Spaces:
Runtime error
Runtime error
Luis Oala
commited on
Commit
·
06e8e4d
1
Parent(s):
e237845
fix
Browse files- README.md~ +0 -37
- app.py~ +0 -201
- server.py~ +0 -246
README.md~
DELETED
|
@@ -1,37 +0,0 @@
|
|
| 1 |
-
---
|
| 2 |
-
title: Glide Text2im
|
| 3 |
-
emoji: 📊
|
| 4 |
-
colorFrom: purple
|
| 5 |
-
colorTo: gray
|
| 6 |
-
sdk: gradio
|
| 7 |
-
app_file: app.py
|
| 8 |
-
pinned: false
|
| 9 |
-
---
|
| 10 |
-
|
| 11 |
-
# Configuration
|
| 12 |
-
|
| 13 |
-
`title`: _string_
|
| 14 |
-
Display title for the Space
|
| 15 |
-
|
| 16 |
-
`emoji`: _string_
|
| 17 |
-
Space emoji (emoji-only character allowed)
|
| 18 |
-
|
| 19 |
-
`colorFrom`: _string_
|
| 20 |
-
Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)
|
| 21 |
-
|
| 22 |
-
`colorTo`: _string_
|
| 23 |
-
Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)
|
| 24 |
-
|
| 25 |
-
`sdk`: _string_
|
| 26 |
-
Can be either `gradio` or `streamlit`
|
| 27 |
-
|
| 28 |
-
`sdk_version` : _string_
|
| 29 |
-
Only applicable for `streamlit` SDK.
|
| 30 |
-
See [doc](https://hf.co/docs/hub/spaces) for more info on supported versions.
|
| 31 |
-
|
| 32 |
-
`app_file`: _string_
|
| 33 |
-
Path to your main application file (which contains either `gradio` or `streamlit` Python code).
|
| 34 |
-
Path is relative to the root of the repository.
|
| 35 |
-
|
| 36 |
-
`pinned`: _boolean_
|
| 37 |
-
Whether the Space stays on top of your list.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py~
DELETED
|
@@ -1,201 +0,0 @@
|
|
| 1 |
-
|
| 2 |
-
import os
|
| 3 |
-
os.system('pip install -e .')
|
| 4 |
-
import gradio as gr
|
| 5 |
-
|
| 6 |
-
import base64
|
| 7 |
-
from io import BytesIO
|
| 8 |
-
# from fastapi import FastAPI
|
| 9 |
-
|
| 10 |
-
from PIL import Image
|
| 11 |
-
import torch as th
|
| 12 |
-
|
| 13 |
-
from glide_text2im.download import load_checkpoint
|
| 14 |
-
from glide_text2im.model_creation import (
|
| 15 |
-
create_model_and_diffusion,
|
| 16 |
-
model_and_diffusion_defaults,
|
| 17 |
-
model_and_diffusion_defaults_upsampler
|
| 18 |
-
)
|
| 19 |
-
|
| 20 |
-
"""
|
| 21 |
-
credit: follows the gradio glide example by valhalla https://huggingface.co/spaces/valhalla/glide-text2im
|
| 22 |
-
"""
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
# print("Loading models...")
|
| 26 |
-
# app = FastAPI()
|
| 27 |
-
|
| 28 |
-
# This notebook supports both CPU and GPU.
|
| 29 |
-
# On CPU, generating one sample may take on the order of 20 minutes.
|
| 30 |
-
# On a GPU, it should be under a minute.
|
| 31 |
-
|
| 32 |
-
has_cuda = th.cuda.is_available()
|
| 33 |
-
device = th.device('cpu' if not has_cuda else 'cuda')
|
| 34 |
-
|
| 35 |
-
# Create base model.
|
| 36 |
-
options = model_and_diffusion_defaults()
|
| 37 |
-
options['use_fp16'] = has_cuda
|
| 38 |
-
options['timestep_respacing'] = '100' # use 100 diffusion steps for fast sampling
|
| 39 |
-
model, diffusion = create_model_and_diffusion(**options)
|
| 40 |
-
model.eval()
|
| 41 |
-
if has_cuda:
|
| 42 |
-
model.convert_to_fp16()
|
| 43 |
-
model.to(device)
|
| 44 |
-
model.load_state_dict(load_checkpoint('base', device))
|
| 45 |
-
print('total base parameters', sum(x.numel() for x in model.parameters()))
|
| 46 |
-
|
| 47 |
-
# Create upsampler model.
|
| 48 |
-
options_up = model_and_diffusion_defaults_upsampler()
|
| 49 |
-
options_up['use_fp16'] = has_cuda
|
| 50 |
-
options_up['timestep_respacing'] = 'fast27' # use 27 diffusion steps for very fast sampling
|
| 51 |
-
model_up, diffusion_up = create_model_and_diffusion(**options_up)
|
| 52 |
-
model_up.eval()
|
| 53 |
-
if has_cuda:
|
| 54 |
-
model_up.convert_to_fp16()
|
| 55 |
-
model_up.to(device)
|
| 56 |
-
model_up.load_state_dict(load_checkpoint('upsample', device))
|
| 57 |
-
print('total upsampler parameters', sum(x.numel() for x in model_up.parameters()))
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
def get_images(batch: th.Tensor):
|
| 61 |
-
""" Display a batch of images inline. """
|
| 62 |
-
scaled = ((batch + 1)*127.5).round().clamp(0,255).to(th.uint8).cpu()
|
| 63 |
-
reshaped = scaled.permute(2, 0, 3, 1).reshape([batch.shape[2], -1, 3])
|
| 64 |
-
return Image.fromarray(reshaped.numpy())
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
# Create a classifier-free guidance sampling function
|
| 68 |
-
guidance_scale = 3.0
|
| 69 |
-
|
| 70 |
-
def model_fn(x_t, ts, **kwargs):
|
| 71 |
-
half = x_t[: len(x_t) // 2]
|
| 72 |
-
combined = th.cat([half, half], dim=0)
|
| 73 |
-
model_out = model(combined, ts, **kwargs)
|
| 74 |
-
eps, rest = model_out[:, :3], model_out[:, 3:]
|
| 75 |
-
cond_eps, uncond_eps = th.split(eps, len(eps) // 2, dim=0)
|
| 76 |
-
half_eps = uncond_eps + guidance_scale * (cond_eps - uncond_eps)
|
| 77 |
-
eps = th.cat([half_eps, half_eps], dim=0)
|
| 78 |
-
return th.cat([eps, rest], dim=1)
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
# @app.get("/")
|
| 82 |
-
def read_root():
|
| 83 |
-
return {"glide!"}
|
| 84 |
-
|
| 85 |
-
# @app.get("/{generate}")
|
| 86 |
-
def sample(prompt):
|
| 87 |
-
# Sampling parameters
|
| 88 |
-
batch_size = 1
|
| 89 |
-
|
| 90 |
-
# Tune this parameter to control the sharpness of 256x256 images.
|
| 91 |
-
# A value of 1.0 is sharper, but sometimes results in grainy artifacts.
|
| 92 |
-
upsample_temp = 0.997
|
| 93 |
-
|
| 94 |
-
##############################
|
| 95 |
-
# Sample from the base model #
|
| 96 |
-
##############################
|
| 97 |
-
|
| 98 |
-
# Create the text tokens to feed to the model.
|
| 99 |
-
tokens = model.tokenizer.encode(prompt)
|
| 100 |
-
tokens, mask = model.tokenizer.padded_tokens_and_mask(
|
| 101 |
-
tokens, options['text_ctx']
|
| 102 |
-
)
|
| 103 |
-
|
| 104 |
-
# Create the classifier-free guidance tokens (empty)
|
| 105 |
-
full_batch_size = batch_size * 2
|
| 106 |
-
uncond_tokens, uncond_mask = model.tokenizer.padded_tokens_and_mask(
|
| 107 |
-
[], options['text_ctx']
|
| 108 |
-
)
|
| 109 |
-
|
| 110 |
-
# Pack the tokens together into model kwargs.
|
| 111 |
-
model_kwargs = dict(
|
| 112 |
-
tokens=th.tensor(
|
| 113 |
-
[tokens] * batch_size + [uncond_tokens] * batch_size, device=device
|
| 114 |
-
),
|
| 115 |
-
mask=th.tensor(
|
| 116 |
-
[mask] * batch_size + [uncond_mask] * batch_size,
|
| 117 |
-
dtype=th.bool,
|
| 118 |
-
device=device,
|
| 119 |
-
),
|
| 120 |
-
)
|
| 121 |
-
|
| 122 |
-
# Sample from the base model.
|
| 123 |
-
model.del_cache()
|
| 124 |
-
samples = diffusion.p_sample_loop(
|
| 125 |
-
model_fn,
|
| 126 |
-
(full_batch_size, 3, options["image_size"], options["image_size"]),
|
| 127 |
-
device=device,
|
| 128 |
-
clip_denoised=True,
|
| 129 |
-
progress=True,
|
| 130 |
-
model_kwargs=model_kwargs,
|
| 131 |
-
cond_fn=None,
|
| 132 |
-
)[:batch_size]
|
| 133 |
-
model.del_cache()
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
##############################
|
| 137 |
-
# Upsample the 64x64 samples #
|
| 138 |
-
##############################
|
| 139 |
-
|
| 140 |
-
tokens = model_up.tokenizer.encode(prompt)
|
| 141 |
-
tokens, mask = model_up.tokenizer.padded_tokens_and_mask(
|
| 142 |
-
tokens, options_up['text_ctx']
|
| 143 |
-
)
|
| 144 |
-
|
| 145 |
-
# Create the model conditioning dict.
|
| 146 |
-
model_kwargs = dict(
|
| 147 |
-
# Low-res image to upsample.
|
| 148 |
-
low_res=((samples+1)*127.5).round()/127.5 - 1,
|
| 149 |
-
|
| 150 |
-
# Text tokens
|
| 151 |
-
tokens=th.tensor(
|
| 152 |
-
[tokens] * batch_size, device=device
|
| 153 |
-
),
|
| 154 |
-
mask=th.tensor(
|
| 155 |
-
[mask] * batch_size,
|
| 156 |
-
dtype=th.bool,
|
| 157 |
-
device=device,
|
| 158 |
-
),
|
| 159 |
-
)
|
| 160 |
-
|
| 161 |
-
# Sample from the base model.
|
| 162 |
-
model_up.del_cache()
|
| 163 |
-
up_shape = (batch_size, 3, options_up["image_size"], options_up["image_size"])
|
| 164 |
-
up_samples = diffusion_up.ddim_sample_loop(
|
| 165 |
-
model_up,
|
| 166 |
-
up_shape,
|
| 167 |
-
noise=th.randn(up_shape, device=device) * upsample_temp,
|
| 168 |
-
device=device,
|
| 169 |
-
clip_denoised=True,
|
| 170 |
-
progress=True,
|
| 171 |
-
model_kwargs=model_kwargs,
|
| 172 |
-
cond_fn=None,
|
| 173 |
-
)[:batch_size]
|
| 174 |
-
model_up.del_cache()
|
| 175 |
-
|
| 176 |
-
# Show the output
|
| 177 |
-
image = get_images(up_samples)
|
| 178 |
-
# image = to_base64(image)
|
| 179 |
-
# return {"image": image}
|
| 180 |
-
return image
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
def to_base64(pil_image):
|
| 184 |
-
buffered = BytesIO()
|
| 185 |
-
pil_image.save(buffered, format="JPEG")
|
| 186 |
-
return base64.b64encode(buffered.getvalue())
|
| 187 |
-
|
| 188 |
-
title = "Interactive demo: glide-text2im"
|
| 189 |
-
description = "Demo for OpenAI's GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models."
|
| 190 |
-
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2112.10741'>GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models</a> | <a href='https://github.com/openai/glide-text2im/'>Official Repo</a></p>"
|
| 191 |
-
examples =["an oil painting of a corgi"]
|
| 192 |
-
|
| 193 |
-
iface = gr.Interface(fn=sample,
|
| 194 |
-
inputs=gr.inputs.Textbox(label='What would you like to see?'),
|
| 195 |
-
outputs=gr.outputs.Image(type="pil", label="Model input + completions"),
|
| 196 |
-
title=title,
|
| 197 |
-
description=description,
|
| 198 |
-
article=article,
|
| 199 |
-
examples=examples,
|
| 200 |
-
enable_queue=True)
|
| 201 |
-
iface.launch(debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
server.py~
DELETED
|
@@ -1,246 +0,0 @@
|
|
| 1 |
-
import base64
|
| 2 |
-
from io import BytesIO
|
| 3 |
-
from fastapi import FastAPI
|
| 4 |
-
<<<<<<< HEAD
|
| 5 |
-
|
| 6 |
-
from PIL import Image
|
| 7 |
-
import torch as th
|
| 8 |
-
|
| 9 |
-
=======
|
| 10 |
-
from PIL import Image
|
| 11 |
-
import torch as th
|
| 12 |
-
>>>>>>> 8c239b8a9cdaf13e28c145e788b984c129547a37
|
| 13 |
-
from glide_text2im.download import load_checkpoint
|
| 14 |
-
from glide_text2im.model_creation import (
|
| 15 |
-
create_model_and_diffusion,
|
| 16 |
-
model_and_diffusion_defaults,
|
| 17 |
-
model_and_diffusion_defaults_upsampler
|
| 18 |
-
)
|
| 19 |
-
<<<<<<< HEAD
|
| 20 |
-
|
| 21 |
-
print("Loading models...")
|
| 22 |
-
app = FastAPI()
|
| 23 |
-
|
| 24 |
-
# This notebook supports both CPU and GPU.
|
| 25 |
-
# On CPU, generating one sample may take on the order of 20 minutes.
|
| 26 |
-
# On a GPU, it should be under a minute.
|
| 27 |
-
|
| 28 |
-
has_cuda = th.cuda.is_available()
|
| 29 |
-
device = th.device('cpu' if not has_cuda else 'cuda')
|
| 30 |
-
|
| 31 |
-
=======
|
| 32 |
-
print("Loading models...")
|
| 33 |
-
app = FastAPI()
|
| 34 |
-
# This notebook supports both CPU and GPU.
|
| 35 |
-
# On CPU, generating one sample may take on the order of 20 minutes.
|
| 36 |
-
# On a GPU, it should be under a minute.
|
| 37 |
-
has_cuda = th.cuda.is_available()
|
| 38 |
-
device = th.device('cpu' if not has_cuda else 'cuda')
|
| 39 |
-
>>>>>>> 8c239b8a9cdaf13e28c145e788b984c129547a37
|
| 40 |
-
# Create base model.
|
| 41 |
-
options = model_and_diffusion_defaults()
|
| 42 |
-
options['use_fp16'] = has_cuda
|
| 43 |
-
options['timestep_respacing'] = '100' # use 100 diffusion steps for fast sampling
|
| 44 |
-
model, diffusion = create_model_and_diffusion(**options)
|
| 45 |
-
model.eval()
|
| 46 |
-
if has_cuda:
|
| 47 |
-
model.convert_to_fp16()
|
| 48 |
-
model.to(device)
|
| 49 |
-
model.load_state_dict(load_checkpoint('base', device))
|
| 50 |
-
print('total base parameters', sum(x.numel() for x in model.parameters()))
|
| 51 |
-
<<<<<<< HEAD
|
| 52 |
-
|
| 53 |
-
=======
|
| 54 |
-
>>>>>>> 8c239b8a9cdaf13e28c145e788b984c129547a37
|
| 55 |
-
# Create upsampler model.
|
| 56 |
-
options_up = model_and_diffusion_defaults_upsampler()
|
| 57 |
-
options_up['use_fp16'] = has_cuda
|
| 58 |
-
options_up['timestep_respacing'] = 'fast27' # use 27 diffusion steps for very fast sampling
|
| 59 |
-
model_up, diffusion_up = create_model_and_diffusion(**options_up)
|
| 60 |
-
model_up.eval()
|
| 61 |
-
if has_cuda:
|
| 62 |
-
model_up.convert_to_fp16()
|
| 63 |
-
model_up.to(device)
|
| 64 |
-
model_up.load_state_dict(load_checkpoint('upsample', device))
|
| 65 |
-
print('total upsampler parameters', sum(x.numel() for x in model_up.parameters()))
|
| 66 |
-
<<<<<<< HEAD
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
=======
|
| 70 |
-
>>>>>>> 8c239b8a9cdaf13e28c145e788b984c129547a37
|
| 71 |
-
def get_images(batch: th.Tensor):
|
| 72 |
-
""" Display a batch of images inline. """
|
| 73 |
-
scaled = ((batch + 1)*127.5).round().clamp(0,255).to(th.uint8).cpu()
|
| 74 |
-
reshaped = scaled.permute(2, 0, 3, 1).reshape([batch.shape[2], -1, 3])
|
| 75 |
-
Image.fromarray(reshaped.numpy())
|
| 76 |
-
<<<<<<< HEAD
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
# Create a classifier-free guidance sampling function
|
| 80 |
-
guidance_scale = 3.0
|
| 81 |
-
|
| 82 |
-
=======
|
| 83 |
-
# Create a classifier-free guidance sampling function
|
| 84 |
-
guidance_scale = 3.0
|
| 85 |
-
>>>>>>> 8c239b8a9cdaf13e28c145e788b984c129547a37
|
| 86 |
-
def model_fn(x_t, ts, **kwargs):
|
| 87 |
-
half = x_t[: len(x_t) // 2]
|
| 88 |
-
combined = th.cat([half, half], dim=0)
|
| 89 |
-
model_out = model(combined, ts, **kwargs)
|
| 90 |
-
eps, rest = model_out[:, :3], model_out[:, 3:]
|
| 91 |
-
cond_eps, uncond_eps = th.split(eps, len(eps) // 2, dim=0)
|
| 92 |
-
half_eps = uncond_eps + guidance_scale * (cond_eps - uncond_eps)
|
| 93 |
-
eps = th.cat([half_eps, half_eps], dim=0)
|
| 94 |
-
return th.cat([eps, rest], dim=1)
|
| 95 |
-
<<<<<<< HEAD
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
@app.get("/")
|
| 99 |
-
def read_root():
|
| 100 |
-
return {"glide!"}
|
| 101 |
-
|
| 102 |
-
=======
|
| 103 |
-
@app.get("/")
|
| 104 |
-
def read_root():
|
| 105 |
-
return {"glide!"}
|
| 106 |
-
>>>>>>> 8c239b8a9cdaf13e28c145e788b984c129547a37
|
| 107 |
-
@app.get("/{generate}")
|
| 108 |
-
def sample(prompt):
|
| 109 |
-
# Sampling parameters
|
| 110 |
-
batch_size = 1
|
| 111 |
-
<<<<<<< HEAD
|
| 112 |
-
|
| 113 |
-
# Tune this parameter to control the sharpness of 256x256 images.
|
| 114 |
-
# A value of 1.0 is sharper, but sometimes results in grainy artifacts.
|
| 115 |
-
upsample_temp = 0.997
|
| 116 |
-
|
| 117 |
-
##############################
|
| 118 |
-
# Sample from the base model #
|
| 119 |
-
##############################
|
| 120 |
-
|
| 121 |
-
=======
|
| 122 |
-
# Tune this parameter to control the sharpness of 256x256 images.
|
| 123 |
-
# A value of 1.0 is sharper, but sometimes results in grainy artifacts.
|
| 124 |
-
upsample_temp = 0.997
|
| 125 |
-
##############################
|
| 126 |
-
# Sample from the base model #
|
| 127 |
-
##############################
|
| 128 |
-
>>>>>>> 8c239b8a9cdaf13e28c145e788b984c129547a37
|
| 129 |
-
# Create the text tokens to feed to the model.
|
| 130 |
-
tokens = model.tokenizer.encode(prompt)
|
| 131 |
-
tokens, mask = model.tokenizer.padded_tokens_and_mask(
|
| 132 |
-
tokens, options['text_ctx']
|
| 133 |
-
)
|
| 134 |
-
<<<<<<< HEAD
|
| 135 |
-
|
| 136 |
-
=======
|
| 137 |
-
>>>>>>> 8c239b8a9cdaf13e28c145e788b984c129547a37
|
| 138 |
-
# Create the classifier-free guidance tokens (empty)
|
| 139 |
-
full_batch_size = batch_size * 2
|
| 140 |
-
uncond_tokens, uncond_mask = model.tokenizer.padded_tokens_and_mask(
|
| 141 |
-
[], options['text_ctx']
|
| 142 |
-
)
|
| 143 |
-
<<<<<<< HEAD
|
| 144 |
-
|
| 145 |
-
=======
|
| 146 |
-
>>>>>>> 8c239b8a9cdaf13e28c145e788b984c129547a37
|
| 147 |
-
# Pack the tokens together into model kwargs.
|
| 148 |
-
model_kwargs = dict(
|
| 149 |
-
tokens=th.tensor(
|
| 150 |
-
[tokens] * batch_size + [uncond_tokens] * batch_size, device=device
|
| 151 |
-
),
|
| 152 |
-
mask=th.tensor(
|
| 153 |
-
[mask] * batch_size + [uncond_mask] * batch_size,
|
| 154 |
-
dtype=th.bool,
|
| 155 |
-
device=device,
|
| 156 |
-
),
|
| 157 |
-
)
|
| 158 |
-
<<<<<<< HEAD
|
| 159 |
-
|
| 160 |
-
=======
|
| 161 |
-
>>>>>>> 8c239b8a9cdaf13e28c145e788b984c129547a37
|
| 162 |
-
# Sample from the base model.
|
| 163 |
-
model.del_cache()
|
| 164 |
-
samples = diffusion.p_sample_loop(
|
| 165 |
-
model_fn,
|
| 166 |
-
(full_batch_size, 3, options["image_size"], options["image_size"]),
|
| 167 |
-
device=device,
|
| 168 |
-
clip_denoised=True,
|
| 169 |
-
progress=True,
|
| 170 |
-
model_kwargs=model_kwargs,
|
| 171 |
-
cond_fn=None,
|
| 172 |
-
)[:batch_size]
|
| 173 |
-
model.del_cache()
|
| 174 |
-
<<<<<<< HEAD
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
##############################
|
| 178 |
-
# Upsample the 64x64 samples #
|
| 179 |
-
##############################
|
| 180 |
-
|
| 181 |
-
=======
|
| 182 |
-
##############################
|
| 183 |
-
# Upsample the 64x64 samples #
|
| 184 |
-
##############################
|
| 185 |
-
>>>>>>> 8c239b8a9cdaf13e28c145e788b984c129547a37
|
| 186 |
-
tokens = model_up.tokenizer.encode(prompt)
|
| 187 |
-
tokens, mask = model_up.tokenizer.padded_tokens_and_mask(
|
| 188 |
-
tokens, options_up['text_ctx']
|
| 189 |
-
)
|
| 190 |
-
<<<<<<< HEAD
|
| 191 |
-
|
| 192 |
-
=======
|
| 193 |
-
>>>>>>> 8c239b8a9cdaf13e28c145e788b984c129547a37
|
| 194 |
-
# Create the model conditioning dict.
|
| 195 |
-
model_kwargs = dict(
|
| 196 |
-
# Low-res image to upsample.
|
| 197 |
-
low_res=((samples+1)*127.5).round()/127.5 - 1,
|
| 198 |
-
<<<<<<< HEAD
|
| 199 |
-
|
| 200 |
-
=======
|
| 201 |
-
>>>>>>> 8c239b8a9cdaf13e28c145e788b984c129547a37
|
| 202 |
-
# Text tokens
|
| 203 |
-
tokens=th.tensor(
|
| 204 |
-
[tokens] * batch_size, device=device
|
| 205 |
-
),
|
| 206 |
-
mask=th.tensor(
|
| 207 |
-
[mask] * batch_size,
|
| 208 |
-
dtype=th.bool,
|
| 209 |
-
device=device,
|
| 210 |
-
),
|
| 211 |
-
)
|
| 212 |
-
<<<<<<< HEAD
|
| 213 |
-
|
| 214 |
-
=======
|
| 215 |
-
>>>>>>> 8c239b8a9cdaf13e28c145e788b984c129547a37
|
| 216 |
-
# Sample from the base model.
|
| 217 |
-
model_up.del_cache()
|
| 218 |
-
up_shape = (batch_size, 3, options_up["image_size"], options_up["image_size"])
|
| 219 |
-
up_samples = diffusion_up.ddim_sample_loop(
|
| 220 |
-
model_up,
|
| 221 |
-
up_shape,
|
| 222 |
-
noise=th.randn(up_shape, device=device) * upsample_temp,
|
| 223 |
-
device=device,
|
| 224 |
-
clip_denoised=True,
|
| 225 |
-
progress=True,
|
| 226 |
-
model_kwargs=model_kwargs,
|
| 227 |
-
cond_fn=None,
|
| 228 |
-
)[:batch_size]
|
| 229 |
-
model_up.del_cache()
|
| 230 |
-
<<<<<<< HEAD
|
| 231 |
-
|
| 232 |
-
=======
|
| 233 |
-
>>>>>>> 8c239b8a9cdaf13e28c145e788b984c129547a37
|
| 234 |
-
# Show the output
|
| 235 |
-
image = get_images(up_samples)
|
| 236 |
-
image = to_base64(image)
|
| 237 |
-
return {"image": image}
|
| 238 |
-
<<<<<<< HEAD
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
=======
|
| 242 |
-
>>>>>>> 8c239b8a9cdaf13e28c145e788b984c129547a37
|
| 243 |
-
def to_base64(pil_image):
|
| 244 |
-
buffered = BytesIO()
|
| 245 |
-
pil_image.save(buffered, format="JPEG")
|
| 246 |
-
return base64.b64encode(buffered.getvalue())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|