Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,6 +5,7 @@ import io
|
|
| 5 |
import base64
|
| 6 |
import re
|
| 7 |
import tempfile
|
|
|
|
| 8 |
|
| 9 |
import gradio as gr
|
| 10 |
import torch
|
|
@@ -76,32 +77,28 @@ def _img_to_data_uri(pil_img, fmt="PNG"):
|
|
| 76 |
pil_img.save(buf, format=fmt)
|
| 77 |
return f"data:image/{fmt.lower()};base64,{base64.b64encode(buf.getvalue()).decode()}"
|
| 78 |
|
| 79 |
-
def _df_to_chart_data_uri(df):
|
| 80 |
"""Render a simple chart from a DataFrame using matplotlib (single figure, no explicit colors)."""
|
| 81 |
if not _HAS_MPL or not _HAS_PANDAS:
|
| 82 |
return None
|
| 83 |
-
# Heuristics: first column is x-axis if non-numeric or unique labels; otherwise use index
|
| 84 |
try:
|
|
|
|
| 85 |
plt.figure() # one plot per chart (no subplots; no explicit colors)
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
df_plot =
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
if df_plot.shape[1] <= 5:
|
| 99 |
-
df_plot.plot(kind="bar")
|
| 100 |
-
else:
|
| 101 |
-
df_plot.plot()
|
| 102 |
else:
|
| 103 |
-
|
| 104 |
-
|
| 105 |
buf = io.BytesIO()
|
| 106 |
plt.tight_layout()
|
| 107 |
plt.savefig(buf, format="PNG", dpi=160)
|
|
@@ -110,7 +107,7 @@ def _df_to_chart_data_uri(df):
|
|
| 110 |
except Exception:
|
| 111 |
return None
|
| 112 |
|
| 113 |
-
def _html_table_to_df(html):
|
| 114 |
"""Pick the largest <table> from HTML; return as DataFrame or None."""
|
| 115 |
if not _HAS_READ_HTML:
|
| 116 |
return None
|
|
@@ -118,16 +115,91 @@ def _html_table_to_df(html):
|
|
| 118 |
tables = pd.read_html(html) # list[DataFrame]
|
| 119 |
if not tables:
|
| 120 |
return None
|
| 121 |
-
# choose the table with max cells
|
| 122 |
return max(tables, key=lambda t: (t.shape[0] * t.shape[1]))
|
| 123 |
except Exception:
|
| 124 |
return None
|
| 125 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
_SMILES_REGEX = re.compile(r"(?:SMILES|Smiles)\s*[::]\s*([A-Za-z0-9@\[\]\(\)\+\-\=\\\/%]+)")
|
| 127 |
|
| 128 |
-
def _render_smiles_block(text):
|
| 129 |
"""Find SMILES in text, render with RDKit, return list[(title, data_uri)]."""
|
| 130 |
-
assets = []
|
| 131 |
if not _HAS_RDKIT:
|
| 132 |
return assets
|
| 133 |
try:
|
|
@@ -142,16 +214,52 @@ def _render_smiles_block(text):
|
|
| 142 |
pass
|
| 143 |
return assets
|
| 144 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
|
| 146 |
# ===== Inference Function =====
|
| 147 |
@spaces.GPU
|
| 148 |
def process_image(image, model_size, task_type, ref_text, is_eval_mode, deep_parse=True):
|
| 149 |
"""
|
| 150 |
-
Process image with DeepSeek-OCR and return annotated image, markdown, and text.
|
| 151 |
-
Adds deep parsing for figures to render charts (from
|
| 152 |
"""
|
| 153 |
if image is None:
|
| 154 |
-
return None, "Please upload an image first.", "Please upload an image first."
|
| 155 |
|
| 156 |
# handle CPU/GPU
|
| 157 |
if torch.cuda.is_available():
|
|
@@ -241,13 +349,10 @@ def process_image(image, model_size, task_type, ref_text, is_eval_mode, deep_par
|
|
| 241 |
result_image = image_with_bboxes
|
| 242 |
|
| 243 |
# ===== DEEP PARSING & RENDERING (secondary pass) =====
|
| 244 |
-
# Enable when:
|
| 245 |
-
# - Task is Convert to Markdown (common flow), or
|
| 246 |
-
# - Task is Parse Figure (primary content already requested), or
|
| 247 |
-
# - User checked deep_parse (default True)
|
| 248 |
should_run_deep = deep_parse and task_type in {"📄 Convert to Markdown", "📈 Parse Figure"}
|
| 249 |
|
| 250 |
-
deep_assets = [] #
|
|
|
|
| 251 |
|
| 252 |
def _run_deep_parse(prompt_text):
|
| 253 |
with torch.no_grad():
|
|
@@ -261,51 +366,60 @@ def process_image(image, model_size, task_type, ref_text, is_eval_mode, deep_par
|
|
| 261 |
crop_mode=config["crop_mode"],
|
| 262 |
save_results=False,
|
| 263 |
test_compress=True,
|
| 264 |
-
eval_mode=True,
|
| 265 |
)
|
| 266 |
|
| 267 |
-
parsed_text = ""
|
| 268 |
if should_run_deep:
|
| 269 |
try:
|
| 270 |
parsed_text = _run_deep_parse("<image>\nParse the figure.") or ""
|
| 271 |
except Exception:
|
| 272 |
parsed_text = ""
|
| 273 |
|
| 274 |
-
# 1)
|
|
|
|
| 275 |
if "<table" in parsed_text.lower() and _HAS_PANDAS:
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 305 |
|
| 306 |
# ===== Decide what to show in the "Markdown Source (or Eval Output)" tab =====
|
| 307 |
text_result = plain_text_result if plain_text_result else markdown_content
|
| 308 |
-
|
|
|
|
|
|
|
| 309 |
|
| 310 |
|
| 311 |
# ===== Theme and UI =====
|
|
@@ -393,6 +507,8 @@ with gr.Blocks(
|
|
| 393 |
output_image = gr.Image(interactive=False)
|
| 394 |
with gr.TabItem("Markdown Preview"):
|
| 395 |
output_markdown = gr.Markdown()
|
|
|
|
|
|
|
| 396 |
with gr.TabItem("Markdown Source (or Eval Output)"):
|
| 397 |
output_text = gr.Textbox(
|
| 398 |
lines=20, show_copy_button=True, interactive=False
|
|
@@ -411,7 +527,7 @@ with gr.Blocks(
|
|
| 411 |
submit_btn.click(
|
| 412 |
fn=process_image,
|
| 413 |
inputs=[image_input, model_size, task_type, ref_text_input, eval_mode_checkbox, deep_parse_checkbox],
|
| 414 |
-
outputs=[output_image, output_markdown, output_text],
|
| 415 |
)
|
| 416 |
|
| 417 |
|
|
|
|
| 5 |
import base64
|
| 6 |
import re
|
| 7 |
import tempfile
|
| 8 |
+
from typing import List, Tuple, Optional
|
| 9 |
|
| 10 |
import gradio as gr
|
| 11 |
import torch
|
|
|
|
| 77 |
pil_img.save(buf, format=fmt)
|
| 78 |
return f"data:image/{fmt.lower()};base64,{base64.b64encode(buf.getvalue()).decode()}"
|
| 79 |
|
| 80 |
+
def _df_to_chart_data_uri(df: "pd.DataFrame") -> Optional[str]:
|
| 81 |
"""Render a simple chart from a DataFrame using matplotlib (single figure, no explicit colors)."""
|
| 82 |
if not _HAS_MPL or not _HAS_PANDAS:
|
| 83 |
return None
|
|
|
|
| 84 |
try:
|
| 85 |
+
# basic heuristics: first col is x-axis if non-numeric-ish
|
| 86 |
plt.figure() # one plot per chart (no subplots; no explicit colors)
|
| 87 |
+
df_plot = df.copy()
|
| 88 |
+
|
| 89 |
+
# If first column is non-numeric, set it as index
|
| 90 |
+
if df_plot.shape[1] >= 2:
|
| 91 |
+
xcol = df_plot.columns[0]
|
| 92 |
+
numeric_x = pd.to_numeric(df_plot[xcol], errors="coerce")
|
| 93 |
+
if numeric_x.isna().any():
|
| 94 |
+
df_plot = df_plot.set_index(xcol)
|
| 95 |
+
|
| 96 |
+
# bar for <=5 series, else line
|
| 97 |
+
if df_plot.shape[1] <= 5:
|
| 98 |
+
df_plot.plot(kind="bar")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
else:
|
| 100 |
+
df_plot.plot()
|
| 101 |
+
|
| 102 |
buf = io.BytesIO()
|
| 103 |
plt.tight_layout()
|
| 104 |
plt.savefig(buf, format="PNG", dpi=160)
|
|
|
|
| 107 |
except Exception:
|
| 108 |
return None
|
| 109 |
|
| 110 |
+
def _html_table_to_df(html: str) -> Optional["pd.DataFrame"]:
|
| 111 |
"""Pick the largest <table> from HTML; return as DataFrame or None."""
|
| 112 |
if not _HAS_READ_HTML:
|
| 113 |
return None
|
|
|
|
| 115 |
tables = pd.read_html(html) # list[DataFrame]
|
| 116 |
if not tables:
|
| 117 |
return None
|
|
|
|
| 118 |
return max(tables, key=lambda t: (t.shape[0] * t.shape[1]))
|
| 119 |
except Exception:
|
| 120 |
return None
|
| 121 |
|
| 122 |
+
# --- Fallbacks when we don't get HTML tables ---
|
| 123 |
+
_MD_TABLE_BLOCK_RE = re.compile(
|
| 124 |
+
r"(?:^\s*\|.+\|\s*$\n^\s*\|(?:\s*:?-+:?\s*\|)+\s*$\n(?:^\s*\|.+\|\s*$\n?)+)",
|
| 125 |
+
flags=re.MULTILINE
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
def _md_table_to_df(md_text: str) -> Optional["pd.DataFrame"]:
|
| 129 |
+
"""Parse the first Markdown pipe-table into a DataFrame."""
|
| 130 |
+
if not _HAS_PANDAS:
|
| 131 |
+
return None
|
| 132 |
+
try:
|
| 133 |
+
m = _MD_TABLE_BLOCK_RE.search(md_text or "")
|
| 134 |
+
if not m:
|
| 135 |
+
return None
|
| 136 |
+
block = m.group(0).strip()
|
| 137 |
+
# Normalize: remove alignment row, split by pipes
|
| 138 |
+
lines = [ln.strip() for ln in block.splitlines() if ln.strip()]
|
| 139 |
+
if len(lines) < 2:
|
| 140 |
+
return None
|
| 141 |
+
header = [h.strip() for h in lines[0].strip("|").split("|")]
|
| 142 |
+
align_or_sep = lines[1]
|
| 143 |
+
data_lines = lines[2:] if re.search(r":?-+:?", align_or_sep) else lines[1:]
|
| 144 |
+
rows = []
|
| 145 |
+
for ln in data_lines:
|
| 146 |
+
parts = [p.strip() for p in ln.strip("|").split("|")]
|
| 147 |
+
if len(parts) == len(header):
|
| 148 |
+
rows.append(parts)
|
| 149 |
+
if not rows:
|
| 150 |
+
return None
|
| 151 |
+
df = pd.DataFrame(rows, columns=header)
|
| 152 |
+
# try cast numerics where possible
|
| 153 |
+
for c in df.columns:
|
| 154 |
+
df[c] = pd.to_numeric(df[c], errors="ignore")
|
| 155 |
+
return df
|
| 156 |
+
except Exception:
|
| 157 |
+
return None
|
| 158 |
+
|
| 159 |
+
def _numeric_block_to_df(text: str) -> Optional["pd.DataFrame"]:
|
| 160 |
+
"""Very rough fallback: parse whitespace/csv-ish numeric blocks into a DataFrame."""
|
| 161 |
+
if not _HAS_PANDAS:
|
| 162 |
+
return None
|
| 163 |
+
# grab the largest numeric-ish block: lines containing numbers and separators
|
| 164 |
+
blocks = []
|
| 165 |
+
cur = []
|
| 166 |
+
for ln in (text or "").splitlines():
|
| 167 |
+
if re.search(r"\d", ln) and ("," in ln or "\t" in ln or " " in ln or "|" in ln):
|
| 168 |
+
cur.append(ln)
|
| 169 |
+
else:
|
| 170 |
+
if cur:
|
| 171 |
+
blocks.append("\n".join(cur))
|
| 172 |
+
cur = []
|
| 173 |
+
if cur:
|
| 174 |
+
blocks.append("\n".join(cur))
|
| 175 |
+
if not blocks:
|
| 176 |
+
return None
|
| 177 |
+
block = max(blocks, key=len)
|
| 178 |
+
|
| 179 |
+
# try CSV first
|
| 180 |
+
try:
|
| 181 |
+
from io import StringIO
|
| 182 |
+
df = pd.read_csv(StringIO(block))
|
| 183 |
+
if df.shape[1] >= 2:
|
| 184 |
+
return df
|
| 185 |
+
except Exception:
|
| 186 |
+
pass
|
| 187 |
+
|
| 188 |
+
# try whitespace sep
|
| 189 |
+
try:
|
| 190 |
+
from io import StringIO
|
| 191 |
+
df = pd.read_csv(StringIO(block), sep=r"\s+", engine="python")
|
| 192 |
+
if df.shape[1] >= 2:
|
| 193 |
+
return df
|
| 194 |
+
except Exception:
|
| 195 |
+
pass
|
| 196 |
+
return None
|
| 197 |
+
|
| 198 |
_SMILES_REGEX = re.compile(r"(?:SMILES|Smiles)\s*[::]\s*([A-Za-z0-9@\[\]\(\)\+\-\=\\\/%]+)")
|
| 199 |
|
| 200 |
+
def _render_smiles_block(text: str) -> List[Tuple[str, str]]:
|
| 201 |
"""Find SMILES in text, render with RDKit, return list[(title, data_uri)]."""
|
| 202 |
+
assets: List[Tuple[str, str]] = []
|
| 203 |
if not _HAS_RDKIT:
|
| 204 |
return assets
|
| 205 |
try:
|
|
|
|
| 214 |
pass
|
| 215 |
return assets
|
| 216 |
|
| 217 |
+
def _assets_to_markdown_section(assets: List[Tuple[str, str]], parsed_text: str) -> str:
|
| 218 |
+
out = ["\n\n---\n\n### Parsed Figures (auto-rendered)\n"]
|
| 219 |
+
if not assets and not parsed_text.strip():
|
| 220 |
+
out.append("_No deep-parsed content detected._\n")
|
| 221 |
+
return "".join(out)
|
| 222 |
+
|
| 223 |
+
for title, data_uri in assets:
|
| 224 |
+
if data_uri:
|
| 225 |
+
out.append(f"**{title}**\n\n\n\n")
|
| 226 |
+
# Always expose a short snippet so you can see what the model returned
|
| 227 |
+
snippet = parsed_text.strip()
|
| 228 |
+
if len(snippet) > 4000:
|
| 229 |
+
snippet = snippet[:4000] + "\n<!-- truncated -->"
|
| 230 |
+
if snippet:
|
| 231 |
+
out.append("**Raw deep-parse output (snippet)**\n\n```text\n")
|
| 232 |
+
out.append(snippet)
|
| 233 |
+
out.append("\n```\n")
|
| 234 |
+
return "".join(out)
|
| 235 |
+
|
| 236 |
+
def _assets_to_html_section(assets: List[Tuple[str, str]], parsed_text: str) -> str:
|
| 237 |
+
"""Simple HTML block for the HTML Preview tab; ensures images render even if Markdown sanitizer blocks data URIs."""
|
| 238 |
+
parts = [
|
| 239 |
+
'<section class="parsed-figures"><h3>Parsed Figures (auto-rendered)</h3>'
|
| 240 |
+
]
|
| 241 |
+
if not assets and not parsed_text.strip():
|
| 242 |
+
parts.append("<p><em>No deep-parsed content detected.</em></p></section>")
|
| 243 |
+
return "".join(parts)
|
| 244 |
+
for title, data_uri in assets:
|
| 245 |
+
if data_uri:
|
| 246 |
+
parts.append(f'<figure><figcaption><strong>{title}</strong></figcaption><img style="max-width:100%;height:auto" src="{data_uri}"/></figure>')
|
| 247 |
+
if parsed_text.strip():
|
| 248 |
+
safe = parsed_text.replace("&", "&").replace("<", "<").replace(">", ">")
|
| 249 |
+
parts.append(f"<details><summary>Raw deep-parse output (snippet)</summary><pre>{safe[:8000]}</pre></details>")
|
| 250 |
+
parts.append("</section>")
|
| 251 |
+
return "".join(parts)
|
| 252 |
+
|
| 253 |
|
| 254 |
# ===== Inference Function =====
|
| 255 |
@spaces.GPU
|
| 256 |
def process_image(image, model_size, task_type, ref_text, is_eval_mode, deep_parse=True):
|
| 257 |
"""
|
| 258 |
+
Process image with DeepSeek-OCR and return annotated image, markdown, html, and text.
|
| 259 |
+
Adds deep parsing for figures to render charts (from tables) and chemistry (from SMILES).
|
| 260 |
"""
|
| 261 |
if image is None:
|
| 262 |
+
return None, "Please upload an image first.", "<p>Please upload an image first.</p>", "Please upload an image first."
|
| 263 |
|
| 264 |
# handle CPU/GPU
|
| 265 |
if torch.cuda.is_available():
|
|
|
|
| 349 |
result_image = image_with_bboxes
|
| 350 |
|
| 351 |
# ===== DEEP PARSING & RENDERING (secondary pass) =====
|
|
|
|
|
|
|
|
|
|
|
|
|
| 352 |
should_run_deep = deep_parse and task_type in {"📄 Convert to Markdown", "📈 Parse Figure"}
|
| 353 |
|
| 354 |
+
deep_assets: List[Tuple[str, str]] = [] # (title, data_uri)
|
| 355 |
+
parsed_text = ""
|
| 356 |
|
| 357 |
def _run_deep_parse(prompt_text):
|
| 358 |
with torch.no_grad():
|
|
|
|
| 366 |
crop_mode=config["crop_mode"],
|
| 367 |
save_results=False,
|
| 368 |
test_compress=True,
|
| 369 |
+
eval_mode=True,
|
| 370 |
)
|
| 371 |
|
|
|
|
| 372 |
if should_run_deep:
|
| 373 |
try:
|
| 374 |
parsed_text = _run_deep_parse("<image>\nParse the figure.") or ""
|
| 375 |
except Exception:
|
| 376 |
parsed_text = ""
|
| 377 |
|
| 378 |
+
# 1) Charts/tables:
|
| 379 |
+
df = None
|
| 380 |
if "<table" in parsed_text.lower() and _HAS_PANDAS:
|
| 381 |
+
df = _html_table_to_df(parsed_text)
|
| 382 |
+
|
| 383 |
+
if df is None: # fallback: markdown pipe-table
|
| 384 |
+
df = _md_table_to_df(parsed_text)
|
| 385 |
+
|
| 386 |
+
if df is None: # fallback: generic numeric block
|
| 387 |
+
df = _numeric_block_to_df(parsed_text)
|
| 388 |
+
|
| 389 |
+
if df is not None:
|
| 390 |
+
chart_uri = _df_to_chart_data_uri(df)
|
| 391 |
+
if chart_uri:
|
| 392 |
+
deep_assets.append(("Figure (re-rendered from parsed data)", chart_uri))
|
| 393 |
+
|
| 394 |
+
# 2) Chemistry (SMILES)
|
| 395 |
+
deep_assets.extend(_render_smiles_block(parsed_text))
|
| 396 |
+
|
| 397 |
+
# ===== Append deep assets into the Markdown + build HTML preview =====
|
| 398 |
+
html_preview = "" # for HTML tab
|
| 399 |
+
if task_type == "📄 Convert to Markdown":
|
| 400 |
+
# extend markdown with a diagnostic/asset section regardless of success,
|
| 401 |
+
# so you can see whether deep-parse attempted
|
| 402 |
+
markdown_content = markdown_content + _assets_to_markdown_section(deep_assets, parsed_text)
|
| 403 |
+
html_preview = _assets_to_html_section(deep_assets, parsed_text)
|
| 404 |
+
elif task_type == "📈 Parse Figure":
|
| 405 |
+
# just show what we got from deep parse
|
| 406 |
+
header = "# Parse Figure\n\n"
|
| 407 |
+
body = _assets_to_markdown_section(deep_assets, parsed_text)
|
| 408 |
+
markdown_content = header + body
|
| 409 |
+
html_preview = _assets_to_html_section(deep_assets, parsed_text)
|
| 410 |
+
else:
|
| 411 |
+
# other tasks: keep as-is, but still provide an HTML tab with any assets
|
| 412 |
+
if deep_assets or parsed_text.strip():
|
| 413 |
+
markdown_content = markdown_content + _assets_to_markdown_section(deep_assets, parsed_text)
|
| 414 |
+
html_preview = _assets_to_html_section(deep_assets, parsed_text)
|
| 415 |
+
else:
|
| 416 |
+
html_preview = "<p>No parsed-figure content.</p>"
|
| 417 |
|
| 418 |
# ===== Decide what to show in the "Markdown Source (or Eval Output)" tab =====
|
| 419 |
text_result = plain_text_result if plain_text_result else markdown_content
|
| 420 |
+
|
| 421 |
+
# return (image, markdown, html, text)
|
| 422 |
+
return result_image, markdown_content, html_preview, text_result
|
| 423 |
|
| 424 |
|
| 425 |
# ===== Theme and UI =====
|
|
|
|
| 507 |
output_image = gr.Image(interactive=False)
|
| 508 |
with gr.TabItem("Markdown Preview"):
|
| 509 |
output_markdown = gr.Markdown()
|
| 510 |
+
with gr.TabItem("Rendered HTML (figures)"):
|
| 511 |
+
output_html = gr.HTML()
|
| 512 |
with gr.TabItem("Markdown Source (or Eval Output)"):
|
| 513 |
output_text = gr.Textbox(
|
| 514 |
lines=20, show_copy_button=True, interactive=False
|
|
|
|
| 527 |
submit_btn.click(
|
| 528 |
fn=process_image,
|
| 529 |
inputs=[image_input, model_size, task_type, ref_text_input, eval_mode_checkbox, deep_parse_checkbox],
|
| 530 |
+
outputs=[output_image, output_markdown, output_html, output_text],
|
| 531 |
)
|
| 532 |
|
| 533 |
|