Spaces:
Runtime error
Runtime error
| from glide_text2im.gaussian_diffusion import get_named_beta_schedule | |
| from glide_text2im.respace import SpacedDiffusion, space_timesteps | |
| from glide_text2im.text2im_model import ( | |
| InpaintText2ImUNet, | |
| SuperResInpaintText2ImUnet, | |
| SuperResText2ImUNet, | |
| Text2ImUNet, | |
| ) | |
| from glide_text2im.tokenizer.bpe import get_encoder | |
| def model_and_diffusion_defaults(): | |
| return dict( | |
| image_size=64, | |
| num_channels=192, | |
| num_res_blocks=3, | |
| channel_mult="", | |
| num_heads=1, | |
| num_head_channels=64, | |
| num_heads_upsample=-1, | |
| attention_resolutions="32,16,8", | |
| dropout=0.1, | |
| text_ctx=128, | |
| xf_width=512, | |
| xf_layers=16, | |
| xf_heads=8, | |
| xf_final_ln=True, | |
| xf_padding=True, | |
| diffusion_steps=1000, | |
| noise_schedule="squaredcos_cap_v2", | |
| timestep_respacing="", | |
| use_scale_shift_norm=True, | |
| resblock_updown=True, | |
| use_fp16=True, | |
| cache_text_emb=False, | |
| inpaint=False, | |
| super_res=False, | |
| ) | |
| def model_and_diffusion_defaults_upsampler(): | |
| result = model_and_diffusion_defaults() | |
| result.update( | |
| dict( | |
| image_size=256, | |
| num_res_blocks=2, | |
| noise_schedule="linear", | |
| super_res=True, | |
| ) | |
| ) | |
| return result | |
| def create_model_and_diffusion( | |
| image_size, | |
| num_channels, | |
| num_res_blocks, | |
| channel_mult, | |
| num_heads, | |
| num_head_channels, | |
| num_heads_upsample, | |
| attention_resolutions, | |
| dropout, | |
| text_ctx, | |
| xf_width, | |
| xf_layers, | |
| xf_heads, | |
| xf_final_ln, | |
| xf_padding, | |
| diffusion_steps, | |
| noise_schedule, | |
| timestep_respacing, | |
| use_scale_shift_norm, | |
| resblock_updown, | |
| use_fp16, | |
| cache_text_emb, | |
| inpaint, | |
| super_res, | |
| ): | |
| model = create_model( | |
| image_size, | |
| num_channels, | |
| num_res_blocks, | |
| channel_mult=channel_mult, | |
| attention_resolutions=attention_resolutions, | |
| num_heads=num_heads, | |
| num_head_channels=num_head_channels, | |
| num_heads_upsample=num_heads_upsample, | |
| use_scale_shift_norm=use_scale_shift_norm, | |
| dropout=dropout, | |
| text_ctx=text_ctx, | |
| xf_width=xf_width, | |
| xf_layers=xf_layers, | |
| xf_heads=xf_heads, | |
| xf_final_ln=xf_final_ln, | |
| xf_padding=xf_padding, | |
| resblock_updown=resblock_updown, | |
| use_fp16=use_fp16, | |
| cache_text_emb=cache_text_emb, | |
| inpaint=inpaint, | |
| super_res=super_res, | |
| ) | |
| diffusion = create_gaussian_diffusion( | |
| steps=diffusion_steps, | |
| noise_schedule=noise_schedule, | |
| timestep_respacing=timestep_respacing, | |
| ) | |
| return model, diffusion | |
| def create_model( | |
| image_size, | |
| num_channels, | |
| num_res_blocks, | |
| channel_mult, | |
| attention_resolutions, | |
| num_heads, | |
| num_head_channels, | |
| num_heads_upsample, | |
| use_scale_shift_norm, | |
| dropout, | |
| text_ctx, | |
| xf_width, | |
| xf_layers, | |
| xf_heads, | |
| xf_final_ln, | |
| xf_padding, | |
| resblock_updown, | |
| use_fp16, | |
| cache_text_emb, | |
| inpaint, | |
| super_res, | |
| ): | |
| if channel_mult == "": | |
| if image_size == 256: | |
| channel_mult = (1, 1, 2, 2, 4, 4) | |
| elif image_size == 128: | |
| channel_mult = (1, 1, 2, 3, 4) | |
| elif image_size == 64: | |
| channel_mult = (1, 2, 3, 4) | |
| else: | |
| raise ValueError(f"unsupported image size: {image_size}") | |
| else: | |
| channel_mult = tuple(int(ch_mult) for ch_mult in channel_mult.split(",")) | |
| assert 2 ** (len(channel_mult) + 2) == image_size | |
| attention_ds = [] | |
| for res in attention_resolutions.split(","): | |
| attention_ds.append(image_size // int(res)) | |
| if inpaint and super_res: | |
| model_cls = SuperResInpaintText2ImUnet | |
| elif inpaint: | |
| model_cls = InpaintText2ImUNet | |
| elif super_res: | |
| model_cls = SuperResText2ImUNet | |
| else: | |
| model_cls = Text2ImUNet | |
| return model_cls( | |
| text_ctx=text_ctx, | |
| xf_width=xf_width, | |
| xf_layers=xf_layers, | |
| xf_heads=xf_heads, | |
| xf_final_ln=xf_final_ln, | |
| tokenizer=get_encoder(), | |
| xf_padding=xf_padding, | |
| in_channels=3, | |
| model_channels=num_channels, | |
| out_channels=6, | |
| num_res_blocks=num_res_blocks, | |
| attention_resolutions=tuple(attention_ds), | |
| dropout=dropout, | |
| channel_mult=channel_mult, | |
| use_fp16=use_fp16, | |
| num_heads=num_heads, | |
| num_head_channels=num_head_channels, | |
| num_heads_upsample=num_heads_upsample, | |
| use_scale_shift_norm=use_scale_shift_norm, | |
| resblock_updown=resblock_updown, | |
| cache_text_emb=cache_text_emb, | |
| ) | |
| def create_gaussian_diffusion( | |
| steps, | |
| noise_schedule, | |
| timestep_respacing, | |
| ): | |
| betas = get_named_beta_schedule(noise_schedule, steps) | |
| if not timestep_respacing: | |
| timestep_respacing = [steps] | |
| return SpacedDiffusion( | |
| use_timesteps=space_timesteps(steps, timestep_respacing), | |
| betas=betas, | |
| ) | |