Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,33 +1,188 @@
|
|
| 1 |
-
import os
|
| 2 |
-
os.environ.setdefault("HF_HUB_ENABLE_HF_TRANSFER", "1") # optional speed-up
|
| 3 |
-
|
| 4 |
import gradio as gr
|
| 5 |
import torch
|
| 6 |
-
from transformers import
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
|
|
|
| 10 |
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
| 14 |
trust_remote_code=True,
|
| 15 |
-
|
| 16 |
-
torch_dtype=dtype,
|
| 17 |
)
|
|
|
|
| 18 |
|
| 19 |
-
def ocr_image(image):
|
| 20 |
-
out = ocr(image)
|
| 21 |
-
# pipeline returns a list of dicts like [{'generated_text': '...'}]
|
| 22 |
-
return out[0]["generated_text"] if out else ""
|
| 23 |
-
|
| 24 |
-
demo = gr.Interface(
|
| 25 |
-
fn=ocr_image,
|
| 26 |
-
inputs=gr.Image(type="pil"),
|
| 27 |
-
outputs="text",
|
| 28 |
-
title="DeepSeek OCR",
|
| 29 |
-
description="Upload an image and get extracted text using DeepSeek-OCR."
|
| 30 |
-
)
|
| 31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
if __name__ == "__main__":
|
|
|
|
| 33 |
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
+
from transformers import AutoModel, AutoTokenizer
|
| 4 |
+
import spaces
|
| 5 |
+
import os
|
| 6 |
+
import tempfile
|
| 7 |
+
from PIL import Image
|
| 8 |
|
| 9 |
+
# Load model and tokenizer
|
| 10 |
+
model_name = "deepseek-ai/DeepSeek-OCR"
|
| 11 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 12 |
+
model = AutoModel.from_pretrained(
|
| 13 |
+
model_name,
|
| 14 |
+
_attn_implementation="flash_attention_2",
|
| 15 |
trust_remote_code=True,
|
| 16 |
+
use_safetensors=True,
|
|
|
|
| 17 |
)
|
| 18 |
+
model = model.eval()
|
| 19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
+
@spaces.GPU
|
| 22 |
+
def process_image(image, model_size, task_type, is_eval_mode):
|
| 23 |
+
"""
|
| 24 |
+
Process image with DeepSeek-OCR and return multiple output formats.
|
| 25 |
+
Args:
|
| 26 |
+
image: PIL Image or file path
|
| 27 |
+
model_size: Model size configuration
|
| 28 |
+
task_type: OCR task type
|
| 29 |
+
Returns:
|
| 30 |
+
A tuple containing:
|
| 31 |
+
- Path to the image with bounding boxes.
|
| 32 |
+
- The content of the markdown result file.
|
| 33 |
+
- The plain text OCR result.
|
| 34 |
+
"""
|
| 35 |
+
if image is None:
|
| 36 |
+
return None, "Please upload an image first.", "Please upload an image first."
|
| 37 |
+
|
| 38 |
+
model_gpu = model.cuda().to(torch.bfloat16)
|
| 39 |
+
|
| 40 |
+
# Create temporary directory for output
|
| 41 |
+
with tempfile.TemporaryDirectory() as output_path:
|
| 42 |
+
# Set prompt based on task type
|
| 43 |
+
if task_type == "Free OCR":
|
| 44 |
+
prompt = "<image>\nFree OCR. "
|
| 45 |
+
elif task_type == "Convert to Markdown":
|
| 46 |
+
prompt = "<image>\n<|grounding|>Convert the document to markdown. "
|
| 47 |
+
else:
|
| 48 |
+
prompt = "<image>\nFree OCR. "
|
| 49 |
+
|
| 50 |
+
# Save uploaded image temporarily
|
| 51 |
+
temp_image_path = os.path.join(output_path, "temp_image.jpg")
|
| 52 |
+
image.save(temp_image_path)
|
| 53 |
+
|
| 54 |
+
# Configure model size parameters
|
| 55 |
+
size_configs = {
|
| 56 |
+
"Tiny": {"base_size": 512, "image_size": 512, "crop_mode": False},
|
| 57 |
+
"Small": {"base_size": 640, "image_size": 640, "crop_mode": False},
|
| 58 |
+
"Base": {"base_size": 1024, "image_size": 1024, "crop_mode": False},
|
| 59 |
+
"Large": {"base_size": 1280, "image_size": 1280, "crop_mode": False},
|
| 60 |
+
"Gundam (Recommended)": {
|
| 61 |
+
"base_size": 1024,
|
| 62 |
+
"image_size": 640,
|
| 63 |
+
"crop_mode": True,
|
| 64 |
+
},
|
| 65 |
+
}
|
| 66 |
+
|
| 67 |
+
config = size_configs.get(model_size, size_configs["Gundam (Recommended)"])
|
| 68 |
+
|
| 69 |
+
# Run inference
|
| 70 |
+
plain_text_result = model_gpu.infer(
|
| 71 |
+
tokenizer,
|
| 72 |
+
prompt=prompt,
|
| 73 |
+
image_file=temp_image_path,
|
| 74 |
+
output_path=output_path,
|
| 75 |
+
base_size=config["base_size"],
|
| 76 |
+
image_size=config["image_size"],
|
| 77 |
+
crop_mode=config["crop_mode"],
|
| 78 |
+
save_results=True, # Ensure results are saved to disk
|
| 79 |
+
test_compress=True,
|
| 80 |
+
eval_mode=is_eval_mode,
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
# Define paths for the generated files
|
| 84 |
+
image_result_path = os.path.join(output_path, "result_with_boxes.jpg")
|
| 85 |
+
markdown_result_path = os.path.join(output_path, "result.mmd")
|
| 86 |
+
|
| 87 |
+
# Read the markdown file content if it exists
|
| 88 |
+
markdown_content = ""
|
| 89 |
+
if os.path.exists(markdown_result_path):
|
| 90 |
+
with open(markdown_result_path, "r", encoding="utf-8") as f:
|
| 91 |
+
markdown_content = f.read()
|
| 92 |
+
else:
|
| 93 |
+
markdown_content = "Markdown result was not generated. This is expected for 'Free OCR' task."
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
result_image = None
|
| 97 |
+
# Check if the annotated image exists
|
| 98 |
+
if os.path.exists(image_result_path):
|
| 99 |
+
result_image = Image.open(image_result_path)
|
| 100 |
+
result_image.load()
|
| 101 |
+
|
| 102 |
+
# Return all three results. Gradio will handle the temporary file path for the image.
|
| 103 |
+
text_result = plain_text_result if plain_text_result else markdown_content
|
| 104 |
+
return result_image, markdown_content, text_result
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
# Create Gradio interface
|
| 108 |
+
with gr.Blocks(title="DeepSeek-OCR", theme=gr.themes.Soft()) as demo:
|
| 109 |
+
gr.Markdown(
|
| 110 |
+
"""
|
| 111 |
+
# DeepSeek-OCR Demo
|
| 112 |
+
|
| 113 |
+
Upload an image to extract text using DeepSeek-OCR model.
|
| 114 |
+
Supports various document types and handwriting recognition.
|
| 115 |
+
|
| 116 |
+
**Model Sizes:**
|
| 117 |
+
- **Tiny**: Fastest, lower accuracy (512x512)
|
| 118 |
+
- **Small**: Fast, good accuracy (640x640)
|
| 119 |
+
- **Base**: Balanced performance (1024x1024)
|
| 120 |
+
- **Large**: Best accuracy, slower (1280x1280)
|
| 121 |
+
- **Gundam (Recommended)**: Optimized for documents (1024 base, 640 image, crop mode)
|
| 122 |
+
"""
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
with gr.Row():
|
| 126 |
+
with gr.Column(scale=1):
|
| 127 |
+
image_input = gr.Image(
|
| 128 |
+
type="pil", label="Upload Image", sources=["upload", "clipboard"]
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
+
model_size = gr.Dropdown(
|
| 132 |
+
choices=["Tiny", "Small", "Base", "Large", "Gundam (Recommended)"],
|
| 133 |
+
value="Gundam (Recommended)",
|
| 134 |
+
label="Model Size",
|
| 135 |
+
)
|
| 136 |
+
|
| 137 |
+
task_type = gr.Dropdown(
|
| 138 |
+
choices=["Free OCR", "Convert to Markdown"],
|
| 139 |
+
value="Convert to Markdown",
|
| 140 |
+
label="Task Type",
|
| 141 |
+
)
|
| 142 |
+
|
| 143 |
+
eval_mode_checkbox = gr.Checkbox(
|
| 144 |
+
value=False,
|
| 145 |
+
label="Enable Evaluation Mode",
|
| 146 |
+
info="Returns only plain text, but might be faster. Uncheck to get annotated image and markdown.",
|
| 147 |
+
)
|
| 148 |
+
|
| 149 |
+
submit_btn = gr.Button("Process Image", variant="primary")
|
| 150 |
+
|
| 151 |
+
with gr.Column(scale=2):
|
| 152 |
+
with gr.Tabs():
|
| 153 |
+
with gr.TabItem("Annotated Image"):
|
| 154 |
+
output_image = gr.Image(
|
| 155 |
+
interactive=False
|
| 156 |
+
)
|
| 157 |
+
with gr.TabItem("Markdown Preview"):
|
| 158 |
+
output_markdown = gr.Markdown()
|
| 159 |
+
with gr.TabItem("Markdown Source(or Eval Output)"):
|
| 160 |
+
output_text = gr.Textbox(
|
| 161 |
+
lines=20,
|
| 162 |
+
show_copy_button=True,
|
| 163 |
+
interactive=False,
|
| 164 |
+
)
|
| 165 |
+
|
| 166 |
+
# Examples
|
| 167 |
+
gr.Examples(
|
| 168 |
+
examples=[
|
| 169 |
+
["examples/math.png", "Gundam (Recommended)", "Convert to Markdown"],
|
| 170 |
+
["examples/receipt.jpg", "Base", "Convert to Markdown"],
|
| 171 |
+
["examples/receipt-2.png", "Base", "Convert to Markdown"],
|
| 172 |
+
],
|
| 173 |
+
inputs=[image_input, model_size, task_type, eval_mode_checkbox],
|
| 174 |
+
outputs=[output_image, output_markdown, output_text],
|
| 175 |
+
fn=process_image,
|
| 176 |
+
cache_examples=True,
|
| 177 |
+
)
|
| 178 |
+
|
| 179 |
+
submit_btn.click(
|
| 180 |
+
fn=process_image,
|
| 181 |
+
inputs=[image_input, model_size, task_type, eval_mode_checkbox],
|
| 182 |
+
outputs=[output_image, output_markdown, output_text],
|
| 183 |
+
)
|
| 184 |
+
|
| 185 |
+
# Launch the app
|
| 186 |
if __name__ == "__main__":
|
| 187 |
+
demo.queue(max_size=20)
|
| 188 |
demo.launch()
|