Spaces:
Runtime error
Runtime error
| """ | |
| Transformer implementation adapted from CLIP ViT: | |
| https://github.com/openai/CLIP/blob/4c0275784d6d9da97ca1f47eaaee31de1867da91/clip/model.py | |
| """ | |
| import math | |
| import torch as th | |
| import torch.nn as nn | |
| def convert_module_to_f16(l): | |
| """ | |
| Convert primitive modules to float16. | |
| """ | |
| if isinstance(l, (nn.Linear, nn.Conv2d, nn.ConvTranspose2d)): | |
| l.weight.data = l.weight.data.half() | |
| if l.bias is not None: | |
| l.bias.data = l.bias.data.half() | |
| class LayerNorm(nn.LayerNorm): | |
| """ | |
| Implementation that supports fp16 inputs but fp32 gains/biases. | |
| """ | |
| def forward(self, x: th.Tensor): | |
| return super().forward(x.float()).to(x.dtype) | |
| class MultiheadAttention(nn.Module): | |
| def __init__(self, n_ctx, width, heads): | |
| super().__init__() | |
| self.n_ctx = n_ctx | |
| self.width = width | |
| self.heads = heads | |
| self.c_qkv = nn.Linear(width, width * 3) | |
| self.c_proj = nn.Linear(width, width) | |
| self.attention = QKVMultiheadAttention(heads, n_ctx) | |
| def forward(self, x): | |
| x = self.c_qkv(x) | |
| x = self.attention(x) | |
| x = self.c_proj(x) | |
| return x | |
| class MLP(nn.Module): | |
| def __init__(self, width): | |
| super().__init__() | |
| self.width = width | |
| self.c_fc = nn.Linear(width, width * 4) | |
| self.c_proj = nn.Linear(width * 4, width) | |
| self.gelu = nn.GELU() | |
| def forward(self, x): | |
| return self.c_proj(self.gelu(self.c_fc(x))) | |
| class QKVMultiheadAttention(nn.Module): | |
| def __init__(self, n_heads: int, n_ctx: int): | |
| super().__init__() | |
| self.n_heads = n_heads | |
| self.n_ctx = n_ctx | |
| def forward(self, qkv): | |
| bs, n_ctx, width = qkv.shape | |
| attn_ch = width // self.n_heads // 3 | |
| scale = 1 / math.sqrt(math.sqrt(attn_ch)) | |
| qkv = qkv.view(bs, n_ctx, self.n_heads, -1) | |
| q, k, v = th.split(qkv, attn_ch, dim=-1) | |
| weight = th.einsum( | |
| "bthc,bshc->bhts", q * scale, k * scale | |
| ) # More stable with f16 than dividing afterwards | |
| wdtype = weight.dtype | |
| weight = th.softmax(weight.float(), dim=-1).type(wdtype) | |
| return th.einsum("bhts,bshc->bthc", weight, v).reshape(bs, n_ctx, -1) | |
| class ResidualAttentionBlock(nn.Module): | |
| def __init__( | |
| self, | |
| n_ctx: int, | |
| width: int, | |
| heads: int, | |
| ): | |
| super().__init__() | |
| self.attn = MultiheadAttention( | |
| n_ctx, | |
| width, | |
| heads, | |
| ) | |
| self.ln_1 = LayerNorm(width) | |
| self.mlp = MLP(width) | |
| self.ln_2 = LayerNorm(width) | |
| def forward(self, x: th.Tensor): | |
| x = x + self.attn(self.ln_1(x)) | |
| x = x + self.mlp(self.ln_2(x)) | |
| return x | |
| class Transformer(nn.Module): | |
| def __init__( | |
| self, | |
| n_ctx: int, | |
| width: int, | |
| layers: int, | |
| heads: int, | |
| ): | |
| super().__init__() | |
| self.n_ctx = n_ctx | |
| self.width = width | |
| self.layers = layers | |
| self.resblocks = nn.ModuleList( | |
| [ | |
| ResidualAttentionBlock( | |
| n_ctx, | |
| width, | |
| heads, | |
| ) | |
| for _ in range(layers) | |
| ] | |
| ) | |
| def forward(self, x: th.Tensor): | |
| for block in self.resblocks: | |
| x = block(x) | |
| return x | |