Spaces:
Running
Running
Commit
·
2018b94
1
Parent(s):
f5ee3a9
new build
Browse files- .gitattributes +24 -0
- .gitignore +6 -0
- README.md +7 -7
- app.py → demo/app.py +99 -97
- demo/config.py +22 -0
- utils.py → demo/utils.py +62 -56
- requirements.txt +4 -1
- runtime.txt +1 -0
.gitattributes
CHANGED
|
@@ -8,6 +8,8 @@
|
|
| 8 |
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
| 11 |
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
|
@@ -33,3 +35,25 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.lz4 filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.mds filter=lfs diff=lfs merge=lfs -text
|
| 13 |
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 14 |
*.model filter=lfs diff=lfs merge=lfs -text
|
| 15 |
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
|
|
|
| 35 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 36 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 37 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
# Audio files - uncompressed
|
| 39 |
+
*.pcm filter=lfs diff=lfs merge=lfs -text
|
| 40 |
+
*.sam filter=lfs diff=lfs merge=lfs -text
|
| 41 |
+
*.raw filter=lfs diff=lfs merge=lfs -text
|
| 42 |
+
# Audio files - compressed
|
| 43 |
+
*.aac filter=lfs diff=lfs merge=lfs -text
|
| 44 |
+
*.flac filter=lfs diff=lfs merge=lfs -text
|
| 45 |
+
*.mp3 filter=lfs diff=lfs merge=lfs -text
|
| 46 |
+
*.ogg filter=lfs diff=lfs merge=lfs -text
|
| 47 |
+
*.wav filter=lfs diff=lfs merge=lfs -text
|
| 48 |
+
# Image files - uncompressed
|
| 49 |
+
*.bmp filter=lfs diff=lfs merge=lfs -text
|
| 50 |
+
*.gif filter=lfs diff=lfs merge=lfs -text
|
| 51 |
+
*.png filter=lfs diff=lfs merge=lfs -text
|
| 52 |
+
*.tiff filter=lfs diff=lfs merge=lfs -text
|
| 53 |
+
# Image files - compressed
|
| 54 |
+
*.jpg filter=lfs diff=lfs merge=lfs -text
|
| 55 |
+
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
| 56 |
+
*.webp filter=lfs diff=lfs merge=lfs -text
|
| 57 |
+
# Video files - compressed
|
| 58 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
| 59 |
+
*.webm filter=lfs diff=lfs merge=lfs -text
|
.gitignore
CHANGED
|
@@ -153,3 +153,9 @@ dmypy.json
|
|
| 153 |
|
| 154 |
# Cython debug symbols
|
| 155 |
cython_debug/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 153 |
|
| 154 |
# Cython debug symbols
|
| 155 |
cython_debug/
|
| 156 |
+
|
| 157 |
+
# macOS
|
| 158 |
+
.DS_Store
|
| 159 |
+
|
| 160 |
+
# Ruff
|
| 161 |
+
.ruff_cache/
|
README.md
CHANGED
|
@@ -1,14 +1,14 @@
|
|
| 1 |
---
|
| 2 |
title: TransformerRanker
|
| 3 |
-
emoji:
|
| 4 |
colorFrom: yellow
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version:
|
| 8 |
-
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: mit
|
| 11 |
-
short_description:
|
| 12 |
-
---
|
| 13 |
|
| 14 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 1 |
---
|
| 2 |
title: TransformerRanker
|
| 3 |
+
emoji: 🎯🧩
|
| 4 |
colorFrom: yellow
|
| 5 |
+
colorTo: purple
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 5.44.0
|
| 8 |
+
app_file: demo/app.py
|
| 9 |
pinned: false
|
| 10 |
license: mit
|
| 11 |
+
short_description: Efficient LM Ranking for Downstream Tasks
|
| 12 |
+
---
|
| 13 |
|
| 14 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py → demo/app.py
RENAMED
|
@@ -1,127 +1,113 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from datasets import disable_caching, load_dataset
|
| 3 |
-
from transformer_ranker import TransformerRanker
|
| 4 |
-
import traceback
|
| 5 |
|
| 6 |
-
from
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
|
|
|
| 10 |
)
|
| 11 |
|
| 12 |
-
disable_caching()
|
| 13 |
-
|
| 14 |
-
THEME = "pseudolab/huggingface-korea-theme"
|
| 15 |
-
DEFAULT_SAMPLES = 1000
|
| 16 |
-
MAX_SAMPLES = 5000
|
| 17 |
-
LANGUAGE_MODELS = prepare_popular_models('base') + prepare_popular_models('large')
|
| 18 |
|
| 19 |
-
|
| 20 |
-
LANGUAGE_MODELS = ['prajjwal1/bert-tiny'] + list(dict.fromkeys(LANGUAGE_MODELS))
|
| 21 |
-
LANGUAGE_MODELS.insert(LANGUAGE_MODELS.index("bert-base-cased") + 1, "bert-base-uncased")
|
| 22 |
|
| 23 |
-
|
| 24 |
-
DEFAULT_MODELS = [
|
| 25 |
-
"prajjwal1/bert-tiny", "google/electra-small-discriminator",
|
| 26 |
-
"distilbert-base-cased", "sentence-transformers/all-MiniLM-L12-v2"
|
| 27 |
-
]
|
| 28 |
|
|
|
|
| 29 |
|
| 30 |
-
|
| 31 |
|
| 32 |
-
|
| 33 |
|
| 34 |
-
gr.Markdown(
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
-
gr.Markdown("## Step 1: Load a Dataset")
|
| 37 |
with gr.Group():
|
| 38 |
dataset = gr.State(None)
|
| 39 |
|
| 40 |
-
|
| 41 |
-
label="
|
| 42 |
-
placeholder="
|
| 43 |
max_lines=1,
|
| 44 |
)
|
| 45 |
-
select_dataset_button = gr.Button(
|
| 46 |
-
value="Load dataset", interactive=False, variant=DISABLED_BUTTON_VARIANT
|
| 47 |
-
)
|
| 48 |
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
)
|
| 53 |
|
| 54 |
gr.Markdown(
|
| 55 |
-
"
|
| 56 |
-
"
|
| 57 |
-
"[
|
| 58 |
)
|
| 59 |
|
| 60 |
-
|
| 61 |
|
| 62 |
-
with gr.Accordion("Dataset
|
| 63 |
with gr.Row() as dataset_details:
|
| 64 |
-
|
| 65 |
num_samples = gr.State(0)
|
| 66 |
-
num_samples_label = gr.Label("", label="
|
| 67 |
num_samples.change(
|
| 68 |
lambda x: str(x), inputs=[num_samples], outputs=[num_samples_label]
|
| 69 |
)
|
| 70 |
|
| 71 |
with gr.Row():
|
| 72 |
text_column = gr.Dropdown("", label="Text Column")
|
| 73 |
-
text_pair_column = gr.Dropdown("", label="Text Pair
|
| 74 |
|
| 75 |
with gr.Row():
|
| 76 |
-
label_column = gr.Dropdown("", label="
|
| 77 |
-
task_category = gr.Dropdown("", label="Task
|
| 78 |
|
| 79 |
with gr.Group():
|
| 80 |
downsample_ratio = gr.State(0.0)
|
| 81 |
-
|
| 82 |
-
20,
|
| 83 |
)
|
| 84 |
-
downsample_ratio_label = gr.Label("", label="
|
| 85 |
downsample_ratio.change(
|
| 86 |
lambda x: f"{x:.1%}",
|
| 87 |
inputs=[downsample_ratio],
|
| 88 |
outputs=[downsample_ratio_label],
|
| 89 |
)
|
| 90 |
|
| 91 |
-
|
| 92 |
compute_ratio,
|
| 93 |
-
inputs=[
|
| 94 |
outputs=downsample_ratio,
|
| 95 |
)
|
| 96 |
num_samples.change(
|
| 97 |
compute_ratio,
|
| 98 |
-
inputs=[
|
| 99 |
outputs=downsample_ratio,
|
| 100 |
)
|
| 101 |
|
| 102 |
-
#
|
| 103 |
-
def
|
| 104 |
try:
|
| 105 |
-
dataset = load_dataset(
|
| 106 |
-
|
| 107 |
-
except ValueError:
|
| 108 |
-
gr.Warning("
|
| 109 |
|
| 110 |
return (
|
| 111 |
-
gr.update(value="Loaded"
|
| 112 |
-
|
| 113 |
-
dataset_name,
|
| 114 |
dataset,
|
| 115 |
-
*
|
| 116 |
)
|
| 117 |
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
inputs=[
|
| 121 |
outputs=[
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
dataset_name_label,
|
| 125 |
dataset,
|
| 126 |
task_category,
|
| 127 |
text_column,
|
|
@@ -132,53 +118,65 @@ with gr.Blocks(css=CSS, theme=THEME) as demo:
|
|
| 132 |
scroll_to_output=True,
|
| 133 |
)
|
| 134 |
|
| 135 |
-
##########
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
|
| 137 |
-
gr.Markdown("## Step 2: Select a List of Language Models")
|
| 138 |
with gr.Group():
|
| 139 |
model_options = [
|
| 140 |
(model_handle.split("/")[-1], model_handle)
|
| 141 |
-
for model_handle in
|
| 142 |
]
|
| 143 |
models = gr.CheckboxGroup(
|
| 144 |
-
choices=model_options, label="
|
| 145 |
)
|
| 146 |
|
| 147 |
-
##########
|
| 148 |
|
| 149 |
-
gr.Markdown("##
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
|
| 151 |
with gr.Group():
|
| 152 |
-
|
|
|
|
|
|
|
|
|
|
| 153 |
with gr.Row():
|
| 154 |
estimator = gr.Dropdown(
|
| 155 |
choices=["hscore", "logme", "knn"],
|
| 156 |
label="Transferability metric",
|
| 157 |
value="hscore",
|
| 158 |
)
|
| 159 |
-
|
| 160 |
-
layer_pooling = gr.Dropdown(
|
| 161 |
choices=["lastlayer", "layermean", "bestlayer"],
|
| 162 |
-
label="Layer
|
| 163 |
value="layermean",
|
| 164 |
)
|
| 165 |
-
submit_button = gr.Button("Run Ranking", interactive=False, variant=DISABLED_BUTTON_VARIANT)
|
| 166 |
|
| 167 |
-
#
|
| 168 |
dataset.change(
|
| 169 |
-
|
| 170 |
inputs=[dataset, text_column, label_column, task_category],
|
| 171 |
outputs=submit_button
|
| 172 |
)
|
| 173 |
|
| 174 |
label_column.change(
|
| 175 |
-
|
| 176 |
inputs=[dataset, text_column, label_column, task_category],
|
| 177 |
outputs=submit_button
|
| 178 |
)
|
| 179 |
|
| 180 |
text_column.change(
|
| 181 |
-
|
| 182 |
inputs=[dataset, text_column, label_column, task_category],
|
| 183 |
outputs=submit_button
|
| 184 |
)
|
|
@@ -187,7 +185,7 @@ with gr.Blocks(css=CSS, theme=THEME) as demo:
|
|
| 187 |
dataset,
|
| 188 |
downsample_ratio,
|
| 189 |
selected_models,
|
| 190 |
-
|
| 191 |
estimator,
|
| 192 |
text_column,
|
| 193 |
text_pair_column,
|
|
@@ -196,18 +194,18 @@ with gr.Blocks(css=CSS, theme=THEME) as demo:
|
|
| 196 |
progress=gr.Progress(),
|
| 197 |
):
|
| 198 |
|
| 199 |
-
if text_column ==
|
| 200 |
raise gr.Error("Text column is not set.")
|
| 201 |
|
| 202 |
-
if label_column ==
|
| 203 |
raise gr.Error("Label column is not set.")
|
| 204 |
|
| 205 |
-
if task_category ==
|
| 206 |
raise gr.Error(
|
| 207 |
-
"Task category
|
| 208 |
)
|
| 209 |
|
| 210 |
-
if text_pair_column ==
|
| 211 |
text_pair_column = None
|
| 212 |
|
| 213 |
progress(0.0, "Starting")
|
|
@@ -225,7 +223,7 @@ with gr.Blocks(css=CSS, theme=THEME) as demo:
|
|
| 225 |
|
| 226 |
results = ranker.run(
|
| 227 |
models=selected_models,
|
| 228 |
-
layer_aggregator=
|
| 229 |
estimator=estimator,
|
| 230 |
batch_size=64,
|
| 231 |
tracker=tracker,
|
|
@@ -238,11 +236,16 @@ with gr.Blocks(css=CSS, theme=THEME) as demo:
|
|
| 238 |
(i + 1, model, score) for i, (model, score) in enumerate(sorted_results)
|
| 239 |
]
|
| 240 |
except Exception as e:
|
| 241 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 242 |
|
| 243 |
-
gr.Markdown("## Results")
|
| 244 |
ranking_results = gr.Dataframe(
|
| 245 |
-
headers=["Rank", "Model", "Score"],
|
|
|
|
|
|
|
| 246 |
)
|
| 247 |
|
| 248 |
submit_button.click(
|
|
@@ -251,7 +254,7 @@ with gr.Blocks(css=CSS, theme=THEME) as demo:
|
|
| 251 |
dataset,
|
| 252 |
downsample_ratio,
|
| 253 |
models,
|
| 254 |
-
|
| 255 |
estimator,
|
| 256 |
text_column,
|
| 257 |
text_pair_column,
|
|
@@ -262,13 +265,12 @@ with gr.Blocks(css=CSS, theme=THEME) as demo:
|
|
| 262 |
scroll_to_output=True,
|
| 263 |
)
|
| 264 |
|
| 265 |
-
gr.Markdown(
|
| 266 |
-
"*The results are ranked by their transferability score, with the most suitable model listed first. "
|
| 267 |
-
"This ranking allows focusing on the higher-ranked models for further exploration and fine-tuning.*"
|
| 268 |
-
)
|
| 269 |
-
|
| 270 |
gr.Markdown(FOOTER)
|
| 271 |
|
| 272 |
if __name__ == "__main__":
|
|
|
|
|
|
|
| 273 |
demo.queue(default_concurrency_limit=3)
|
|
|
|
|
|
|
| 274 |
demo.launch(max_threads=6)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from datasets import disable_caching, load_dataset
|
| 3 |
+
from transformer_ranker import TransformerRanker
|
|
|
|
| 4 |
|
| 5 |
+
from demo.config import SAMPLE_SIZE, MAX_SAMPLE_SIZE, ALL_LMS, PRESELECTED_LMS, GRADIO_THEME
|
| 6 |
+
from demo.utils import (
|
| 7 |
+
BANNER, FOOTER, CSS, UNSET,
|
| 8 |
+
EmbeddingProgressTracker, compute_ratio,
|
| 9 |
+
validate_dataset, preprocess_dataset, ensure_dataset_is_loaded
|
| 10 |
)
|
| 11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
+
disable_caching()
|
|
|
|
|
|
|
| 14 |
|
| 15 |
+
with gr.Blocks(css=CSS, theme=None) as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
+
gr.Markdown(BANNER)
|
| 18 |
|
| 19 |
+
##### 1. Load from datasets #####
|
| 20 |
|
| 21 |
+
gr.Markdown("## Load Downstream Dataset")
|
| 22 |
|
| 23 |
+
gr.Markdown(
|
| 24 |
+
"Select a dataset from the Hugging Face Hub such as `trec`. "
|
| 25 |
+
"This defines your downstream task."
|
| 26 |
+
)
|
| 27 |
|
|
|
|
| 28 |
with gr.Group():
|
| 29 |
dataset = gr.State(None)
|
| 30 |
|
| 31 |
+
dataset_id = gr.Textbox(
|
| 32 |
+
label="Dataset name",
|
| 33 |
+
placeholder="try: trec, conll2003, ag_news",
|
| 34 |
max_lines=1,
|
| 35 |
)
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
+
load_dataset_button = gr.Button(value="Load data", variant="primary", interactive=True,)
|
| 38 |
+
|
| 39 |
+
# enable loading if dataset exists on hub
|
| 40 |
+
dataset_id.change(validate_dataset, inputs=dataset_id, outputs=load_dataset_button)
|
| 41 |
|
| 42 |
gr.Markdown(
|
| 43 |
+
"Settings auto-configured. "
|
| 44 |
+
"Adjust the downsampling ratio in Dataset Setup, "
|
| 45 |
+
"or use the complete dataset with the [framework](https://github.com/flairNLP/transformer-ranker)."
|
| 46 |
)
|
| 47 |
|
| 48 |
+
##### data preprocessing #####
|
| 49 |
|
| 50 |
+
with gr.Accordion("Dataset Setup", open=False) as dataset_config:
|
| 51 |
with gr.Row() as dataset_details:
|
| 52 |
+
dataset_id_label = gr.Label("", label="Dataset")
|
| 53 |
num_samples = gr.State(0)
|
| 54 |
+
num_samples_label = gr.Label("", label="Dataset size")
|
| 55 |
num_samples.change(
|
| 56 |
lambda x: str(x), inputs=[num_samples], outputs=[num_samples_label]
|
| 57 |
)
|
| 58 |
|
| 59 |
with gr.Row():
|
| 60 |
text_column = gr.Dropdown("", label="Text Column")
|
| 61 |
+
text_pair_column = gr.Dropdown("", label="Text Pair")
|
| 62 |
|
| 63 |
with gr.Row():
|
| 64 |
+
label_column = gr.Dropdown("", label="Labels")
|
| 65 |
+
task_category = gr.Dropdown("", label="Downstream Task")
|
| 66 |
|
| 67 |
with gr.Group():
|
| 68 |
downsample_ratio = gr.State(0.0)
|
| 69 |
+
sampling_rate = gr.Slider(
|
| 70 |
+
20, MAX_SAMPLE_SIZE, label="Sampling rate", value=SAMPLE_SIZE, step=1
|
| 71 |
)
|
| 72 |
+
downsample_ratio_label = gr.Label("", label="Sampling rate")
|
| 73 |
downsample_ratio.change(
|
| 74 |
lambda x: f"{x:.1%}",
|
| 75 |
inputs=[downsample_ratio],
|
| 76 |
outputs=[downsample_ratio_label],
|
| 77 |
)
|
| 78 |
|
| 79 |
+
sampling_rate.change(
|
| 80 |
compute_ratio,
|
| 81 |
+
inputs=[sampling_rate, num_samples],
|
| 82 |
outputs=downsample_ratio,
|
| 83 |
)
|
| 84 |
num_samples.change(
|
| 85 |
compute_ratio,
|
| 86 |
+
inputs=[sampling_rate, num_samples],
|
| 87 |
outputs=downsample_ratio,
|
| 88 |
)
|
| 89 |
|
| 90 |
+
# load and show details
|
| 91 |
+
def load_hf_dataset(dataset_id):
|
| 92 |
try:
|
| 93 |
+
dataset = load_dataset(dataset_id, trust_remote_code=True)
|
| 94 |
+
dataset_details = preprocess_dataset(dataset)
|
| 95 |
+
except ValueError as e:
|
| 96 |
+
gr.Warning("Collections not supported. Load one dataset only.")
|
| 97 |
|
| 98 |
return (
|
| 99 |
+
gr.update(value="Loaded"),
|
| 100 |
+
dataset_id,
|
|
|
|
| 101 |
dataset,
|
| 102 |
+
*dataset_details
|
| 103 |
)
|
| 104 |
|
| 105 |
+
load_dataset_button.click(
|
| 106 |
+
load_hf_dataset,
|
| 107 |
+
inputs=[dataset_id],
|
| 108 |
outputs=[
|
| 109 |
+
load_dataset_button,
|
| 110 |
+
dataset_id_label,
|
|
|
|
| 111 |
dataset,
|
| 112 |
task_category,
|
| 113 |
text_column,
|
|
|
|
| 118 |
scroll_to_output=True,
|
| 119 |
)
|
| 120 |
|
| 121 |
+
########## 2. Select LMs ##########
|
| 122 |
+
|
| 123 |
+
gr.Markdown("## Select Language Models")
|
| 124 |
+
|
| 125 |
+
gr.Markdown(
|
| 126 |
+
"Add two or more pretrained models for ranking. "
|
| 127 |
+
"Go with small models since this demo runs on CPU."
|
| 128 |
+
)
|
| 129 |
|
|
|
|
| 130 |
with gr.Group():
|
| 131 |
model_options = [
|
| 132 |
(model_handle.split("/")[-1], model_handle)
|
| 133 |
+
for model_handle in ALL_LMS
|
| 134 |
]
|
| 135 |
models = gr.CheckboxGroup(
|
| 136 |
+
choices=model_options, label="Model List", value=PRESELECTED_LMS
|
| 137 |
)
|
| 138 |
|
| 139 |
+
########## 3. Run ranking ##########
|
| 140 |
|
| 141 |
+
gr.Markdown("## Rank Language Models")
|
| 142 |
+
|
| 143 |
+
gr.Markdown(
|
| 144 |
+
"Rank models by transferability to your downstream task. "
|
| 145 |
+
"Adjust the metric and layer aggregation in Advanced Settings."
|
| 146 |
+
)
|
| 147 |
|
| 148 |
with gr.Group():
|
| 149 |
+
|
| 150 |
+
submit_button = gr.Button("Run ranking", variant="primary", interactive=False)
|
| 151 |
+
|
| 152 |
+
with gr.Accordion("Advanced Settings", open=False):
|
| 153 |
with gr.Row():
|
| 154 |
estimator = gr.Dropdown(
|
| 155 |
choices=["hscore", "logme", "knn"],
|
| 156 |
label="Transferability metric",
|
| 157 |
value="hscore",
|
| 158 |
)
|
| 159 |
+
layer_aggregator = gr.Dropdown(
|
|
|
|
| 160 |
choices=["lastlayer", "layermean", "bestlayer"],
|
| 161 |
+
label="Layer aggregation",
|
| 162 |
value="layermean",
|
| 163 |
)
|
|
|
|
| 164 |
|
| 165 |
+
# ranking button works after dataset loads
|
| 166 |
dataset.change(
|
| 167 |
+
ensure_dataset_is_loaded,
|
| 168 |
inputs=[dataset, text_column, label_column, task_category],
|
| 169 |
outputs=submit_button
|
| 170 |
)
|
| 171 |
|
| 172 |
label_column.change(
|
| 173 |
+
ensure_dataset_is_loaded,
|
| 174 |
inputs=[dataset, text_column, label_column, task_category],
|
| 175 |
outputs=submit_button
|
| 176 |
)
|
| 177 |
|
| 178 |
text_column.change(
|
| 179 |
+
ensure_dataset_is_loaded,
|
| 180 |
inputs=[dataset, text_column, label_column, task_category],
|
| 181 |
outputs=submit_button
|
| 182 |
)
|
|
|
|
| 185 |
dataset,
|
| 186 |
downsample_ratio,
|
| 187 |
selected_models,
|
| 188 |
+
layer_aggregator,
|
| 189 |
estimator,
|
| 190 |
text_column,
|
| 191 |
text_pair_column,
|
|
|
|
| 194 |
progress=gr.Progress(),
|
| 195 |
):
|
| 196 |
|
| 197 |
+
if text_column == UNSET:
|
| 198 |
raise gr.Error("Text column is not set.")
|
| 199 |
|
| 200 |
+
if label_column == UNSET:
|
| 201 |
raise gr.Error("Label column is not set.")
|
| 202 |
|
| 203 |
+
if task_category == UNSET:
|
| 204 |
raise gr.Error(
|
| 205 |
+
"Task category not set. Dataset must support classification or regression."
|
| 206 |
)
|
| 207 |
|
| 208 |
+
if text_pair_column == UNSET:
|
| 209 |
text_pair_column = None
|
| 210 |
|
| 211 |
progress(0.0, "Starting")
|
|
|
|
| 223 |
|
| 224 |
results = ranker.run(
|
| 225 |
models=selected_models,
|
| 226 |
+
layer_aggregator=layer_aggregator,
|
| 227 |
estimator=estimator,
|
| 228 |
batch_size=64,
|
| 229 |
tracker=tracker,
|
|
|
|
| 236 |
(i + 1, model, score) for i, (model, score) in enumerate(sorted_results)
|
| 237 |
]
|
| 238 |
except Exception as e:
|
| 239 |
+
print(e)
|
| 240 |
+
gr.Warning(f"Ranking issue: {e}")
|
| 241 |
+
return []
|
| 242 |
+
|
| 243 |
+
gr.Markdown("Ranking table → higher scores indicate better downstream performance.")
|
| 244 |
|
|
|
|
| 245 |
ranking_results = gr.Dataframe(
|
| 246 |
+
headers=["Rank", "Model", "Score"],
|
| 247 |
+
datatype=["number", "str", "number"],
|
| 248 |
+
value=[["-", "-", "-"]]
|
| 249 |
)
|
| 250 |
|
| 251 |
submit_button.click(
|
|
|
|
| 254 |
dataset,
|
| 255 |
downsample_ratio,
|
| 256 |
models,
|
| 257 |
+
layer_aggregator,
|
| 258 |
estimator,
|
| 259 |
text_column,
|
| 260 |
text_pair_column,
|
|
|
|
| 265 |
scroll_to_output=True,
|
| 266 |
)
|
| 267 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 268 |
gr.Markdown(FOOTER)
|
| 269 |
|
| 270 |
if __name__ == "__main__":
|
| 271 |
+
|
| 272 |
+
# run up to 3 requests at once
|
| 273 |
demo.queue(default_concurrency_limit=3)
|
| 274 |
+
|
| 275 |
+
# run with 6 workers
|
| 276 |
demo.launch(max_threads=6)
|
demo/config.py
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
SAMPLE_SIZE = 1000
|
| 2 |
+
MAX_SAMPLE_SIZE = 5000
|
| 3 |
+
GRADIO_THEME = None
|
| 4 |
+
|
| 5 |
+
ALL_LMS = [
|
| 6 |
+
# tiny
|
| 7 |
+
"prajjwal1/bert-tiny", "arnir0/Tiny-LLM",
|
| 8 |
+
"sentence-transformers/all-MiniLM-L12-v2", "google/electra-small-discriminator",
|
| 9 |
+
"distilbert-base-cased", "typeform/distilroberta-base-v2",
|
| 10 |
+
|
| 11 |
+
# small
|
| 12 |
+
"bert-base-cased", "roberta-base", "google/electra-base-discriminator", "microsoft/deberta-v3-base",
|
| 13 |
+
"KISTI-AI/scideberta", "sentence-transformers/all-mpnet-base-v2", "huggingface/CodeBERTa-small-v1",
|
| 14 |
+
"FacebookAI/xlm-roberta-base", "microsoft/mdeberta-v3-base", "HuggingFaceTB/SmolLM2-135M"
|
| 15 |
+
]
|
| 16 |
+
|
| 17 |
+
PRESELECTED_LMS = [
|
| 18 |
+
"prajjwal1/bert-tiny",
|
| 19 |
+
"sentence-transformers/all-MiniLM-L12-v2",
|
| 20 |
+
"arnir0/Tiny-LLM",
|
| 21 |
+
"google/electra-small-discriminator",
|
| 22 |
+
]
|
utils.py → demo/utils.py
RENAMED
|
@@ -1,118 +1,118 @@
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from datasets import concatenate_datasets
|
| 3 |
from huggingface_hub import HfApi
|
| 4 |
from huggingface_hub.errors import HFValidationError
|
| 5 |
from requests.exceptions import HTTPError
|
| 6 |
-
from transformer_ranker import Result
|
| 7 |
from transformer_ranker.datacleaner import DatasetCleaner, TaskCategory
|
| 8 |
from transformer_ranker.embedder import Embedder
|
| 9 |
-
import math
|
| 10 |
|
| 11 |
-
|
| 12 |
-
|
| 13 |
|
| 14 |
-
HEADLINE = """
|
| 15 |
-
<h1 align="center">TransformerRanker</h1>
|
| 16 |
<p align="center" style="max-width: 560px; margin: auto;">
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
TransformerRanker will quickly estimate which of these LMs will perform best on the given dataset!
|
| 20 |
</p>
|
|
|
|
| 21 |
<p align="center" style="font-weight: bold; margin-top: 20px; display: flex; justify-content: center; gap: 10px;">
|
| 22 |
<a href="https://github.com/flairNLP/transformer-ranker">
|
| 23 |
-
<img src="https://img.shields.io/badge/
|
|
|
|
|
|
|
|
|
|
| 24 |
</a>
|
| 25 |
<a href="https://pypi.org/project/transformer-ranker/">
|
| 26 |
-
<img src="https://img.shields.io/badge/Package-orange?style=flat&logo=python" alt="
|
| 27 |
</a>
|
| 28 |
-
<a href="https://github.com/flairNLP/transformer-ranker/blob/main/
|
| 29 |
-
<img src="https://img.shields.io/badge/Tutorials-blue?style=flat&logo=readthedocs&logoColor=white" alt="
|
| 30 |
</a>
|
| 31 |
-
<img src="https://img.shields.io/badge/license-MIT-green?style=flat" alt="License: MIT">
|
| 32 |
</p>
|
|
|
|
| 33 |
<p align="center">Developed at <a href="https://www.informatik.hu-berlin.de/en/forschung-en/gebiete/ml-en/">Humboldt University of Berlin</a>.</p>
|
| 34 |
"""
|
| 35 |
|
| 36 |
FOOTER = """
|
| 37 |
-
**Note:**
|
| 38 |
-
**
|
| 39 |
-
For feedback, suggestions, or contributions, reach out via GitHub or leave a message in the [discussions](https://huggingface.co/spaces/lukasgarbas/transformer-ranker/discussions).
|
| 40 |
"""
|
| 41 |
|
| 42 |
CSS = """
|
| 43 |
-
.gradio-container{
|
| 44 |
-
|
| 45 |
-
|
|
|
|
| 46 |
"""
|
| 47 |
|
|
|
|
| 48 |
|
| 49 |
hf_api = HfApi()
|
|
|
|
| 50 |
|
| 51 |
|
| 52 |
-
def
|
| 53 |
-
"""
|
| 54 |
try:
|
| 55 |
-
hf_api.dataset_info(dataset_name)
|
| 56 |
-
return gr.update(interactive=True
|
| 57 |
|
| 58 |
except (HTTPError, HFValidationError):
|
| 59 |
-
return gr.update(value="Load
|
| 60 |
-
|
| 61 |
-
def check_dataset_is_loaded(dataset, text_column, label_column, task_category):
|
| 62 |
-
if dataset and text_column != "-" and label_column != "-" and task_category != "-":
|
| 63 |
-
return gr.update(interactive=True, variant=ENABLED_BUTTON_VARIANT)
|
| 64 |
-
else:
|
| 65 |
-
return gr.update(interactive=False, variant=DISABLED_BUTTON_VARIANT)
|
| 66 |
|
| 67 |
|
| 68 |
-
def
|
| 69 |
-
"""
|
| 70 |
-
|
| 71 |
-
datacleaner = DatasetCleaner()
|
| 72 |
|
| 73 |
try:
|
| 74 |
-
text_column =
|
| 75 |
except ValueError:
|
| 76 |
-
gr.Warning("Text column
|
| 77 |
-
text_column =
|
| 78 |
|
| 79 |
try:
|
| 80 |
-
label_column =
|
| 81 |
except ValueError:
|
| 82 |
-
gr.Warning("Label column
|
| 83 |
-
label_column =
|
| 84 |
|
| 85 |
-
task_category =
|
| 86 |
-
if label_column !=
|
| 87 |
try:
|
| 88 |
-
|
| 89 |
-
task_category = datacleaner._find_task_category(joined_dataset, label_column)
|
| 90 |
except ValueError:
|
| 91 |
-
gr.Warning(
|
| 92 |
-
"Task category could not be determined. The dataset must support classification or regression tasks.",
|
| 93 |
-
)
|
| 94 |
-
pass
|
| 95 |
|
| 96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
|
|
|
|
|
|
|
|
|
|
| 98 |
return (
|
|
|
|
| 99 |
gr.update(
|
| 100 |
value=task_category,
|
| 101 |
choices=[str(t) for t in TaskCategory],
|
| 102 |
interactive=True,
|
| 103 |
),
|
| 104 |
gr.update(
|
| 105 |
-
value=text_column, choices=
|
| 106 |
),
|
| 107 |
gr.update(
|
| 108 |
-
value=
|
| 109 |
),
|
| 110 |
gr.update(
|
| 111 |
-
value=label_column, choices=
|
| 112 |
),
|
| 113 |
num_samples,
|
| 114 |
)
|
| 115 |
-
|
| 116 |
|
| 117 |
def compute_ratio(num_samples_to_use, num_samples):
|
| 118 |
if num_samples > 0:
|
|
@@ -121,13 +121,20 @@ def compute_ratio(num_samples_to_use, num_samples):
|
|
| 121 |
return 0.0
|
| 122 |
|
| 123 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
def ensure_one_lm_selected(checkbox_values, previous_values):
|
| 125 |
if not any(checkbox_values):
|
| 126 |
return previous_values
|
| 127 |
return checkbox_values
|
| 128 |
|
| 129 |
|
| 130 |
-
#
|
| 131 |
_old_embed = Embedder.embed
|
| 132 |
|
| 133 |
def _new_embed(embedder, sentences, batch_size: int = 32, **kw):
|
|
@@ -202,4 +209,3 @@ class EmbeddingProgressTracker:
|
|
| 202 |
progress += (self.batches_complete / self.batches_total) / self.total
|
| 203 |
|
| 204 |
self.progress_bar(progress=progress, desc=description)
|
| 205 |
-
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
|
| 3 |
import gradio as gr
|
| 4 |
from datasets import concatenate_datasets
|
| 5 |
from huggingface_hub import HfApi
|
| 6 |
from huggingface_hub.errors import HFValidationError
|
| 7 |
from requests.exceptions import HTTPError
|
|
|
|
| 8 |
from transformer_ranker.datacleaner import DatasetCleaner, TaskCategory
|
| 9 |
from transformer_ranker.embedder import Embedder
|
|
|
|
| 10 |
|
| 11 |
+
BANNER = """
|
| 12 |
+
<h1 align="center">🔥 TransformerRanker 🔥</h1>
|
| 13 |
|
|
|
|
|
|
|
| 14 |
<p align="center" style="max-width: 560px; margin: auto;">
|
| 15 |
+
Find the best language model for your downstream task.
|
| 16 |
+
Load a dataset, select models from the 🤗 Hub, and rank them by <strong>transferability</strong>.
|
|
|
|
| 17 |
</p>
|
| 18 |
+
|
| 19 |
<p align="center" style="font-weight: bold; margin-top: 20px; display: flex; justify-content: center; gap: 10px;">
|
| 20 |
<a href="https://github.com/flairNLP/transformer-ranker">
|
| 21 |
+
<img src="https://img.shields.io/badge/Code Repo-black?style=flat&logo=github" alt="repository">
|
| 22 |
+
</a>
|
| 23 |
+
<a href="https://opensource.org/licenses/MIT">
|
| 24 |
+
<img src="https://img.shields.io/badge/License-MIT-brightgreen?style=flat" alt="license">
|
| 25 |
</a>
|
| 26 |
<a href="https://pypi.org/project/transformer-ranker/">
|
| 27 |
+
<img src="https://img.shields.io/badge/Package-orange?style=flat&logo=python" alt="package">
|
| 28 |
</a>
|
| 29 |
+
<a href="https://github.com/flairNLP/transformer-ranker/blob/main/docs/01-walkthrough.md">
|
| 30 |
+
<img src="https://img.shields.io/badge/Tutorials-blue?style=flat&logo=readthedocs&logoColor=white" alt="tutorials">
|
| 31 |
</a>
|
|
|
|
| 32 |
</p>
|
| 33 |
+
|
| 34 |
<p align="center">Developed at <a href="https://www.informatik.hu-berlin.de/en/forschung-en/gebiete/ml-en/">Humboldt University of Berlin</a>.</p>
|
| 35 |
"""
|
| 36 |
|
| 37 |
FOOTER = """
|
| 38 |
+
**Note:** CPU-only quick demo. **Built by:** @lukasgarbas & @plonerma
|
| 39 |
+
**Questions?** Open a [GitHub issue](https://github.com/flairNLP/transformer-ranker/issues) 🔫.
|
|
|
|
| 40 |
"""
|
| 41 |
|
| 42 |
CSS = """
|
| 43 |
+
.gradio-container {
|
| 44 |
+
max-width: 800px;
|
| 45 |
+
margin: auto;
|
| 46 |
+
}
|
| 47 |
"""
|
| 48 |
|
| 49 |
+
UNSET = "-"
|
| 50 |
|
| 51 |
hf_api = HfApi()
|
| 52 |
+
preprocessing = DatasetCleaner()
|
| 53 |
|
| 54 |
|
| 55 |
+
def validate_dataset(dataset_name):
|
| 56 |
+
"""Enable if dataset exists on Hub."""
|
| 57 |
try:
|
| 58 |
+
hf_api.dataset_info(dataset_name) # quick dataset info call
|
| 59 |
+
return gr.update(interactive=True)
|
| 60 |
|
| 61 |
except (HTTPError, HFValidationError):
|
| 62 |
+
return gr.update(value="Load data", interactive=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
|
| 65 |
+
def preprocess_dataset(dataset):
|
| 66 |
+
"""Use data preprocessing to find text/label columns and task category."""
|
| 67 |
+
data = concatenate_datasets(list(dataset.values()))
|
|
|
|
| 68 |
|
| 69 |
try:
|
| 70 |
+
text_column = preprocessing._find_column(data, "text column")
|
| 71 |
except ValueError:
|
| 72 |
+
gr.Warning("Text column not auto-detected — select in settings.")
|
| 73 |
+
text_column = UNSET
|
| 74 |
|
| 75 |
try:
|
| 76 |
+
label_column = preprocessing._find_column(data, "label column")
|
| 77 |
except ValueError:
|
| 78 |
+
gr.Warning("Label column not auto-detected — select in settings.")
|
| 79 |
+
label_column = UNSET
|
| 80 |
|
| 81 |
+
task_category = UNSET
|
| 82 |
+
if label_column != UNSET:
|
| 83 |
try:
|
| 84 |
+
task_category = preprocessing._find_task_category(data, label_column)
|
|
|
|
| 85 |
except ValueError:
|
| 86 |
+
gr.Warning("Task category not auto-detected — framework supports classification, regression.")
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
+
text_column = gr.update(value=text_column, choices=data.column_names, interactive=True)
|
| 89 |
+
label_column = gr.update(value=label_column, choices=data.column_names, interactive=True)
|
| 90 |
+
text_pair = gr.update(value=UNSET, choices=[UNSET, *data.column_names], interactive=True)
|
| 91 |
+
task_category = gr.update(value=task_category, choices=[str(t) for t in TaskCategory], interactive=True)
|
| 92 |
+
sample_size = len(data)
|
| 93 |
|
| 94 |
+
return task_category, text_column, text_pair, label_column, sample_size
|
| 95 |
+
|
| 96 |
+
"""
|
| 97 |
return (
|
| 98 |
+
text_column,
|
| 99 |
gr.update(
|
| 100 |
value=task_category,
|
| 101 |
choices=[str(t) for t in TaskCategory],
|
| 102 |
interactive=True,
|
| 103 |
),
|
| 104 |
gr.update(
|
| 105 |
+
value=text_column, choices=data.column_names, interactive=True
|
| 106 |
),
|
| 107 |
gr.update(
|
| 108 |
+
value=UNSET, choices=[UNSET, *data.column_names], interactive=True
|
| 109 |
),
|
| 110 |
gr.update(
|
| 111 |
+
value=label_column, choices=data.column_names, interactive=True
|
| 112 |
),
|
| 113 |
num_samples,
|
| 114 |
)
|
| 115 |
+
"""
|
| 116 |
|
| 117 |
def compute_ratio(num_samples_to_use, num_samples):
|
| 118 |
if num_samples > 0:
|
|
|
|
| 121 |
return 0.0
|
| 122 |
|
| 123 |
|
| 124 |
+
def ensure_dataset_is_loaded(dataset, text_column, label_column, task_category):
|
| 125 |
+
if dataset and text_column != UNSET and label_column != UNSET and task_category != UNSET:
|
| 126 |
+
return gr.update(interactive=True)
|
| 127 |
+
else:
|
| 128 |
+
return gr.update(interactive=False)
|
| 129 |
+
|
| 130 |
+
|
| 131 |
def ensure_one_lm_selected(checkbox_values, previous_values):
|
| 132 |
if not any(checkbox_values):
|
| 133 |
return previous_values
|
| 134 |
return checkbox_values
|
| 135 |
|
| 136 |
|
| 137 |
+
# apply monkey patch to enable callbacks
|
| 138 |
_old_embed = Embedder.embed
|
| 139 |
|
| 140 |
def _new_embed(embedder, sentences, batch_size: int = 32, **kw):
|
|
|
|
| 209 |
progress += (self.batches_complete / self.batches_total) / self.total
|
| 210 |
|
| 211 |
self.progress_bar(progress=progress, desc=description)
|
|
|
requirements.txt
CHANGED
|
@@ -1,2 +1,5 @@
|
|
| 1 |
-
gradio>=
|
| 2 |
transformer-ranker==0.1.2
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio>=5.0
|
| 2 |
transformer-ranker==0.1.2
|
| 3 |
+
transformers==4.41.0
|
| 4 |
+
datasets==3.6
|
| 5 |
+
protobuf
|
runtime.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
python-3.12
|