Spaces:
Runtime error
Runtime error
Luis Oala
commited on
Commit
·
2e0468e
1
Parent(s):
c909455
update
Browse files- README.md +3 -4
- README.md~ +4 -4
- app.py +7 -5
- app.py~ +12 -8
- notebooks/clip_guided.ipynb +1 -13
- notebooks/inpaint.ipynb +1 -13
- notebooks/text2im.ipynb +1 -13
- server.py +175 -0
- setup.py +1 -15
README.md
CHANGED
|
@@ -1,8 +1,7 @@
|
|
| 1 |
---
|
| 2 |
-
title: glide
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
colorTo: purple
|
| 6 |
sdk: gradio
|
| 7 |
app_file: app.py
|
| 8 |
pinned: false
|
|
|
|
| 1 |
---
|
| 2 |
+
title: glide-test
|
| 3 |
+
colorFrom: green
|
| 4 |
+
colorTo: green
|
|
|
|
| 5 |
sdk: gradio
|
| 6 |
app_file: app.py
|
| 7 |
pinned: false
|
README.md~
CHANGED
|
@@ -1,8 +1,8 @@
|
|
| 1 |
---
|
| 2 |
-
title: Glide
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
app_file: app.py
|
| 8 |
pinned: false
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Glide Text2im
|
| 3 |
+
emoji: 📊
|
| 4 |
+
colorFrom: purple
|
| 5 |
+
colorTo: gray
|
| 6 |
sdk: gradio
|
| 7 |
app_file: app.py
|
| 8 |
pinned: false
|
app.py
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
import os
|
| 2 |
os.system('pip install -e .')
|
| 3 |
import gradio as gr
|
|
@@ -16,6 +17,11 @@ from glide_text2im.model_creation import (
|
|
| 16 |
model_and_diffusion_defaults_upsampler
|
| 17 |
)
|
| 18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
# print("Loading models...")
|
| 20 |
# app = FastAPI()
|
| 21 |
|
|
@@ -23,10 +29,6 @@ from glide_text2im.model_creation import (
|
|
| 23 |
# On CPU, generating one sample may take on the order of 20 minutes.
|
| 24 |
# On a GPU, it should be under a minute.
|
| 25 |
|
| 26 |
-
"""
|
| 27 |
-
credit: follows the gradio glide example by valhalla https://huggingface.co/spaces/valhalla/glide-text2im
|
| 28 |
-
"""
|
| 29 |
-
|
| 30 |
has_cuda = th.cuda.is_available()
|
| 31 |
device = th.device('cpu' if not has_cuda else 'cuda')
|
| 32 |
|
|
@@ -188,7 +190,7 @@ description = "text conditioned image generation demo using openai's GLIDE model
|
|
| 188 |
|
| 189 |
iface = gr.Interface(fn=sample,
|
| 190 |
inputs=gr.inputs.Textbox(label='enter text'),
|
| 191 |
-
outputs=gr.outputs.Image(type="pil", label="
|
| 192 |
title=title,
|
| 193 |
description=description,
|
| 194 |
enable_queue=True)
|
|
|
|
| 1 |
+
|
| 2 |
import os
|
| 3 |
os.system('pip install -e .')
|
| 4 |
import gradio as gr
|
|
|
|
| 17 |
model_and_diffusion_defaults_upsampler
|
| 18 |
)
|
| 19 |
|
| 20 |
+
"""
|
| 21 |
+
credit: follows the gradio glide example by valhalla https://huggingface.co/spaces/valhalla/glide-text2im
|
| 22 |
+
"""
|
| 23 |
+
|
| 24 |
+
|
| 25 |
# print("Loading models...")
|
| 26 |
# app = FastAPI()
|
| 27 |
|
|
|
|
| 29 |
# On CPU, generating one sample may take on the order of 20 minutes.
|
| 30 |
# On a GPU, it should be under a minute.
|
| 31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
has_cuda = th.cuda.is_available()
|
| 33 |
device = th.device('cpu' if not has_cuda else 'cuda')
|
| 34 |
|
|
|
|
| 190 |
|
| 191 |
iface = gr.Interface(fn=sample,
|
| 192 |
inputs=gr.inputs.Textbox(label='enter text'),
|
| 193 |
+
outputs=gr.outputs.Image(type="pil", label="..."),
|
| 194 |
title=title,
|
| 195 |
description=description,
|
| 196 |
enable_queue=True)
|
app.py~
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
import os
|
| 2 |
os.system('pip install -e .')
|
| 3 |
import gradio as gr
|
|
@@ -16,6 +17,11 @@ from glide_text2im.model_creation import (
|
|
| 16 |
model_and_diffusion_defaults_upsampler
|
| 17 |
)
|
| 18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
# print("Loading models...")
|
| 20 |
# app = FastAPI()
|
| 21 |
|
|
@@ -23,10 +29,6 @@ from glide_text2im.model_creation import (
|
|
| 23 |
# On CPU, generating one sample may take on the order of 20 minutes.
|
| 24 |
# On a GPU, it should be under a minute.
|
| 25 |
|
| 26 |
-
"""
|
| 27 |
-
credit: follows the gradio glide example by valhalla https://huggingface.co/spaces/valhalla/glide-text2im
|
| 28 |
-
"""
|
| 29 |
-
|
| 30 |
has_cuda = th.cuda.is_available()
|
| 31 |
device = th.device('cpu' if not has_cuda else 'cuda')
|
| 32 |
|
|
@@ -183,12 +185,14 @@ def to_base64(pil_image):
|
|
| 183 |
pil_image.save(buffered, format="JPEG")
|
| 184 |
return base64.b64encode(buffered.getvalue())
|
| 185 |
|
| 186 |
-
title = "glide
|
| 187 |
-
description = "
|
|
|
|
|
|
|
| 188 |
|
| 189 |
iface = gr.Interface(fn=sample,
|
| 190 |
-
inputs=gr.inputs.Textbox(label='
|
| 191 |
-
outputs=gr.outputs.Image(type="pil", label="
|
| 192 |
title=title,
|
| 193 |
description=description,
|
| 194 |
article=article,
|
|
|
|
| 1 |
+
|
| 2 |
import os
|
| 3 |
os.system('pip install -e .')
|
| 4 |
import gradio as gr
|
|
|
|
| 17 |
model_and_diffusion_defaults_upsampler
|
| 18 |
)
|
| 19 |
|
| 20 |
+
"""
|
| 21 |
+
credit: follows the gradio glide example by valhalla https://huggingface.co/spaces/valhalla/glide-text2im
|
| 22 |
+
"""
|
| 23 |
+
|
| 24 |
+
|
| 25 |
# print("Loading models...")
|
| 26 |
# app = FastAPI()
|
| 27 |
|
|
|
|
| 29 |
# On CPU, generating one sample may take on the order of 20 minutes.
|
| 30 |
# On a GPU, it should be under a minute.
|
| 31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
has_cuda = th.cuda.is_available()
|
| 33 |
device = th.device('cpu' if not has_cuda else 'cuda')
|
| 34 |
|
|
|
|
| 185 |
pil_image.save(buffered, format="JPEG")
|
| 186 |
return base64.b64encode(buffered.getvalue())
|
| 187 |
|
| 188 |
+
title = "Interactive demo: glide-text2im"
|
| 189 |
+
description = "Demo for OpenAI's GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models."
|
| 190 |
+
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2112.10741'>GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models</a> | <a href='https://github.com/openai/glide-text2im/'>Official Repo</a></p>"
|
| 191 |
+
examples =["an oil painting of a corgi"]
|
| 192 |
|
| 193 |
iface = gr.Interface(fn=sample,
|
| 194 |
+
inputs=gr.inputs.Textbox(label='What would you like to see?'),
|
| 195 |
+
outputs=gr.outputs.Image(type="pil", label="Model input + completions"),
|
| 196 |
title=title,
|
| 197 |
description=description,
|
| 198 |
article=article,
|
notebooks/clip_guided.ipynb
CHANGED
|
@@ -1,16 +1,5 @@
|
|
| 1 |
{
|
| 2 |
"cells": [
|
| 3 |
-
{
|
| 4 |
-
"cell_type": "code",
|
| 5 |
-
"execution_count": null,
|
| 6 |
-
"metadata": {},
|
| 7 |
-
"outputs": [],
|
| 8 |
-
"source": [
|
| 9 |
-
"# Run this line in Colab to install the package if it is\n",
|
| 10 |
-
"# not already installed.\n",
|
| 11 |
-
"!pip install git+https://github.com/openai/glide-text2im"
|
| 12 |
-
]
|
| 13 |
-
},
|
| 14 |
{
|
| 15 |
"cell_type": "code",
|
| 16 |
"execution_count": null,
|
|
@@ -238,8 +227,7 @@
|
|
| 238 |
"nbconvert_exporter": "python",
|
| 239 |
"pygments_lexer": "ipython3",
|
| 240 |
"version": "3.7.3"
|
| 241 |
-
}
|
| 242 |
-
"accelerator": "GPU"
|
| 243 |
},
|
| 244 |
"nbformat": 4,
|
| 245 |
"nbformat_minor": 2
|
|
|
|
| 1 |
{
|
| 2 |
"cells": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
{
|
| 4 |
"cell_type": "code",
|
| 5 |
"execution_count": null,
|
|
|
|
| 227 |
"nbconvert_exporter": "python",
|
| 228 |
"pygments_lexer": "ipython3",
|
| 229 |
"version": "3.7.3"
|
| 230 |
+
}
|
|
|
|
| 231 |
},
|
| 232 |
"nbformat": 4,
|
| 233 |
"nbformat_minor": 2
|
notebooks/inpaint.ipynb
CHANGED
|
@@ -1,16 +1,5 @@
|
|
| 1 |
{
|
| 2 |
"cells": [
|
| 3 |
-
{
|
| 4 |
-
"cell_type": "code",
|
| 5 |
-
"execution_count": null,
|
| 6 |
-
"metadata": {},
|
| 7 |
-
"outputs": [],
|
| 8 |
-
"source": [
|
| 9 |
-
"# Run this line in Colab to install the package if it is\n",
|
| 10 |
-
"# not already installed.\n",
|
| 11 |
-
"!pip install git+https://github.com/openai/glide-text2im"
|
| 12 |
-
]
|
| 13 |
-
},
|
| 14 |
{
|
| 15 |
"cell_type": "code",
|
| 16 |
"execution_count": null,
|
|
@@ -294,8 +283,7 @@
|
|
| 294 |
"nbconvert_exporter": "python",
|
| 295 |
"pygments_lexer": "ipython3",
|
| 296 |
"version": "3.7.3"
|
| 297 |
-
}
|
| 298 |
-
"accelerator": "GPU"
|
| 299 |
},
|
| 300 |
"nbformat": 4,
|
| 301 |
"nbformat_minor": 2
|
|
|
|
| 1 |
{
|
| 2 |
"cells": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
{
|
| 4 |
"cell_type": "code",
|
| 5 |
"execution_count": null,
|
|
|
|
| 283 |
"nbconvert_exporter": "python",
|
| 284 |
"pygments_lexer": "ipython3",
|
| 285 |
"version": "3.7.3"
|
| 286 |
+
}
|
|
|
|
| 287 |
},
|
| 288 |
"nbformat": 4,
|
| 289 |
"nbformat_minor": 2
|
notebooks/text2im.ipynb
CHANGED
|
@@ -1,16 +1,5 @@
|
|
| 1 |
{
|
| 2 |
"cells": [
|
| 3 |
-
{
|
| 4 |
-
"cell_type": "code",
|
| 5 |
-
"execution_count": null,
|
| 6 |
-
"metadata": {},
|
| 7 |
-
"outputs": [],
|
| 8 |
-
"source": [
|
| 9 |
-
"# Run this line in Colab to install the package if it is\n",
|
| 10 |
-
"# not already installed.\n",
|
| 11 |
-
"!pip install git+https://github.com/openai/glide-text2im"
|
| 12 |
-
]
|
| 13 |
-
},
|
| 14 |
{
|
| 15 |
"cell_type": "code",
|
| 16 |
"execution_count": null,
|
|
@@ -243,8 +232,7 @@
|
|
| 243 |
"nbconvert_exporter": "python",
|
| 244 |
"pygments_lexer": "ipython3",
|
| 245 |
"version": "3.7.3"
|
| 246 |
-
}
|
| 247 |
-
"accelerator": "GPU"
|
| 248 |
},
|
| 249 |
"nbformat": 4,
|
| 250 |
"nbformat_minor": 2
|
|
|
|
| 1 |
{
|
| 2 |
"cells": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
{
|
| 4 |
"cell_type": "code",
|
| 5 |
"execution_count": null,
|
|
|
|
| 232 |
"nbconvert_exporter": "python",
|
| 233 |
"pygments_lexer": "ipython3",
|
| 234 |
"version": "3.7.3"
|
| 235 |
+
}
|
|
|
|
| 236 |
},
|
| 237 |
"nbformat": 4,
|
| 238 |
"nbformat_minor": 2
|
server.py
ADDED
|
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import base64
|
| 2 |
+
from io import BytesIO
|
| 3 |
+
from fastapi import FastAPI
|
| 4 |
+
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import torch as th
|
| 7 |
+
|
| 8 |
+
from glide_text2im.download import load_checkpoint
|
| 9 |
+
from glide_text2im.model_creation import (
|
| 10 |
+
create_model_and_diffusion,
|
| 11 |
+
model_and_diffusion_defaults,
|
| 12 |
+
model_and_diffusion_defaults_upsampler
|
| 13 |
+
)
|
| 14 |
+
|
| 15 |
+
print("Loading models...")
|
| 16 |
+
app = FastAPI()
|
| 17 |
+
|
| 18 |
+
# This notebook supports both CPU and GPU.
|
| 19 |
+
# On CPU, generating one sample may take on the order of 20 minutes.
|
| 20 |
+
# On a GPU, it should be under a minute.
|
| 21 |
+
|
| 22 |
+
has_cuda = th.cuda.is_available()
|
| 23 |
+
device = th.device('cpu' if not has_cuda else 'cuda')
|
| 24 |
+
|
| 25 |
+
# Create base model.
|
| 26 |
+
options = model_and_diffusion_defaults()
|
| 27 |
+
options['use_fp16'] = has_cuda
|
| 28 |
+
options['timestep_respacing'] = '100' # use 100 diffusion steps for fast sampling
|
| 29 |
+
model, diffusion = create_model_and_diffusion(**options)
|
| 30 |
+
model.eval()
|
| 31 |
+
if has_cuda:
|
| 32 |
+
model.convert_to_fp16()
|
| 33 |
+
model.to(device)
|
| 34 |
+
model.load_state_dict(load_checkpoint('base', device))
|
| 35 |
+
print('total base parameters', sum(x.numel() for x in model.parameters()))
|
| 36 |
+
|
| 37 |
+
# Create upsampler model.
|
| 38 |
+
options_up = model_and_diffusion_defaults_upsampler()
|
| 39 |
+
options_up['use_fp16'] = has_cuda
|
| 40 |
+
options_up['timestep_respacing'] = 'fast27' # use 27 diffusion steps for very fast sampling
|
| 41 |
+
model_up, diffusion_up = create_model_and_diffusion(**options_up)
|
| 42 |
+
model_up.eval()
|
| 43 |
+
if has_cuda:
|
| 44 |
+
model_up.convert_to_fp16()
|
| 45 |
+
model_up.to(device)
|
| 46 |
+
model_up.load_state_dict(load_checkpoint('upsample', device))
|
| 47 |
+
print('total upsampler parameters', sum(x.numel() for x in model_up.parameters()))
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def get_images(batch: th.Tensor):
|
| 51 |
+
""" Display a batch of images inline. """
|
| 52 |
+
scaled = ((batch + 1)*127.5).round().clamp(0,255).to(th.uint8).cpu()
|
| 53 |
+
reshaped = scaled.permute(2, 0, 3, 1).reshape([batch.shape[2], -1, 3])
|
| 54 |
+
Image.fromarray(reshaped.numpy())
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
# Create a classifier-free guidance sampling function
|
| 58 |
+
guidance_scale = 3.0
|
| 59 |
+
|
| 60 |
+
def model_fn(x_t, ts, **kwargs):
|
| 61 |
+
half = x_t[: len(x_t) // 2]
|
| 62 |
+
combined = th.cat([half, half], dim=0)
|
| 63 |
+
model_out = model(combined, ts, **kwargs)
|
| 64 |
+
eps, rest = model_out[:, :3], model_out[:, 3:]
|
| 65 |
+
cond_eps, uncond_eps = th.split(eps, len(eps) // 2, dim=0)
|
| 66 |
+
half_eps = uncond_eps + guidance_scale * (cond_eps - uncond_eps)
|
| 67 |
+
eps = th.cat([half_eps, half_eps], dim=0)
|
| 68 |
+
return th.cat([eps, rest], dim=1)
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
@app.get("/")
|
| 72 |
+
def read_root():
|
| 73 |
+
return {"glide!"}
|
| 74 |
+
|
| 75 |
+
@app.get("/{generate}")
|
| 76 |
+
def sample(prompt):
|
| 77 |
+
# Sampling parameters
|
| 78 |
+
batch_size = 1
|
| 79 |
+
|
| 80 |
+
# Tune this parameter to control the sharpness of 256x256 images.
|
| 81 |
+
# A value of 1.0 is sharper, but sometimes results in grainy artifacts.
|
| 82 |
+
upsample_temp = 0.997
|
| 83 |
+
|
| 84 |
+
##############################
|
| 85 |
+
# Sample from the base model #
|
| 86 |
+
##############################
|
| 87 |
+
|
| 88 |
+
# Create the text tokens to feed to the model.
|
| 89 |
+
tokens = model.tokenizer.encode(prompt)
|
| 90 |
+
tokens, mask = model.tokenizer.padded_tokens_and_mask(
|
| 91 |
+
tokens, options['text_ctx']
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
# Create the classifier-free guidance tokens (empty)
|
| 95 |
+
full_batch_size = batch_size * 2
|
| 96 |
+
uncond_tokens, uncond_mask = model.tokenizer.padded_tokens_and_mask(
|
| 97 |
+
[], options['text_ctx']
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
# Pack the tokens together into model kwargs.
|
| 101 |
+
model_kwargs = dict(
|
| 102 |
+
tokens=th.tensor(
|
| 103 |
+
[tokens] * batch_size + [uncond_tokens] * batch_size, device=device
|
| 104 |
+
),
|
| 105 |
+
mask=th.tensor(
|
| 106 |
+
[mask] * batch_size + [uncond_mask] * batch_size,
|
| 107 |
+
dtype=th.bool,
|
| 108 |
+
device=device,
|
| 109 |
+
),
|
| 110 |
+
)
|
| 111 |
+
|
| 112 |
+
# Sample from the base model.
|
| 113 |
+
model.del_cache()
|
| 114 |
+
samples = diffusion.p_sample_loop(
|
| 115 |
+
model_fn,
|
| 116 |
+
(full_batch_size, 3, options["image_size"], options["image_size"]),
|
| 117 |
+
device=device,
|
| 118 |
+
clip_denoised=True,
|
| 119 |
+
progress=True,
|
| 120 |
+
model_kwargs=model_kwargs,
|
| 121 |
+
cond_fn=None,
|
| 122 |
+
)[:batch_size]
|
| 123 |
+
model.del_cache()
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
##############################
|
| 127 |
+
# Upsample the 64x64 samples #
|
| 128 |
+
##############################
|
| 129 |
+
|
| 130 |
+
tokens = model_up.tokenizer.encode(prompt)
|
| 131 |
+
tokens, mask = model_up.tokenizer.padded_tokens_and_mask(
|
| 132 |
+
tokens, options_up['text_ctx']
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
# Create the model conditioning dict.
|
| 136 |
+
model_kwargs = dict(
|
| 137 |
+
# Low-res image to upsample.
|
| 138 |
+
low_res=((samples+1)*127.5).round()/127.5 - 1,
|
| 139 |
+
|
| 140 |
+
# Text tokens
|
| 141 |
+
tokens=th.tensor(
|
| 142 |
+
[tokens] * batch_size, device=device
|
| 143 |
+
),
|
| 144 |
+
mask=th.tensor(
|
| 145 |
+
[mask] * batch_size,
|
| 146 |
+
dtype=th.bool,
|
| 147 |
+
device=device,
|
| 148 |
+
),
|
| 149 |
+
)
|
| 150 |
+
|
| 151 |
+
# Sample from the base model.
|
| 152 |
+
model_up.del_cache()
|
| 153 |
+
up_shape = (batch_size, 3, options_up["image_size"], options_up["image_size"])
|
| 154 |
+
up_samples = diffusion_up.ddim_sample_loop(
|
| 155 |
+
model_up,
|
| 156 |
+
up_shape,
|
| 157 |
+
noise=th.randn(up_shape, device=device) * upsample_temp,
|
| 158 |
+
device=device,
|
| 159 |
+
clip_denoised=True,
|
| 160 |
+
progress=True,
|
| 161 |
+
model_kwargs=model_kwargs,
|
| 162 |
+
cond_fn=None,
|
| 163 |
+
)[:batch_size]
|
| 164 |
+
model_up.del_cache()
|
| 165 |
+
|
| 166 |
+
# Show the output
|
| 167 |
+
image = get_images(up_samples)
|
| 168 |
+
image = to_base64(image)
|
| 169 |
+
return {"image": image}
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
def to_base64(pil_image):
|
| 173 |
+
buffered = BytesIO()
|
| 174 |
+
pil_image.save(buffered, format="JPEG")
|
| 175 |
+
return base64.b64encode(buffered.getvalue())
|
setup.py
CHANGED
|
@@ -2,19 +2,7 @@ from setuptools import setup
|
|
| 2 |
|
| 3 |
setup(
|
| 4 |
name="glide-text2im",
|
| 5 |
-
packages=[
|
| 6 |
-
"glide_text2im",
|
| 7 |
-
"glide_text2im.clip",
|
| 8 |
-
"glide_text2im.tokenizer",
|
| 9 |
-
],
|
| 10 |
-
package_data={
|
| 11 |
-
"glide_text2im.tokenizer": [
|
| 12 |
-
"bpe_simple_vocab_16e6.txt.gz",
|
| 13 |
-
"encoder.json.gz",
|
| 14 |
-
"vocab.bpe.gz",
|
| 15 |
-
],
|
| 16 |
-
"glide_text2im.clip": ["config.yaml"],
|
| 17 |
-
},
|
| 18 |
install_requires=[
|
| 19 |
"Pillow",
|
| 20 |
"attrs",
|
|
@@ -22,8 +10,6 @@ setup(
|
|
| 22 |
"filelock",
|
| 23 |
"requests",
|
| 24 |
"tqdm",
|
| 25 |
-
"ftfy",
|
| 26 |
-
"regex",
|
| 27 |
],
|
| 28 |
author="OpenAI",
|
| 29 |
)
|
|
|
|
| 2 |
|
| 3 |
setup(
|
| 4 |
name="glide-text2im",
|
| 5 |
+
packages=["glide_text2im"],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
install_requires=[
|
| 7 |
"Pillow",
|
| 8 |
"attrs",
|
|
|
|
| 10 |
"filelock",
|
| 11 |
"requests",
|
| 12 |
"tqdm",
|
|
|
|
|
|
|
| 13 |
],
|
| 14 |
author="OpenAI",
|
| 15 |
)
|