |
fix_duration = args.fix_duration or config.get("fix_duration", fix_duration)
|
| 259 |
|
| 260 |
+
#print("############nfe_step", nfe_step, vocoder_name)
|
| 261 |
|
| 262 |
|
| 263 |
# patches for pip pkg user
|
|
|
|
| 280 |
|
| 281 |
# output path
|
| 282 |
|
| 283 |
+
#wave_path = Path(output_dir) / output_file
|
| 284 |
+
## spectrogram_path = Path(output_dir) / "infer_cli_out.png"
|
| 285 |
+
#if save_chunk:
|
| 286 |
+
# output_chunk_dir = os.path.join(output_dir, f"{Path(output_file).stem}_chunks")
|
| 287 |
+
# if not os.path.exists(output_chunk_dir):
|
| 288 |
+
# os.makedirs(output_chunk_dir)
|
| 289 |
|
| 290 |
|
| 291 |
# load vocoder
|
|
|
|
| 335 |
# inference process
|
| 336 |
|
| 337 |
|
| 338 |
+
def main(ref_audio, ref_text, gen_text, energy, nfe_step):
|
| 339 |
main_voice = {"ref_audio": ref_audio, "ref_text": ref_text}
|
| 340 |
if "voices" not in config:
|
| 341 |
voices = {"main": main_voice}
|
|
|
|
| 431 |
return waveform
|
| 432 |
|
| 433 |
|
| 434 |
+
#if __name__ == "__main__":
|
| 435 |
+
def v2s_infer(output_dir, v2a_path, wav_p, txt_p, video, v2a_wav, txt, nfe_step):
|
| 436 |
+
#v2a_path = args.v2a_path
|
| 437 |
+
args.wav_p = wav_p
|
| 438 |
+
args.txt_p = txt_p
|
| 439 |
+
args.video = video
|
| 440 |
+
args.v2a_wav = v2a_wav
|
| 441 |
+
args.txt = txt
|
| 442 |
|
| 443 |
if args.wav_p == "":
|
| 444 |
scp = args.infer_list
|
|
|
|
| 498 |
####wav_gen, sr_gen = main(wav_p, txt_p, txt, [torch.zeros_like(energy_p), torch.zeros_like(energy)])
|
| 499 |
####wav_gen, sr_gen = main(wav_p, txt_p, txt, None)
|
| 500 |
####wav_gen, sr_gen = main(wav, txt, txt, None)
|
| 501 |
+
wav_gen, sr_gen = main(wav_p, txt_p, txt, [energy_p, energy], nfe_step)
|
| 502 |
####wav_gen, sr_gen = main(wav, txt, txt, [energy.clone(), energy])
|
| 503 |
wav_gen = torch.from_numpy(wav_gen).unsqueeze(0)
|
| 504 |
assert(sr_gen == 24000)
|
MMAudio/demo.py
CHANGED
|
@@ -29,16 +29,16 @@ log = logging.getLogger()
|
|
| 29 |
|
| 30 |
|
| 31 |
@torch.inference_mode()
|
| 32 |
-
def
|
| 33 |
setup_eval_logging()
|
| 34 |
|
| 35 |
parser = ArgumentParser()
|
| 36 |
parser.add_argument('--variant',
|
| 37 |
type=str,
|
| 38 |
-
default='large_44k',
|
| 39 |
#default='small_16k',
|
| 40 |
#default='medium_44k',
|
| 41 |
-
|
| 42 |
help='small_16k, small_44k, medium_44k, large_44k, large_44k_v2')
|
| 43 |
parser.add_argument('--video', type=Path, help='Path to the video file')
|
| 44 |
parser.add_argument('--prompt', type=str, help='Input prompt', default='')
|
|
@@ -64,23 +64,23 @@ def main():
|
|
| 64 |
if args.variant not in all_model_cfg:
|
| 65 |
raise ValueError(f'Unknown model variant: {args.variant}')
|
| 66 |
model: ModelConfig = all_model_cfg[args.variant]
|
| 67 |
-
model.download_if_needed()
|
| 68 |
seq_cfg = model.seq_cfg
|
| 69 |
|
| 70 |
-
if args.video:
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
else:
|
| 74 |
-
|
| 75 |
-
prompt: str = args.prompt
|
| 76 |
-
negative_prompt: str = args.negative_prompt
|
| 77 |
-
output_dir: str = args.output.expanduser()
|
| 78 |
seed: int = args.seed
|
| 79 |
-
num_steps: int = args.num_steps
|
| 80 |
duration: float = args.duration
|
| 81 |
cfg_strength: float = args.cfg_strength
|
| 82 |
skip_video_composite: bool = args.skip_video_composite
|
| 83 |
-
mask_away_clip: bool = args.mask_away_clip
|
| 84 |
|
| 85 |
device = 'cpu'
|
| 86 |
if torch.cuda.is_available():
|
|
@@ -92,19 +92,26 @@ def main():
|
|
| 92 |
print("full_precision", args.full_precision)
|
| 93 |
dtype = torch.float32 if args.full_precision else torch.bfloat16
|
| 94 |
|
| 95 |
-
output_dir.mkdir(parents=True, exist_ok=True)
|
| 96 |
|
| 97 |
# load a pretrained model
|
| 98 |
net: MMAudio = get_my_mmaudio(model.model_name).to(device, dtype).eval()
|
| 99 |
####model.model_path = "/ailab-train/speech/zhanghaomin/codes3/MMAudio-main/output/exp_1/exp_1_shadow.pth"
|
|
|
|
|
|
|
| 100 |
net.load_weights(torch.load(model.model_path, map_location=device, weights_only=True))
|
| 101 |
log.info(f'Loaded weights from {model.model_path}')
|
| 102 |
|
| 103 |
# misc setup
|
| 104 |
rng = torch.Generator(device=device)
|
| 105 |
rng.manual_seed(seed)
|
| 106 |
-
fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=num_steps)
|
| 107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
feature_utils = FeaturesUtils(tod_vae_ckpt=model.vae_path,
|
| 109 |
synchformer_ckpt=model.synchformer_ckpt,
|
| 110 |
enable_conditions=True,
|
|
@@ -112,7 +119,19 @@ def main():
|
|
| 112 |
bigvgan_vocoder_ckpt=model.bigvgan_16k_path,
|
| 113 |
need_vae_encoder=False)
|
| 114 |
feature_utils = feature_utils.to(device, dtype).eval()
|
|
|
|
|
|
|
| 115 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
####test_scp = "/ailab-train/speech/zhanghaomin/animation_dataset_v2a/test.scp"
|
| 117 |
#test_scp = "/ailab-train/speech/zhanghaomin/datas/v2cdata/tmp.scp"
|
| 118 |
#test_scp = "/ailab-train/speech/zhanghaomin/datas/v2cdata/test.scp"
|
|
|
|
| 29 |
|
| 30 |
|
| 31 |
@torch.inference_mode()
|
| 32 |
+
def v2a_load():
|
| 33 |
setup_eval_logging()
|
| 34 |
|
| 35 |
parser = ArgumentParser()
|
| 36 |
parser.add_argument('--variant',
|
| 37 |
type=str,
|
| 38 |
+
#default='large_44k',
|
| 39 |
#default='small_16k',
|
| 40 |
#default='medium_44k',
|
| 41 |
+
default='small_44k',
|
| 42 |
help='small_16k, small_44k, medium_44k, large_44k, large_44k_v2')
|
| 43 |
parser.add_argument('--video', type=Path, help='Path to the video file')
|
| 44 |
parser.add_argument('--prompt', type=str, help='Input prompt', default='')
|
|
|
|
| 64 |
if args.variant not in all_model_cfg:
|
| 65 |
raise ValueError(f'Unknown model variant: {args.variant}')
|
| 66 |
model: ModelConfig = all_model_cfg[args.variant]
|
| 67 |
+
#model.download_if_needed()
|
| 68 |
seq_cfg = model.seq_cfg
|
| 69 |
|
| 70 |
+
#if args.video:
|
| 71 |
+
# #video_path: Path = Path(args.video).expanduser()
|
| 72 |
+
# video_path = args.video
|
| 73 |
+
#else:
|
| 74 |
+
# video_path = None
|
| 75 |
+
#prompt: str = args.prompt
|
| 76 |
+
#negative_prompt: str = args.negative_prompt
|
| 77 |
+
#output_dir: str = args.output.expanduser()
|
| 78 |
seed: int = args.seed
|
| 79 |
+
#num_steps: int = args.num_steps
|
| 80 |
duration: float = args.duration
|
| 81 |
cfg_strength: float = args.cfg_strength
|
| 82 |
skip_video_composite: bool = args.skip_video_composite
|
| 83 |
+
#mask_away_clip: bool = args.mask_away_clip
|
| 84 |
|
| 85 |
device = 'cpu'
|
| 86 |
if torch.cuda.is_available():
|
|
|
|
| 92 |
print("full_precision", args.full_precision)
|
| 93 |
dtype = torch.float32 if args.full_precision else torch.bfloat16
|
| 94 |
|
| 95 |
+
#output_dir.mkdir(parents=True, exist_ok=True)
|
| 96 |
|
| 97 |
# load a pretrained model
|
| 98 |
net: MMAudio = get_my_mmaudio(model.model_name).to(device, dtype).eval()
|
| 99 |
####model.model_path = "/ailab-train/speech/zhanghaomin/codes3/MMAudio-main/output/exp_1/exp_1_shadow.pth"
|
| 100 |
+
model.model_path = "MMAudio" / model.model_path
|
| 101 |
+
print("model.model_path", model.model_path)
|
| 102 |
net.load_weights(torch.load(model.model_path, map_location=device, weights_only=True))
|
| 103 |
log.info(f'Loaded weights from {model.model_path}')
|
| 104 |
|
| 105 |
# misc setup
|
| 106 |
rng = torch.Generator(device=device)
|
| 107 |
rng.manual_seed(seed)
|
| 108 |
+
#fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=num_steps)
|
| 109 |
|
| 110 |
+
model.vae_path = "MMAudio" / model.vae_path
|
| 111 |
+
model.synchformer_ckpt = "MMAudio" / model.synchformer_ckpt
|
| 112 |
+
print("model.vae_path", model.vae_path)
|
| 113 |
+
print("model.synchformer_ckpt", model.synchformer_ckpt)
|
| 114 |
+
print("model.bigvgan_16k_path", model.bigvgan_16k_path)
|
| 115 |
feature_utils = FeaturesUtils(tod_vae_ckpt=model.vae_path,
|
| 116 |
synchformer_ckpt=model.synchformer_ckpt,
|
| 117 |
enable_conditions=True,
|
|
|
|
| 119 |
bigvgan_vocoder_ckpt=model.bigvgan_16k_path,
|
| 120 |
need_vae_encoder=False)
|
| 121 |
feature_utils = feature_utils.to(device, dtype).eval()
|
| 122 |
+
return net, seq_cfg, rng, feature_utils, args
|
| 123 |
+
|
| 124 |
|
| 125 |
+
@torch.inference_mode()
|
| 126 |
+
def v2a_infer(output_dir, video_path, prompt, num_steps, loaded):
|
| 127 |
+
net, seq_cfg, rng, feature_utils, args = loaded
|
| 128 |
+
negative_prompt = ""
|
| 129 |
+
duration = args.duration
|
| 130 |
+
cfg_strength = args.cfg_strength
|
| 131 |
+
skip_video_composite = args.skip_video_composite
|
| 132 |
+
mask_away_clip = args.mask_away_clip
|
| 133 |
+
fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=num_steps)
|
| 134 |
+
|
| 135 |
####test_scp = "/ailab-train/speech/zhanghaomin/animation_dataset_v2a/test.scp"
|
| 136 |
#test_scp = "/ailab-train/speech/zhanghaomin/datas/v2cdata/tmp.scp"
|
| 137 |
#test_scp = "/ailab-train/speech/zhanghaomin/datas/v2cdata/test.scp"
|
app.py
CHANGED
|
@@ -22,18 +22,31 @@ import numpy as np
|
|
| 22 |
|
| 23 |
from huggingface_hub import hf_hub_download
|
| 24 |
|
| 25 |
-
|
|
|
|
| 26 |
|
| 27 |
-
if not os.path.exists(model_path):
|
| 28 |
-
|
| 29 |
|
| 30 |
-
file_path = hf_hub_download(repo_id="lshzhm/DeepAudio-V1", filename="v2c_s44.pt", local_dir=model_path)
|
| 31 |
|
| 32 |
-
print(f"Model saved at: {file_path}")
|
| 33 |
|
| 34 |
log = logging.getLogger()
|
| 35 |
|
| 36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
#@spaces.GPU(duration=120)
|
| 38 |
def video_to_audio_and_speech(video: gr.Video, prompt: str, v2a_num_steps: int, text: str, audio_prompt: gr.Audio, text_prompt: str, v2s_num_steps: int):
|
| 39 |
|
|
@@ -64,18 +77,26 @@ def video_to_audio_and_speech(video: gr.Video, prompt: str, v2a_num_steps: int,
|
|
| 64 |
else:
|
| 65 |
shutil.copy(audio_prompt, audio_p_path)
|
| 66 |
|
| 67 |
-
if prompt == "":
|
| 68 |
-
|
| 69 |
-
else:
|
| 70 |
-
|
| 71 |
-
print("v2a command", command)
|
| 72 |
-
os.system(command)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
video_gen = video_save_path[:-4]+".mp4.gen.mp4"
|
| 75 |
|
| 76 |
-
command = "python ./F5-TTS/src/f5_tts/infer/infer_cli_test.py --output_dir %s --start 0 --end 1 --ckpt_file ./F5-TTS/ckpts/v2c/v2c_s44.pt --v2a_path %s --wav_p %s --txt_p \"%s\" --video %s --v2a_wav %s --txt \"%s\" --nfe_step %d" % (output_dir, output_dir, audio_p_path, text_prompt, video_save_path, video_save_path[:-4]+".flac", text, v2s_num_steps)
|
| 77 |
-
print("v2s command", command, video_gen)
|
| 78 |
-
os.system(command)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
|
| 80 |
return video_save_path, video_gen
|
| 81 |
|
|
|
|
| 22 |
|
| 23 |
from huggingface_hub import hf_hub_download
|
| 24 |
|
| 25 |
+
if True:
|
| 26 |
+
model_path = "./F5-TTS/ckpts/v2c/"
|
| 27 |
|
| 28 |
+
if not os.path.exists(model_path):
|
| 29 |
+
os.makedirs(model_path)
|
| 30 |
|
| 31 |
+
file_path = hf_hub_download(repo_id="lshzhm/DeepAudio-V1", filename="v2c_s44.pt", local_dir=model_path)
|
| 32 |
|
| 33 |
+
print(f"Model saved at: {file_path}")
|
| 34 |
|
| 35 |
log = logging.getLogger()
|
| 36 |
|
| 37 |
|
| 38 |
+
import sys
|
| 39 |
+
sys.path.insert(0, "./F5-TTS/src/")
|
| 40 |
+
from f5_tts.infer.infer_cli_test import v2s_infer
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
import sys
|
| 44 |
+
sys.path.insert(0, "./MMAudio/")
|
| 45 |
+
from demo import v2a_load, v2a_infer
|
| 46 |
+
|
| 47 |
+
v2a_loaded = v2a_load()
|
| 48 |
+
|
| 49 |
+
|
| 50 |
#@spaces.GPU(duration=120)
|
| 51 |
def video_to_audio_and_speech(video: gr.Video, prompt: str, v2a_num_steps: int, text: str, audio_prompt: gr.Audio, text_prompt: str, v2s_num_steps: int):
|
| 52 |
|
|
|
|
| 77 |
else:
|
| 78 |
shutil.copy(audio_prompt, audio_p_path)
|
| 79 |
|
| 80 |
+
#if prompt == "":
|
| 81 |
+
# command = "cd ./MMAudio; python ./demo.py --variant small_44k --output %s --video %s --calc_energy 1 --num_steps %d" % (output_dir, video_path, v2a_num_steps)
|
| 82 |
+
#else:
|
| 83 |
+
# command = "cd ./MMAudio; python ./demo.py --variant small_44k --output %s --video %s --prompt %s --calc_energy 1 --num_steps %d" % (output_dir, video_path, prompt, v2a_num_steps)
|
| 84 |
+
#print("v2a command", command)
|
| 85 |
+
#os.system(command)
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
v2a_infer(output_dir, video_path, prompt, v2a_num_steps, v2a_loaded)
|
| 89 |
+
|
| 90 |
|
| 91 |
video_gen = video_save_path[:-4]+".mp4.gen.mp4"
|
| 92 |
|
| 93 |
+
#command = "python ./F5-TTS/src/f5_tts/infer/infer_cli_test.py --output_dir %s --start 0 --end 1 --ckpt_file ./F5-TTS/ckpts/v2c/v2c_s44.pt --v2a_path %s --wav_p %s --txt_p \"%s\" --video %s --v2a_wav %s --txt \"%s\" --nfe_step %d" % (output_dir, output_dir, audio_p_path, text_prompt, video_save_path, video_save_path[:-4]+".flac", text, v2s_num_steps)
|
| 94 |
+
#print("v2s command", command, video_gen)
|
| 95 |
+
#os.system(command)
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
v2s_infer(output_dir, output_dir, audio_p_path, text_prompt, video_save_path, video_save_path[:-4]+".flac", text, v2s_num_steps)
|
| 99 |
+
|
| 100 |
|
| 101 |
return video_save_path, video_gen
|
| 102 |
|