Spaces:
Running
Running
Delete upstream demos.
Browse files- examples/Airlines demo.lynxkite.json +0 -0
- examples/Image processing.lynxkite.json +0 -303
- examples/Image table.lynxkite.json +0 -364
- examples/Model definition.lynxkite.json +0 -671
- examples/Model use.lynxkite.json +0 -0
- examples/Multi-output demo.lynxkite.json +0 -301
- examples/NetworkX demo.lynxkite.json +0 -0
- examples/Word2vec.lynxkite.json +0 -0
- examples/fake_data.py +0 -21
- examples/make_image_table.py +0 -11
- examples/matplotlib_example.py +0 -34
- examples/multi_output_demo.py +0 -24
- examples/ode_lstm.py +0 -54
- examples/requirements.txt +0 -3
- examples/sql.lynxkite.json +0 -0
- examples/uploads/example-pizza.md +0 -136
- examples/uploads/molecules2.csv +0 -4
- examples/uploads/plus-one-dataset.parquet +0 -0
- examples/word2vec.py +0 -27
examples/Airlines demo.lynxkite.json
DELETED
|
The diff for this file is too large to render.
See raw diff
|
|
|
examples/Image processing.lynxkite.json
DELETED
|
@@ -1,303 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"edges": [
|
| 3 |
-
{
|
| 4 |
-
"id": "xy-edge__Open image 1output-View image 1image",
|
| 5 |
-
"source": "Open image 1",
|
| 6 |
-
"sourceHandle": "output",
|
| 7 |
-
"target": "View image 1",
|
| 8 |
-
"targetHandle": "image"
|
| 9 |
-
},
|
| 10 |
-
{
|
| 11 |
-
"id": "xy-edge__To grayscale 1output-View image 2image",
|
| 12 |
-
"source": "To grayscale 1",
|
| 13 |
-
"sourceHandle": "output",
|
| 14 |
-
"target": "View image 2",
|
| 15 |
-
"targetHandle": "image"
|
| 16 |
-
},
|
| 17 |
-
{
|
| 18 |
-
"id": "xy-edge__Blur 1output-To grayscale 1image",
|
| 19 |
-
"source": "Blur 1",
|
| 20 |
-
"sourceHandle": "output",
|
| 21 |
-
"target": "To grayscale 1",
|
| 22 |
-
"targetHandle": "image"
|
| 23 |
-
},
|
| 24 |
-
{
|
| 25 |
-
"id": "Open image 1 Flip vertically 1",
|
| 26 |
-
"source": "Open image 1",
|
| 27 |
-
"sourceHandle": "output",
|
| 28 |
-
"target": "Flip vertically 1",
|
| 29 |
-
"targetHandle": "image"
|
| 30 |
-
},
|
| 31 |
-
{
|
| 32 |
-
"id": "Flip vertically 1 Blur 1",
|
| 33 |
-
"source": "Flip vertically 1",
|
| 34 |
-
"sourceHandle": "output",
|
| 35 |
-
"target": "Blur 1",
|
| 36 |
-
"targetHandle": "image"
|
| 37 |
-
}
|
| 38 |
-
],
|
| 39 |
-
"env": "Pillow",
|
| 40 |
-
"nodes": [
|
| 41 |
-
{
|
| 42 |
-
"data": {
|
| 43 |
-
"__execution_delay": 0.0,
|
| 44 |
-
"collapsed": null,
|
| 45 |
-
"display": null,
|
| 46 |
-
"error": null,
|
| 47 |
-
"input_metadata": null,
|
| 48 |
-
"meta": {
|
| 49 |
-
"inputs": [],
|
| 50 |
-
"name": "Open image",
|
| 51 |
-
"outputs": [
|
| 52 |
-
{
|
| 53 |
-
"name": "output",
|
| 54 |
-
"position": "right",
|
| 55 |
-
"type": {
|
| 56 |
-
"type": "None"
|
| 57 |
-
}
|
| 58 |
-
}
|
| 59 |
-
],
|
| 60 |
-
"params": [
|
| 61 |
-
{
|
| 62 |
-
"default": null,
|
| 63 |
-
"name": "filename",
|
| 64 |
-
"type": {
|
| 65 |
-
"type": "<class 'str'>"
|
| 66 |
-
}
|
| 67 |
-
}
|
| 68 |
-
],
|
| 69 |
-
"type": "basic"
|
| 70 |
-
},
|
| 71 |
-
"params": {
|
| 72 |
-
"filename": "https://media.licdn.com/dms/image/v2/C4E03AQEq4tdJKQiNHQ/profile-displayphoto-shrink_200_200/profile-displayphoto-shrink_200_200/0/1657270040827?e=2147483647&v=beta&t=lDxix0_0-_K7NUFqgPdzxY5-P7f73bWpPS_XRre842c"
|
| 73 |
-
},
|
| 74 |
-
"status": "done",
|
| 75 |
-
"title": "Open image"
|
| 76 |
-
},
|
| 77 |
-
"dragHandle": ".bg-primary",
|
| 78 |
-
"height": 222.0,
|
| 79 |
-
"id": "Open image 1",
|
| 80 |
-
"parentId": null,
|
| 81 |
-
"position": {
|
| 82 |
-
"x": -316.51795927908694,
|
| 83 |
-
"y": 122.80901061526373
|
| 84 |
-
},
|
| 85 |
-
"type": "basic",
|
| 86 |
-
"width": 422.0
|
| 87 |
-
},
|
| 88 |
-
{
|
| 89 |
-
"data": {
|
| 90 |
-
"display": "",
|
| 91 |
-
"error": null,
|
| 92 |
-
"input_metadata": null,
|
| 93 |
-
"meta": {
|
| 94 |
-
"inputs": [
|
| 95 |
-
{
|
| 96 |
-
"name": "image",
|
| 97 |
-
"position": "left",
|
| 98 |
-
"type": {
|
| 99 |
-
"type": "<module 'PIL.Image' from '/media/nvme/darabos/lynxkite-2024/.venv/lib/python3.11/site-packages/PIL/Image.py'>"
|
| 100 |
-
}
|
| 101 |
-
}
|
| 102 |
-
],
|
| 103 |
-
"name": "View image",
|
| 104 |
-
"outputs": [],
|
| 105 |
-
"params": [],
|
| 106 |
-
"type": "image"
|
| 107 |
-
},
|
| 108 |
-
"params": {},
|
| 109 |
-
"status": "done",
|
| 110 |
-
"title": "View image"
|
| 111 |
-
},
|
| 112 |
-
"dragHandle": ".bg-primary",
|
| 113 |
-
"height": 288.0,
|
| 114 |
-
"id": "View image 1",
|
| 115 |
-
"parentId": null,
|
| 116 |
-
"position": {
|
| 117 |
-
"x": 371.2152385614552,
|
| 118 |
-
"y": -243.68185336918702
|
| 119 |
-
},
|
| 120 |
-
"type": "image",
|
| 121 |
-
"width": 265.0
|
| 122 |
-
},
|
| 123 |
-
{
|
| 124 |
-
"data": {
|
| 125 |
-
"display": "",
|
| 126 |
-
"error": null,
|
| 127 |
-
"input_metadata": null,
|
| 128 |
-
"meta": {
|
| 129 |
-
"inputs": [
|
| 130 |
-
{
|
| 131 |
-
"name": "image",
|
| 132 |
-
"position": "left",
|
| 133 |
-
"type": {
|
| 134 |
-
"type": "<module 'PIL.Image' from '/media/nvme/darabos/lynxkite-2024/.venv/lib/python3.11/site-packages/PIL/Image.py'>"
|
| 135 |
-
}
|
| 136 |
-
}
|
| 137 |
-
],
|
| 138 |
-
"name": "View image",
|
| 139 |
-
"outputs": [],
|
| 140 |
-
"params": [],
|
| 141 |
-
"type": "image"
|
| 142 |
-
},
|
| 143 |
-
"params": {},
|
| 144 |
-
"status": "done",
|
| 145 |
-
"title": "View image"
|
| 146 |
-
},
|
| 147 |
-
"dragHandle": ".bg-primary",
|
| 148 |
-
"height": 456.0,
|
| 149 |
-
"id": "View image 2",
|
| 150 |
-
"parentId": null,
|
| 151 |
-
"position": {
|
| 152 |
-
"x": 1068.1904563045216,
|
| 153 |
-
"y": 313.7040149772122
|
| 154 |
-
},
|
| 155 |
-
"type": "image",
|
| 156 |
-
"width": 398.0
|
| 157 |
-
},
|
| 158 |
-
{
|
| 159 |
-
"data": {
|
| 160 |
-
"__execution_delay": null,
|
| 161 |
-
"collapsed": true,
|
| 162 |
-
"display": null,
|
| 163 |
-
"error": null,
|
| 164 |
-
"input_metadata": null,
|
| 165 |
-
"meta": {
|
| 166 |
-
"inputs": [
|
| 167 |
-
{
|
| 168 |
-
"name": "image",
|
| 169 |
-
"position": "left",
|
| 170 |
-
"type": {
|
| 171 |
-
"type": "<module 'PIL.Image' from '/media/nvme/darabos/lynxkite-2024/.venv/lib/python3.11/site-packages/PIL/Image.py'>"
|
| 172 |
-
}
|
| 173 |
-
}
|
| 174 |
-
],
|
| 175 |
-
"name": "To grayscale",
|
| 176 |
-
"outputs": [
|
| 177 |
-
{
|
| 178 |
-
"name": "output",
|
| 179 |
-
"position": "right",
|
| 180 |
-
"type": {
|
| 181 |
-
"type": "None"
|
| 182 |
-
}
|
| 183 |
-
}
|
| 184 |
-
],
|
| 185 |
-
"params": [],
|
| 186 |
-
"type": "basic"
|
| 187 |
-
},
|
| 188 |
-
"params": {},
|
| 189 |
-
"status": "done",
|
| 190 |
-
"title": "To grayscale"
|
| 191 |
-
},
|
| 192 |
-
"dragHandle": ".bg-primary",
|
| 193 |
-
"height": 200.0,
|
| 194 |
-
"id": "To grayscale 1",
|
| 195 |
-
"parentId": null,
|
| 196 |
-
"position": {
|
| 197 |
-
"x": 788.18031953735,
|
| 198 |
-
"y": 541.1434137066244
|
| 199 |
-
},
|
| 200 |
-
"type": "basic",
|
| 201 |
-
"width": 200.0
|
| 202 |
-
},
|
| 203 |
-
{
|
| 204 |
-
"data": {
|
| 205 |
-
"__execution_delay": 0.0,
|
| 206 |
-
"collapsed": null,
|
| 207 |
-
"display": null,
|
| 208 |
-
"error": null,
|
| 209 |
-
"input_metadata": null,
|
| 210 |
-
"meta": {
|
| 211 |
-
"inputs": [
|
| 212 |
-
{
|
| 213 |
-
"name": "image",
|
| 214 |
-
"position": "left",
|
| 215 |
-
"type": {
|
| 216 |
-
"type": "<module 'PIL.Image' from '/media/nvme/darabos/lynxkite-2024/.venv/lib/python3.11/site-packages/PIL/Image.py'>"
|
| 217 |
-
}
|
| 218 |
-
}
|
| 219 |
-
],
|
| 220 |
-
"name": "Blur",
|
| 221 |
-
"outputs": [
|
| 222 |
-
{
|
| 223 |
-
"name": "output",
|
| 224 |
-
"position": "right",
|
| 225 |
-
"type": {
|
| 226 |
-
"type": "None"
|
| 227 |
-
}
|
| 228 |
-
}
|
| 229 |
-
],
|
| 230 |
-
"params": [
|
| 231 |
-
{
|
| 232 |
-
"default": 5.0,
|
| 233 |
-
"name": "radius",
|
| 234 |
-
"type": {
|
| 235 |
-
"type": "<class 'float'>"
|
| 236 |
-
}
|
| 237 |
-
}
|
| 238 |
-
],
|
| 239 |
-
"type": "basic"
|
| 240 |
-
},
|
| 241 |
-
"params": {
|
| 242 |
-
"radius": "5"
|
| 243 |
-
},
|
| 244 |
-
"status": "done",
|
| 245 |
-
"title": "Blur"
|
| 246 |
-
},
|
| 247 |
-
"dragHandle": ".bg-primary",
|
| 248 |
-
"height": 200.0,
|
| 249 |
-
"id": "Blur 1",
|
| 250 |
-
"parentId": null,
|
| 251 |
-
"position": {
|
| 252 |
-
"x": 505.15961556359304,
|
| 253 |
-
"y": 539.8477981917164
|
| 254 |
-
},
|
| 255 |
-
"type": "basic",
|
| 256 |
-
"width": 200.0
|
| 257 |
-
},
|
| 258 |
-
{
|
| 259 |
-
"data": {
|
| 260 |
-
"__execution_delay": null,
|
| 261 |
-
"collapsed": true,
|
| 262 |
-
"display": null,
|
| 263 |
-
"error": null,
|
| 264 |
-
"input_metadata": null,
|
| 265 |
-
"meta": {
|
| 266 |
-
"inputs": [
|
| 267 |
-
{
|
| 268 |
-
"name": "image",
|
| 269 |
-
"position": "left",
|
| 270 |
-
"type": {
|
| 271 |
-
"type": "<module 'PIL.Image' from '/media/nvme/darabos/lynxkite-2024/.venv/lib/python3.11/site-packages/PIL/Image.py'>"
|
| 272 |
-
}
|
| 273 |
-
}
|
| 274 |
-
],
|
| 275 |
-
"name": "Flip vertically",
|
| 276 |
-
"outputs": [
|
| 277 |
-
{
|
| 278 |
-
"name": "output",
|
| 279 |
-
"position": "right",
|
| 280 |
-
"type": {
|
| 281 |
-
"type": "None"
|
| 282 |
-
}
|
| 283 |
-
}
|
| 284 |
-
],
|
| 285 |
-
"params": [],
|
| 286 |
-
"type": "basic"
|
| 287 |
-
},
|
| 288 |
-
"params": {},
|
| 289 |
-
"status": "done",
|
| 290 |
-
"title": "Flip vertically"
|
| 291 |
-
},
|
| 292 |
-
"dragHandle": ".bg-primary",
|
| 293 |
-
"height": 200.0,
|
| 294 |
-
"id": "Flip vertically 1",
|
| 295 |
-
"position": {
|
| 296 |
-
"x": 148.51544517498044,
|
| 297 |
-
"y": 288.98657171134255
|
| 298 |
-
},
|
| 299 |
-
"type": "basic",
|
| 300 |
-
"width": 200.0
|
| 301 |
-
}
|
| 302 |
-
]
|
| 303 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
examples/Image table.lynxkite.json
DELETED
|
@@ -1,364 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"edges": [
|
| 3 |
-
{
|
| 4 |
-
"id": "Example image table 1 View tables 1",
|
| 5 |
-
"source": "Example image table 1",
|
| 6 |
-
"sourceHandle": "output",
|
| 7 |
-
"target": "View tables 1",
|
| 8 |
-
"targetHandle": "bundle"
|
| 9 |
-
},
|
| 10 |
-
{
|
| 11 |
-
"id": "Import CSV 1 Draw molecules 1",
|
| 12 |
-
"source": "Import CSV 1",
|
| 13 |
-
"sourceHandle": "output",
|
| 14 |
-
"target": "Draw molecules 1",
|
| 15 |
-
"targetHandle": "df"
|
| 16 |
-
},
|
| 17 |
-
{
|
| 18 |
-
"id": "Draw molecules 1 View tables 2",
|
| 19 |
-
"source": "Draw molecules 1",
|
| 20 |
-
"sourceHandle": "output",
|
| 21 |
-
"target": "View tables 2",
|
| 22 |
-
"targetHandle": "bundle"
|
| 23 |
-
}
|
| 24 |
-
],
|
| 25 |
-
"env": "LynxKite Graph Analytics",
|
| 26 |
-
"nodes": [
|
| 27 |
-
{
|
| 28 |
-
"data": {
|
| 29 |
-
"__execution_delay": null,
|
| 30 |
-
"collapsed": false,
|
| 31 |
-
"display": null,
|
| 32 |
-
"error": null,
|
| 33 |
-
"input_metadata": [],
|
| 34 |
-
"meta": {
|
| 35 |
-
"color": "orange",
|
| 36 |
-
"inputs": [],
|
| 37 |
-
"name": "Example image table",
|
| 38 |
-
"outputs": [
|
| 39 |
-
{
|
| 40 |
-
"name": "output",
|
| 41 |
-
"position": "right",
|
| 42 |
-
"type": {
|
| 43 |
-
"type": "None"
|
| 44 |
-
}
|
| 45 |
-
}
|
| 46 |
-
],
|
| 47 |
-
"params": [],
|
| 48 |
-
"type": "basic"
|
| 49 |
-
},
|
| 50 |
-
"params": {},
|
| 51 |
-
"status": "done",
|
| 52 |
-
"title": "Example image table"
|
| 53 |
-
},
|
| 54 |
-
"dragHandle": ".bg-primary",
|
| 55 |
-
"height": 200.0,
|
| 56 |
-
"id": "Example image table 1",
|
| 57 |
-
"position": {
|
| 58 |
-
"x": 356.1935187064265,
|
| 59 |
-
"y": 224.8472733628614
|
| 60 |
-
},
|
| 61 |
-
"type": "basic",
|
| 62 |
-
"width": 280.0
|
| 63 |
-
},
|
| 64 |
-
{
|
| 65 |
-
"data": {
|
| 66 |
-
"display": {
|
| 67 |
-
"dataframes": {
|
| 68 |
-
"df": {
|
| 69 |
-
"columns": [
|
| 70 |
-
"names",
|
| 71 |
-
"images"
|
| 72 |
-
],
|
| 73 |
-
"data": [
|
| 74 |
-
[
|
| 75 |
-
"svg",
|
| 76 |
-
"<svg xmlns=\"http://www.w3.org/2000/svg\" viewBox=\"0 0 64 64\" enable-background=\"new 0 0 64 64\"><path d=\"M56 2 18.8 42.909 8 34.729 2 34.729 18.8 62 62 2z\"/></svg>"
|
| 77 |
-
],
|
| 78 |
-
[
|
| 79 |
-
"data",
|
| 80 |
-
""
|
| 81 |
-
],
|
| 82 |
-
[
|
| 83 |
-
"http",
|
| 84 |
-
"https://upload.wikimedia.org/wikipedia/commons/2/2e/Emojione_BW_2714.svg"
|
| 85 |
-
]
|
| 86 |
-
]
|
| 87 |
-
}
|
| 88 |
-
},
|
| 89 |
-
"other": {},
|
| 90 |
-
"relations": []
|
| 91 |
-
},
|
| 92 |
-
"error": null,
|
| 93 |
-
"input_metadata": [
|
| 94 |
-
{
|
| 95 |
-
"dataframes": {
|
| 96 |
-
"df": {
|
| 97 |
-
"columns": [
|
| 98 |
-
"images",
|
| 99 |
-
"names"
|
| 100 |
-
]
|
| 101 |
-
}
|
| 102 |
-
},
|
| 103 |
-
"other": {},
|
| 104 |
-
"relations": []
|
| 105 |
-
}
|
| 106 |
-
],
|
| 107 |
-
"meta": {
|
| 108 |
-
"color": "orange",
|
| 109 |
-
"inputs": [
|
| 110 |
-
{
|
| 111 |
-
"name": "bundle",
|
| 112 |
-
"position": "left",
|
| 113 |
-
"type": {
|
| 114 |
-
"type": "<class 'lynxkite_graph_analytics.core.Bundle'>"
|
| 115 |
-
}
|
| 116 |
-
}
|
| 117 |
-
],
|
| 118 |
-
"name": "View tables",
|
| 119 |
-
"outputs": [],
|
| 120 |
-
"params": [
|
| 121 |
-
{
|
| 122 |
-
"default": 100,
|
| 123 |
-
"name": "limit",
|
| 124 |
-
"type": {
|
| 125 |
-
"type": "<class 'int'>"
|
| 126 |
-
}
|
| 127 |
-
}
|
| 128 |
-
],
|
| 129 |
-
"type": "table_view"
|
| 130 |
-
},
|
| 131 |
-
"params": {
|
| 132 |
-
"limit": 100.0
|
| 133 |
-
},
|
| 134 |
-
"status": "done",
|
| 135 |
-
"title": "View tables"
|
| 136 |
-
},
|
| 137 |
-
"dragHandle": ".bg-primary",
|
| 138 |
-
"height": 440.0,
|
| 139 |
-
"id": "View tables 1",
|
| 140 |
-
"position": {
|
| 141 |
-
"x": 757.4687936995374,
|
| 142 |
-
"y": 116.39895719598661
|
| 143 |
-
},
|
| 144 |
-
"type": "table_view",
|
| 145 |
-
"width": 376.0
|
| 146 |
-
},
|
| 147 |
-
{
|
| 148 |
-
"data": {
|
| 149 |
-
"__execution_delay": 0.0,
|
| 150 |
-
"collapsed": null,
|
| 151 |
-
"display": null,
|
| 152 |
-
"error": null,
|
| 153 |
-
"input_metadata": [],
|
| 154 |
-
"meta": {
|
| 155 |
-
"color": "orange",
|
| 156 |
-
"inputs": [],
|
| 157 |
-
"name": "Import CSV",
|
| 158 |
-
"outputs": [
|
| 159 |
-
{
|
| 160 |
-
"name": "output",
|
| 161 |
-
"position": "right",
|
| 162 |
-
"type": {
|
| 163 |
-
"type": "None"
|
| 164 |
-
}
|
| 165 |
-
}
|
| 166 |
-
],
|
| 167 |
-
"params": [
|
| 168 |
-
{
|
| 169 |
-
"default": null,
|
| 170 |
-
"name": "filename",
|
| 171 |
-
"type": {
|
| 172 |
-
"type": "<class 'str'>"
|
| 173 |
-
}
|
| 174 |
-
},
|
| 175 |
-
{
|
| 176 |
-
"default": "<from file>",
|
| 177 |
-
"name": "columns",
|
| 178 |
-
"type": {
|
| 179 |
-
"type": "<class 'str'>"
|
| 180 |
-
}
|
| 181 |
-
},
|
| 182 |
-
{
|
| 183 |
-
"default": "<auto>",
|
| 184 |
-
"name": "separator",
|
| 185 |
-
"type": {
|
| 186 |
-
"type": "<class 'str'>"
|
| 187 |
-
}
|
| 188 |
-
}
|
| 189 |
-
],
|
| 190 |
-
"type": "basic"
|
| 191 |
-
},
|
| 192 |
-
"params": {
|
| 193 |
-
"columns": "<from file>",
|
| 194 |
-
"filename": "uploads/molecules2.csv",
|
| 195 |
-
"separator": "<auto>"
|
| 196 |
-
},
|
| 197 |
-
"status": "done",
|
| 198 |
-
"title": "Import CSV"
|
| 199 |
-
},
|
| 200 |
-
"dragHandle": ".bg-primary",
|
| 201 |
-
"height": 339.0,
|
| 202 |
-
"id": "Import CSV 1",
|
| 203 |
-
"position": {
|
| 204 |
-
"x": 13.802068621055497,
|
| 205 |
-
"y": -269.65065144888104
|
| 206 |
-
},
|
| 207 |
-
"type": "basic",
|
| 208 |
-
"width": 296.0
|
| 209 |
-
},
|
| 210 |
-
{
|
| 211 |
-
"data": {
|
| 212 |
-
"display": {
|
| 213 |
-
"dataframes": {
|
| 214 |
-
"df": {
|
| 215 |
-
"columns": [
|
| 216 |
-
"name",
|
| 217 |
-
"smiles",
|
| 218 |
-
"image"
|
| 219 |
-
],
|
| 220 |
-
"data": [
|
| 221 |
-
[
|
| 222 |
-
"ciprofloxacin",
|
| 223 |
-
"C1CNCCN1c(c2)c(F)cc3c2N(C4CC4)C=C(C3=O)C(=O)O",
|
| 224 |
-
""
|
| 225 |
-
],
|
| 226 |
-
[
|
| 227 |
-
"caffeine",
|
| 228 |
-
"CN1C=NC2=C1C(=O)N(C(=O)N2C)C",
|
| 229 |
-
""
|
| 230 |
-
],
|
| 231 |
-
[
|
| 232 |
-
"\u03b1-d-glucopyranose",
|
| 233 |
-
"C([C@@H]1[C@H]([C@@H]([C@H]([C@H](O1)O)O)O)O)O",
|
| 234 |
-
""
|
| 235 |
-
]
|
| 236 |
-
]
|
| 237 |
-
}
|
| 238 |
-
},
|
| 239 |
-
"other": {},
|
| 240 |
-
"relations": []
|
| 241 |
-
},
|
| 242 |
-
"error": null,
|
| 243 |
-
"input_metadata": [
|
| 244 |
-
{
|
| 245 |
-
"dataframes": {
|
| 246 |
-
"df": {
|
| 247 |
-
"columns": [
|
| 248 |
-
"image",
|
| 249 |
-
"name",
|
| 250 |
-
"smiles"
|
| 251 |
-
]
|
| 252 |
-
}
|
| 253 |
-
},
|
| 254 |
-
"other": {},
|
| 255 |
-
"relations": []
|
| 256 |
-
}
|
| 257 |
-
],
|
| 258 |
-
"meta": {
|
| 259 |
-
"color": "orange",
|
| 260 |
-
"inputs": [
|
| 261 |
-
{
|
| 262 |
-
"name": "bundle",
|
| 263 |
-
"position": "left",
|
| 264 |
-
"type": {
|
| 265 |
-
"type": "<class 'lynxkite_graph_analytics.core.Bundle'>"
|
| 266 |
-
}
|
| 267 |
-
}
|
| 268 |
-
],
|
| 269 |
-
"name": "View tables",
|
| 270 |
-
"outputs": [],
|
| 271 |
-
"params": [
|
| 272 |
-
{
|
| 273 |
-
"default": 100,
|
| 274 |
-
"name": "limit",
|
| 275 |
-
"type": {
|
| 276 |
-
"type": "<class 'int'>"
|
| 277 |
-
}
|
| 278 |
-
}
|
| 279 |
-
],
|
| 280 |
-
"type": "table_view"
|
| 281 |
-
},
|
| 282 |
-
"params": {
|
| 283 |
-
"limit": 100.0
|
| 284 |
-
},
|
| 285 |
-
"status": "planned",
|
| 286 |
-
"title": "View tables"
|
| 287 |
-
},
|
| 288 |
-
"dragHandle": ".bg-primary",
|
| 289 |
-
"height": 418.0,
|
| 290 |
-
"id": "View tables 2",
|
| 291 |
-
"position": {
|
| 292 |
-
"x": 815.4121289519509,
|
| 293 |
-
"y": -330.8232285057863
|
| 294 |
-
},
|
| 295 |
-
"type": "table_view",
|
| 296 |
-
"width": 1116.0
|
| 297 |
-
},
|
| 298 |
-
{
|
| 299 |
-
"data": {
|
| 300 |
-
"__execution_delay": 0.0,
|
| 301 |
-
"collapsed": null,
|
| 302 |
-
"display": null,
|
| 303 |
-
"error": "module 'rdkit.Chem' has no attribute 'Draw'",
|
| 304 |
-
"input_metadata": [
|
| 305 |
-
{}
|
| 306 |
-
],
|
| 307 |
-
"meta": {
|
| 308 |
-
"color": "orange",
|
| 309 |
-
"inputs": [
|
| 310 |
-
{
|
| 311 |
-
"name": "df",
|
| 312 |
-
"position": "left",
|
| 313 |
-
"type": {
|
| 314 |
-
"type": "<class 'pandas.core.frame.DataFrame'>"
|
| 315 |
-
}
|
| 316 |
-
}
|
| 317 |
-
],
|
| 318 |
-
"name": "Draw molecules",
|
| 319 |
-
"outputs": [
|
| 320 |
-
{
|
| 321 |
-
"name": "output",
|
| 322 |
-
"position": "right",
|
| 323 |
-
"type": {
|
| 324 |
-
"type": "None"
|
| 325 |
-
}
|
| 326 |
-
}
|
| 327 |
-
],
|
| 328 |
-
"params": [
|
| 329 |
-
{
|
| 330 |
-
"default": null,
|
| 331 |
-
"name": "smiles_column",
|
| 332 |
-
"type": {
|
| 333 |
-
"type": "<class 'str'>"
|
| 334 |
-
}
|
| 335 |
-
},
|
| 336 |
-
{
|
| 337 |
-
"default": "image",
|
| 338 |
-
"name": "image_column",
|
| 339 |
-
"type": {
|
| 340 |
-
"type": "<class 'str'>"
|
| 341 |
-
}
|
| 342 |
-
}
|
| 343 |
-
],
|
| 344 |
-
"type": "basic"
|
| 345 |
-
},
|
| 346 |
-
"params": {
|
| 347 |
-
"image_column": "image",
|
| 348 |
-
"smiles_column": "smiles"
|
| 349 |
-
},
|
| 350 |
-
"status": "done",
|
| 351 |
-
"title": "Draw molecules"
|
| 352 |
-
},
|
| 353 |
-
"dragHandle": ".bg-primary",
|
| 354 |
-
"height": 296.0,
|
| 355 |
-
"id": "Draw molecules 1",
|
| 356 |
-
"position": {
|
| 357 |
-
"x": 351.1956913898301,
|
| 358 |
-
"y": -235.00831568554486
|
| 359 |
-
},
|
| 360 |
-
"type": "basic",
|
| 361 |
-
"width": 212.0
|
| 362 |
-
}
|
| 363 |
-
]
|
| 364 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
examples/Model definition.lynxkite.json
DELETED
|
@@ -1,671 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"edges": [
|
| 3 |
-
{
|
| 4 |
-
"id": "MSE loss 2 Optimizer 2",
|
| 5 |
-
"source": "MSE loss 2",
|
| 6 |
-
"sourceHandle": "output",
|
| 7 |
-
"target": "Optimizer 2",
|
| 8 |
-
"targetHandle": "loss"
|
| 9 |
-
},
|
| 10 |
-
{
|
| 11 |
-
"id": "Activation 1 Repeat 1",
|
| 12 |
-
"source": "Activation 1",
|
| 13 |
-
"sourceHandle": "output",
|
| 14 |
-
"target": "Repeat 1",
|
| 15 |
-
"targetHandle": "input"
|
| 16 |
-
},
|
| 17 |
-
{
|
| 18 |
-
"id": "Linear 1 Activation 1",
|
| 19 |
-
"source": "Linear 1",
|
| 20 |
-
"sourceHandle": "output",
|
| 21 |
-
"target": "Activation 1",
|
| 22 |
-
"targetHandle": "x"
|
| 23 |
-
},
|
| 24 |
-
{
|
| 25 |
-
"id": "Repeat 1 Linear 1",
|
| 26 |
-
"source": "Repeat 1",
|
| 27 |
-
"sourceHandle": "output",
|
| 28 |
-
"target": "Linear 1",
|
| 29 |
-
"targetHandle": "x"
|
| 30 |
-
},
|
| 31 |
-
{
|
| 32 |
-
"id": "Input: tensor 1 Linear 1",
|
| 33 |
-
"source": "Input: tensor 1",
|
| 34 |
-
"sourceHandle": "output",
|
| 35 |
-
"target": "Linear 1",
|
| 36 |
-
"targetHandle": "x"
|
| 37 |
-
},
|
| 38 |
-
{
|
| 39 |
-
"id": "Constant vector 1 Add 1",
|
| 40 |
-
"source": "Constant vector 1",
|
| 41 |
-
"sourceHandle": "output",
|
| 42 |
-
"target": "Add 1",
|
| 43 |
-
"targetHandle": "b"
|
| 44 |
-
},
|
| 45 |
-
{
|
| 46 |
-
"id": "Input: tensor 3 Add 1",
|
| 47 |
-
"source": "Input: tensor 3",
|
| 48 |
-
"sourceHandle": "output",
|
| 49 |
-
"target": "Add 1",
|
| 50 |
-
"targetHandle": "a"
|
| 51 |
-
},
|
| 52 |
-
{
|
| 53 |
-
"id": "Add 1 MSE loss 2",
|
| 54 |
-
"source": "Add 1",
|
| 55 |
-
"sourceHandle": "output",
|
| 56 |
-
"target": "MSE loss 2",
|
| 57 |
-
"targetHandle": "y"
|
| 58 |
-
},
|
| 59 |
-
{
|
| 60 |
-
"id": "Activation 1 Output 1",
|
| 61 |
-
"source": "Activation 1",
|
| 62 |
-
"sourceHandle": "output",
|
| 63 |
-
"target": "Output 1",
|
| 64 |
-
"targetHandle": "x"
|
| 65 |
-
},
|
| 66 |
-
{
|
| 67 |
-
"id": "Output 1 MSE loss 2",
|
| 68 |
-
"source": "Output 1",
|
| 69 |
-
"sourceHandle": "x",
|
| 70 |
-
"target": "MSE loss 2",
|
| 71 |
-
"targetHandle": "x"
|
| 72 |
-
}
|
| 73 |
-
],
|
| 74 |
-
"env": "PyTorch model",
|
| 75 |
-
"nodes": [
|
| 76 |
-
{
|
| 77 |
-
"data": {
|
| 78 |
-
"__execution_delay": 0.0,
|
| 79 |
-
"collapsed": null,
|
| 80 |
-
"display": null,
|
| 81 |
-
"error": null,
|
| 82 |
-
"input_metadata": null,
|
| 83 |
-
"meta": {
|
| 84 |
-
"categories": [],
|
| 85 |
-
"color": "green",
|
| 86 |
-
"doc": null,
|
| 87 |
-
"id": "Optimizer",
|
| 88 |
-
"inputs": [
|
| 89 |
-
{
|
| 90 |
-
"name": "loss",
|
| 91 |
-
"position": "bottom",
|
| 92 |
-
"type": {
|
| 93 |
-
"type": "tensor"
|
| 94 |
-
}
|
| 95 |
-
}
|
| 96 |
-
],
|
| 97 |
-
"name": "Optimizer",
|
| 98 |
-
"outputs": [],
|
| 99 |
-
"params": [
|
| 100 |
-
{
|
| 101 |
-
"default": "AdamW",
|
| 102 |
-
"name": "type",
|
| 103 |
-
"type": {
|
| 104 |
-
"enum": [
|
| 105 |
-
"AdamW",
|
| 106 |
-
"Adafactor",
|
| 107 |
-
"Adagrad",
|
| 108 |
-
"SGD",
|
| 109 |
-
"Lion",
|
| 110 |
-
"Paged AdamW",
|
| 111 |
-
"Galore AdamW"
|
| 112 |
-
]
|
| 113 |
-
}
|
| 114 |
-
},
|
| 115 |
-
{
|
| 116 |
-
"default": 0.0001,
|
| 117 |
-
"name": "lr",
|
| 118 |
-
"type": {
|
| 119 |
-
"type": "<class 'float'>"
|
| 120 |
-
}
|
| 121 |
-
}
|
| 122 |
-
],
|
| 123 |
-
"type": "basic"
|
| 124 |
-
},
|
| 125 |
-
"op_id": "Optimizer",
|
| 126 |
-
"params": {
|
| 127 |
-
"lr": "0.1",
|
| 128 |
-
"type": "SGD"
|
| 129 |
-
},
|
| 130 |
-
"status": "done",
|
| 131 |
-
"title": "Optimizer"
|
| 132 |
-
},
|
| 133 |
-
"dragHandle": ".drag-handle",
|
| 134 |
-
"height": 250.0,
|
| 135 |
-
"id": "Optimizer 2",
|
| 136 |
-
"position": {
|
| 137 |
-
"x": 359.75221367487865,
|
| 138 |
-
"y": -1150.2183224762075
|
| 139 |
-
},
|
| 140 |
-
"type": "basic",
|
| 141 |
-
"width": 232.0
|
| 142 |
-
},
|
| 143 |
-
{
|
| 144 |
-
"data": {
|
| 145 |
-
"__execution_delay": 0.0,
|
| 146 |
-
"collapsed": null,
|
| 147 |
-
"display": null,
|
| 148 |
-
"error": null,
|
| 149 |
-
"input_metadata": null,
|
| 150 |
-
"meta": {
|
| 151 |
-
"categories": [],
|
| 152 |
-
"color": "orange",
|
| 153 |
-
"doc": null,
|
| 154 |
-
"id": "Activation",
|
| 155 |
-
"inputs": [
|
| 156 |
-
{
|
| 157 |
-
"name": "x",
|
| 158 |
-
"position": "bottom",
|
| 159 |
-
"type": {
|
| 160 |
-
"type": "<class 'inspect._empty'>"
|
| 161 |
-
}
|
| 162 |
-
}
|
| 163 |
-
],
|
| 164 |
-
"name": "Activation",
|
| 165 |
-
"outputs": [
|
| 166 |
-
{
|
| 167 |
-
"name": "output",
|
| 168 |
-
"position": "top",
|
| 169 |
-
"type": {
|
| 170 |
-
"type": "None"
|
| 171 |
-
}
|
| 172 |
-
}
|
| 173 |
-
],
|
| 174 |
-
"params": [
|
| 175 |
-
{
|
| 176 |
-
"default": "ReLU",
|
| 177 |
-
"name": "type",
|
| 178 |
-
"type": {
|
| 179 |
-
"enum": [
|
| 180 |
-
"ELU",
|
| 181 |
-
"GELU",
|
| 182 |
-
"LeakyReLU",
|
| 183 |
-
"Mish",
|
| 184 |
-
"PReLU",
|
| 185 |
-
"ReLU",
|
| 186 |
-
"Sigmoid",
|
| 187 |
-
"SiLU",
|
| 188 |
-
"Softplus",
|
| 189 |
-
"Tanh"
|
| 190 |
-
]
|
| 191 |
-
}
|
| 192 |
-
}
|
| 193 |
-
],
|
| 194 |
-
"type": "basic"
|
| 195 |
-
},
|
| 196 |
-
"op_id": "Activation",
|
| 197 |
-
"params": {
|
| 198 |
-
"type": "LeakyReLU"
|
| 199 |
-
},
|
| 200 |
-
"status": "done",
|
| 201 |
-
"title": "Activation"
|
| 202 |
-
},
|
| 203 |
-
"dragHandle": ".drag-handle",
|
| 204 |
-
"height": 200.0,
|
| 205 |
-
"id": "Activation 1",
|
| 206 |
-
"position": {
|
| 207 |
-
"x": 99.77615018185415,
|
| 208 |
-
"y": -249.43925929074078
|
| 209 |
-
},
|
| 210 |
-
"type": "basic",
|
| 211 |
-
"width": 200.0
|
| 212 |
-
},
|
| 213 |
-
{
|
| 214 |
-
"data": {
|
| 215 |
-
"__execution_delay": 0.0,
|
| 216 |
-
"collapsed": null,
|
| 217 |
-
"display": null,
|
| 218 |
-
"error": null,
|
| 219 |
-
"input_metadata": null,
|
| 220 |
-
"meta": {
|
| 221 |
-
"categories": [],
|
| 222 |
-
"color": "gray",
|
| 223 |
-
"doc": null,
|
| 224 |
-
"id": "Input: tensor",
|
| 225 |
-
"inputs": [],
|
| 226 |
-
"name": "Input: tensor",
|
| 227 |
-
"outputs": [
|
| 228 |
-
{
|
| 229 |
-
"name": "output",
|
| 230 |
-
"position": "top",
|
| 231 |
-
"type": {
|
| 232 |
-
"type": "tensor"
|
| 233 |
-
}
|
| 234 |
-
}
|
| 235 |
-
],
|
| 236 |
-
"params": [
|
| 237 |
-
{
|
| 238 |
-
"default": null,
|
| 239 |
-
"name": "name",
|
| 240 |
-
"type": {
|
| 241 |
-
"type": "None"
|
| 242 |
-
}
|
| 243 |
-
}
|
| 244 |
-
],
|
| 245 |
-
"type": "basic"
|
| 246 |
-
},
|
| 247 |
-
"op_id": "Input: tensor",
|
| 248 |
-
"params": {
|
| 249 |
-
"name": "Y"
|
| 250 |
-
},
|
| 251 |
-
"status": "done",
|
| 252 |
-
"title": "Input: tensor"
|
| 253 |
-
},
|
| 254 |
-
"dragHandle": ".drag-handle",
|
| 255 |
-
"height": 200.0,
|
| 256 |
-
"id": "Input: tensor 3",
|
| 257 |
-
"position": {
|
| 258 |
-
"x": 454.7823474758749,
|
| 259 |
-
"y": -212.0655794519241
|
| 260 |
-
},
|
| 261 |
-
"type": "basic",
|
| 262 |
-
"width": 200.0
|
| 263 |
-
},
|
| 264 |
-
{
|
| 265 |
-
"data": {
|
| 266 |
-
"__execution_delay": null,
|
| 267 |
-
"collapsed": true,
|
| 268 |
-
"display": null,
|
| 269 |
-
"error": null,
|
| 270 |
-
"input_metadata": null,
|
| 271 |
-
"meta": {
|
| 272 |
-
"categories": [],
|
| 273 |
-
"color": "orange",
|
| 274 |
-
"doc": null,
|
| 275 |
-
"id": "MSE loss",
|
| 276 |
-
"inputs": [
|
| 277 |
-
{
|
| 278 |
-
"name": "x",
|
| 279 |
-
"position": "bottom",
|
| 280 |
-
"type": {
|
| 281 |
-
"type": "<class 'inspect._empty'>"
|
| 282 |
-
}
|
| 283 |
-
},
|
| 284 |
-
{
|
| 285 |
-
"name": "y",
|
| 286 |
-
"position": "bottom",
|
| 287 |
-
"type": {
|
| 288 |
-
"type": "<class 'inspect._empty'>"
|
| 289 |
-
}
|
| 290 |
-
}
|
| 291 |
-
],
|
| 292 |
-
"name": "MSE loss",
|
| 293 |
-
"outputs": [
|
| 294 |
-
{
|
| 295 |
-
"name": "output",
|
| 296 |
-
"position": "top",
|
| 297 |
-
"type": {
|
| 298 |
-
"type": "None"
|
| 299 |
-
}
|
| 300 |
-
}
|
| 301 |
-
],
|
| 302 |
-
"params": [],
|
| 303 |
-
"type": "basic"
|
| 304 |
-
},
|
| 305 |
-
"op_id": "MSE loss",
|
| 306 |
-
"params": {},
|
| 307 |
-
"status": "done",
|
| 308 |
-
"title": "MSE loss"
|
| 309 |
-
},
|
| 310 |
-
"dragHandle": ".drag-handle",
|
| 311 |
-
"height": 200.0,
|
| 312 |
-
"id": "MSE loss 2",
|
| 313 |
-
"position": {
|
| 314 |
-
"x": 375.21624462193034,
|
| 315 |
-
"y": -721.0552036572305
|
| 316 |
-
},
|
| 317 |
-
"type": "basic",
|
| 318 |
-
"width": 200.0
|
| 319 |
-
},
|
| 320 |
-
{
|
| 321 |
-
"data": {
|
| 322 |
-
"__execution_delay": 0.0,
|
| 323 |
-
"collapsed": null,
|
| 324 |
-
"display": null,
|
| 325 |
-
"error": null,
|
| 326 |
-
"input_metadata": null,
|
| 327 |
-
"meta": {
|
| 328 |
-
"categories": [],
|
| 329 |
-
"color": "orange",
|
| 330 |
-
"doc": null,
|
| 331 |
-
"id": "Repeat",
|
| 332 |
-
"inputs": [
|
| 333 |
-
{
|
| 334 |
-
"name": "input",
|
| 335 |
-
"position": "top",
|
| 336 |
-
"type": {
|
| 337 |
-
"type": "tensor"
|
| 338 |
-
}
|
| 339 |
-
}
|
| 340 |
-
],
|
| 341 |
-
"name": "Repeat",
|
| 342 |
-
"outputs": [
|
| 343 |
-
{
|
| 344 |
-
"name": "output",
|
| 345 |
-
"position": "bottom",
|
| 346 |
-
"type": {
|
| 347 |
-
"type": "tensor"
|
| 348 |
-
}
|
| 349 |
-
}
|
| 350 |
-
],
|
| 351 |
-
"params": [
|
| 352 |
-
{
|
| 353 |
-
"default": 1.0,
|
| 354 |
-
"name": "times",
|
| 355 |
-
"type": {
|
| 356 |
-
"type": "<class 'int'>"
|
| 357 |
-
}
|
| 358 |
-
},
|
| 359 |
-
{
|
| 360 |
-
"default": false,
|
| 361 |
-
"name": "same_weights",
|
| 362 |
-
"type": {
|
| 363 |
-
"type": "<class 'bool'>"
|
| 364 |
-
}
|
| 365 |
-
}
|
| 366 |
-
],
|
| 367 |
-
"type": "basic"
|
| 368 |
-
},
|
| 369 |
-
"op_id": "Repeat",
|
| 370 |
-
"params": {
|
| 371 |
-
"same_weights": false,
|
| 372 |
-
"times": "2"
|
| 373 |
-
},
|
| 374 |
-
"status": "done",
|
| 375 |
-
"title": "Repeat"
|
| 376 |
-
},
|
| 377 |
-
"dragHandle": ".drag-handle",
|
| 378 |
-
"height": 200.0,
|
| 379 |
-
"id": "Repeat 1",
|
| 380 |
-
"position": {
|
| 381 |
-
"x": -210.0,
|
| 382 |
-
"y": -135.0
|
| 383 |
-
},
|
| 384 |
-
"type": "basic",
|
| 385 |
-
"width": 200.0
|
| 386 |
-
},
|
| 387 |
-
{
|
| 388 |
-
"data": {
|
| 389 |
-
"__execution_delay": 0.0,
|
| 390 |
-
"collapsed": null,
|
| 391 |
-
"display": null,
|
| 392 |
-
"error": null,
|
| 393 |
-
"input_metadata": null,
|
| 394 |
-
"meta": {
|
| 395 |
-
"categories": [],
|
| 396 |
-
"color": "blue",
|
| 397 |
-
"doc": null,
|
| 398 |
-
"id": "Linear",
|
| 399 |
-
"inputs": [
|
| 400 |
-
{
|
| 401 |
-
"name": "x",
|
| 402 |
-
"position": "bottom",
|
| 403 |
-
"type": {
|
| 404 |
-
"type": "<class 'inspect._empty'>"
|
| 405 |
-
}
|
| 406 |
-
}
|
| 407 |
-
],
|
| 408 |
-
"name": "Linear",
|
| 409 |
-
"outputs": [
|
| 410 |
-
{
|
| 411 |
-
"name": "output",
|
| 412 |
-
"position": "top",
|
| 413 |
-
"type": {
|
| 414 |
-
"type": "None"
|
| 415 |
-
}
|
| 416 |
-
}
|
| 417 |
-
],
|
| 418 |
-
"params": [
|
| 419 |
-
{
|
| 420 |
-
"default": 1024.0,
|
| 421 |
-
"name": "output_dim",
|
| 422 |
-
"type": {
|
| 423 |
-
"type": "<class 'int'>"
|
| 424 |
-
}
|
| 425 |
-
}
|
| 426 |
-
],
|
| 427 |
-
"type": "basic"
|
| 428 |
-
},
|
| 429 |
-
"op_id": "Linear",
|
| 430 |
-
"params": {
|
| 431 |
-
"output_dim": "4"
|
| 432 |
-
},
|
| 433 |
-
"status": "done",
|
| 434 |
-
"title": "Linear"
|
| 435 |
-
},
|
| 436 |
-
"dragHandle": ".drag-handle",
|
| 437 |
-
"height": 189.0,
|
| 438 |
-
"id": "Linear 1",
|
| 439 |
-
"position": {
|
| 440 |
-
"x": 98.54861342271252,
|
| 441 |
-
"y": 14.121603973834155
|
| 442 |
-
},
|
| 443 |
-
"type": "basic",
|
| 444 |
-
"width": 199.0
|
| 445 |
-
},
|
| 446 |
-
{
|
| 447 |
-
"data": {
|
| 448 |
-
"__execution_delay": 0.0,
|
| 449 |
-
"collapsed": null,
|
| 450 |
-
"display": null,
|
| 451 |
-
"error": null,
|
| 452 |
-
"input_metadata": null,
|
| 453 |
-
"meta": {
|
| 454 |
-
"categories": [],
|
| 455 |
-
"color": "gray",
|
| 456 |
-
"doc": null,
|
| 457 |
-
"id": "Input: tensor",
|
| 458 |
-
"inputs": [],
|
| 459 |
-
"name": "Input: tensor",
|
| 460 |
-
"outputs": [
|
| 461 |
-
{
|
| 462 |
-
"name": "output",
|
| 463 |
-
"position": "top",
|
| 464 |
-
"type": {
|
| 465 |
-
"type": "tensor"
|
| 466 |
-
}
|
| 467 |
-
}
|
| 468 |
-
],
|
| 469 |
-
"params": [
|
| 470 |
-
{
|
| 471 |
-
"default": null,
|
| 472 |
-
"name": "name",
|
| 473 |
-
"type": {
|
| 474 |
-
"type": "None"
|
| 475 |
-
}
|
| 476 |
-
}
|
| 477 |
-
],
|
| 478 |
-
"type": "basic"
|
| 479 |
-
},
|
| 480 |
-
"op_id": "Input: tensor",
|
| 481 |
-
"params": {
|
| 482 |
-
"name": "X"
|
| 483 |
-
},
|
| 484 |
-
"status": "done",
|
| 485 |
-
"title": "Input: tensor"
|
| 486 |
-
},
|
| 487 |
-
"dragHandle": ".drag-handle",
|
| 488 |
-
"height": 200.0,
|
| 489 |
-
"id": "Input: tensor 1",
|
| 490 |
-
"position": {
|
| 491 |
-
"x": 108.75735538875443,
|
| 492 |
-
"y": 331.53404347930933
|
| 493 |
-
},
|
| 494 |
-
"type": "basic",
|
| 495 |
-
"width": 200.0
|
| 496 |
-
},
|
| 497 |
-
{
|
| 498 |
-
"data": {
|
| 499 |
-
"__execution_delay": 0.0,
|
| 500 |
-
"collapsed": null,
|
| 501 |
-
"display": null,
|
| 502 |
-
"error": null,
|
| 503 |
-
"input_metadata": null,
|
| 504 |
-
"meta": {
|
| 505 |
-
"categories": [],
|
| 506 |
-
"color": "orange",
|
| 507 |
-
"doc": null,
|
| 508 |
-
"id": "Constant vector",
|
| 509 |
-
"inputs": [],
|
| 510 |
-
"name": "Constant vector",
|
| 511 |
-
"outputs": [
|
| 512 |
-
{
|
| 513 |
-
"name": "output",
|
| 514 |
-
"position": "top",
|
| 515 |
-
"type": {
|
| 516 |
-
"type": "None"
|
| 517 |
-
}
|
| 518 |
-
}
|
| 519 |
-
],
|
| 520 |
-
"params": [
|
| 521 |
-
{
|
| 522 |
-
"default": 0.0,
|
| 523 |
-
"name": "value",
|
| 524 |
-
"type": {
|
| 525 |
-
"type": "<class 'int'>"
|
| 526 |
-
}
|
| 527 |
-
},
|
| 528 |
-
{
|
| 529 |
-
"default": 1.0,
|
| 530 |
-
"name": "size",
|
| 531 |
-
"type": {
|
| 532 |
-
"type": "<class 'int'>"
|
| 533 |
-
}
|
| 534 |
-
}
|
| 535 |
-
],
|
| 536 |
-
"type": "basic"
|
| 537 |
-
},
|
| 538 |
-
"op_id": "Constant vector",
|
| 539 |
-
"params": {
|
| 540 |
-
"size": "1",
|
| 541 |
-
"value": "1"
|
| 542 |
-
},
|
| 543 |
-
"status": "done",
|
| 544 |
-
"title": "Constant vector"
|
| 545 |
-
},
|
| 546 |
-
"dragHandle": ".drag-handle",
|
| 547 |
-
"height": 258.0,
|
| 548 |
-
"id": "Constant vector 1",
|
| 549 |
-
"position": {
|
| 550 |
-
"x": 846.2767459753351,
|
| 551 |
-
"y": -226.90556526533476
|
| 552 |
-
},
|
| 553 |
-
"type": "basic",
|
| 554 |
-
"width": 238.0
|
| 555 |
-
},
|
| 556 |
-
{
|
| 557 |
-
"data": {
|
| 558 |
-
"__execution_delay": null,
|
| 559 |
-
"collapsed": true,
|
| 560 |
-
"display": null,
|
| 561 |
-
"error": null,
|
| 562 |
-
"input_metadata": null,
|
| 563 |
-
"meta": {
|
| 564 |
-
"categories": [],
|
| 565 |
-
"color": "orange",
|
| 566 |
-
"doc": null,
|
| 567 |
-
"id": "Add",
|
| 568 |
-
"inputs": [
|
| 569 |
-
{
|
| 570 |
-
"name": "a",
|
| 571 |
-
"position": "bottom",
|
| 572 |
-
"type": {
|
| 573 |
-
"type": "<class 'inspect._empty'>"
|
| 574 |
-
}
|
| 575 |
-
},
|
| 576 |
-
{
|
| 577 |
-
"name": "b",
|
| 578 |
-
"position": "bottom",
|
| 579 |
-
"type": {
|
| 580 |
-
"type": "<class 'inspect._empty'>"
|
| 581 |
-
}
|
| 582 |
-
}
|
| 583 |
-
],
|
| 584 |
-
"name": "Add",
|
| 585 |
-
"outputs": [
|
| 586 |
-
{
|
| 587 |
-
"name": "output",
|
| 588 |
-
"position": "top",
|
| 589 |
-
"type": {
|
| 590 |
-
"type": "None"
|
| 591 |
-
}
|
| 592 |
-
}
|
| 593 |
-
],
|
| 594 |
-
"params": [],
|
| 595 |
-
"type": "basic"
|
| 596 |
-
},
|
| 597 |
-
"op_id": "Add",
|
| 598 |
-
"params": {},
|
| 599 |
-
"status": "done",
|
| 600 |
-
"title": "Add"
|
| 601 |
-
},
|
| 602 |
-
"dragHandle": ".drag-handle",
|
| 603 |
-
"height": 200.0,
|
| 604 |
-
"id": "Add 1",
|
| 605 |
-
"position": {
|
| 606 |
-
"x": 631.934390777073,
|
| 607 |
-
"y": -395.6855954439944
|
| 608 |
-
},
|
| 609 |
-
"type": "basic",
|
| 610 |
-
"width": 200.0
|
| 611 |
-
},
|
| 612 |
-
{
|
| 613 |
-
"data": {
|
| 614 |
-
"__execution_delay": null,
|
| 615 |
-
"collapsed": true,
|
| 616 |
-
"display": null,
|
| 617 |
-
"error": null,
|
| 618 |
-
"input_metadata": null,
|
| 619 |
-
"meta": {
|
| 620 |
-
"categories": [],
|
| 621 |
-
"color": "gray",
|
| 622 |
-
"doc": null,
|
| 623 |
-
"id": "Output",
|
| 624 |
-
"inputs": [
|
| 625 |
-
{
|
| 626 |
-
"name": "x",
|
| 627 |
-
"position": "bottom",
|
| 628 |
-
"type": {
|
| 629 |
-
"type": "tensor"
|
| 630 |
-
}
|
| 631 |
-
}
|
| 632 |
-
],
|
| 633 |
-
"name": "Output",
|
| 634 |
-
"outputs": [
|
| 635 |
-
{
|
| 636 |
-
"name": "x",
|
| 637 |
-
"position": "top",
|
| 638 |
-
"type": {
|
| 639 |
-
"type": "tensor"
|
| 640 |
-
}
|
| 641 |
-
}
|
| 642 |
-
],
|
| 643 |
-
"params": [
|
| 644 |
-
{
|
| 645 |
-
"default": null,
|
| 646 |
-
"name": "name",
|
| 647 |
-
"type": {
|
| 648 |
-
"type": "None"
|
| 649 |
-
}
|
| 650 |
-
}
|
| 651 |
-
],
|
| 652 |
-
"type": "basic"
|
| 653 |
-
},
|
| 654 |
-
"op_id": "Output",
|
| 655 |
-
"params": {},
|
| 656 |
-
"status": "done",
|
| 657 |
-
"title": "Output"
|
| 658 |
-
},
|
| 659 |
-
"dragHandle": ".drag-handle",
|
| 660 |
-
"height": 200.0,
|
| 661 |
-
"id": "Output 1",
|
| 662 |
-
"position": {
|
| 663 |
-
"x": 119.83887514325258,
|
| 664 |
-
"y": -453.23756095856885
|
| 665 |
-
},
|
| 666 |
-
"type": "basic",
|
| 667 |
-
"width": 200.0
|
| 668 |
-
}
|
| 669 |
-
],
|
| 670 |
-
"paused": false
|
| 671 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
examples/Model use.lynxkite.json
DELETED
|
The diff for this file is too large to render.
See raw diff
|
|
|
examples/Multi-output demo.lynxkite.json
DELETED
|
@@ -1,301 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"edges": [
|
| 3 |
-
{
|
| 4 |
-
"id": "Multi-output example 1 one View tables 1 bundle",
|
| 5 |
-
"source": "Multi-output example 1",
|
| 6 |
-
"sourceHandle": "one",
|
| 7 |
-
"target": "View tables 1",
|
| 8 |
-
"targetHandle": "bundle"
|
| 9 |
-
},
|
| 10 |
-
{
|
| 11 |
-
"id": "Multi-output example 1 two View tables 2 bundle",
|
| 12 |
-
"source": "Multi-output example 1",
|
| 13 |
-
"sourceHandle": "two",
|
| 14 |
-
"target": "View tables 2",
|
| 15 |
-
"targetHandle": "bundle"
|
| 16 |
-
}
|
| 17 |
-
],
|
| 18 |
-
"env": "LynxKite Graph Analytics",
|
| 19 |
-
"nodes": [
|
| 20 |
-
{
|
| 21 |
-
"data": {
|
| 22 |
-
"__execution_delay": 0.0,
|
| 23 |
-
"collapsed": false,
|
| 24 |
-
"display": null,
|
| 25 |
-
"error": null,
|
| 26 |
-
"input_metadata": [],
|
| 27 |
-
"meta": {
|
| 28 |
-
"categories": [
|
| 29 |
-
"Examples"
|
| 30 |
-
],
|
| 31 |
-
"color": "orange",
|
| 32 |
-
"doc": [
|
| 33 |
-
{
|
| 34 |
-
"kind": "text",
|
| 35 |
-
"value": "Returns two outputs. Also demonstrates Numpy-style docstrings."
|
| 36 |
-
},
|
| 37 |
-
{
|
| 38 |
-
"kind": "parameters",
|
| 39 |
-
"value": [
|
| 40 |
-
{
|
| 41 |
-
"annotation": "int",
|
| 42 |
-
"description": "Number of elements in output \"one\".",
|
| 43 |
-
"name": "a_limit"
|
| 44 |
-
},
|
| 45 |
-
{
|
| 46 |
-
"annotation": "int",
|
| 47 |
-
"description": "Number of elements in output \"two\".",
|
| 48 |
-
"name": "b_limit"
|
| 49 |
-
}
|
| 50 |
-
]
|
| 51 |
-
},
|
| 52 |
-
{
|
| 53 |
-
"kind": "returns",
|
| 54 |
-
"value": [
|
| 55 |
-
{
|
| 56 |
-
"annotation": "A dict with two DataFrames in it.",
|
| 57 |
-
"description": "",
|
| 58 |
-
"name": ""
|
| 59 |
-
}
|
| 60 |
-
]
|
| 61 |
-
}
|
| 62 |
-
],
|
| 63 |
-
"id": "Examples > Multi-output example",
|
| 64 |
-
"inputs": [],
|
| 65 |
-
"name": "Multi-output example",
|
| 66 |
-
"outputs": [
|
| 67 |
-
{
|
| 68 |
-
"name": "one",
|
| 69 |
-
"position": "right",
|
| 70 |
-
"type": {
|
| 71 |
-
"type": "None"
|
| 72 |
-
}
|
| 73 |
-
},
|
| 74 |
-
{
|
| 75 |
-
"name": "two",
|
| 76 |
-
"position": "right",
|
| 77 |
-
"type": {
|
| 78 |
-
"type": "None"
|
| 79 |
-
}
|
| 80 |
-
}
|
| 81 |
-
],
|
| 82 |
-
"params": [
|
| 83 |
-
{
|
| 84 |
-
"default": 4,
|
| 85 |
-
"name": "a_limit",
|
| 86 |
-
"type": {
|
| 87 |
-
"type": "<class 'int'>"
|
| 88 |
-
}
|
| 89 |
-
},
|
| 90 |
-
{
|
| 91 |
-
"default": 10,
|
| 92 |
-
"name": "b_limit",
|
| 93 |
-
"type": {
|
| 94 |
-
"type": "<class 'int'>"
|
| 95 |
-
}
|
| 96 |
-
}
|
| 97 |
-
],
|
| 98 |
-
"type": "basic"
|
| 99 |
-
},
|
| 100 |
-
"op_id": "Examples > Multi-output example",
|
| 101 |
-
"params": {
|
| 102 |
-
"a_limit": "2",
|
| 103 |
-
"b_limit": "10"
|
| 104 |
-
},
|
| 105 |
-
"status": "done",
|
| 106 |
-
"title": "Multi-output example"
|
| 107 |
-
},
|
| 108 |
-
"dragHandle": ".drag-handle",
|
| 109 |
-
"height": 275.0,
|
| 110 |
-
"id": "Multi-output example 1",
|
| 111 |
-
"position": {
|
| 112 |
-
"x": 86.0,
|
| 113 |
-
"y": 33.0
|
| 114 |
-
},
|
| 115 |
-
"type": "basic",
|
| 116 |
-
"width": 200.0
|
| 117 |
-
},
|
| 118 |
-
{
|
| 119 |
-
"data": {
|
| 120 |
-
"display": {
|
| 121 |
-
"dataframes": {
|
| 122 |
-
"df": {
|
| 123 |
-
"columns": [
|
| 124 |
-
"a"
|
| 125 |
-
],
|
| 126 |
-
"data": [
|
| 127 |
-
[
|
| 128 |
-
0
|
| 129 |
-
],
|
| 130 |
-
[
|
| 131 |
-
1
|
| 132 |
-
]
|
| 133 |
-
]
|
| 134 |
-
}
|
| 135 |
-
},
|
| 136 |
-
"other": {},
|
| 137 |
-
"relations": []
|
| 138 |
-
},
|
| 139 |
-
"error": null,
|
| 140 |
-
"input_metadata": [
|
| 141 |
-
{
|
| 142 |
-
"dataframes": {
|
| 143 |
-
"df": {
|
| 144 |
-
"columns": [
|
| 145 |
-
"a"
|
| 146 |
-
]
|
| 147 |
-
}
|
| 148 |
-
},
|
| 149 |
-
"other": {},
|
| 150 |
-
"relations": []
|
| 151 |
-
}
|
| 152 |
-
],
|
| 153 |
-
"meta": {
|
| 154 |
-
"categories": [],
|
| 155 |
-
"color": "orange",
|
| 156 |
-
"doc": null,
|
| 157 |
-
"id": "View tables",
|
| 158 |
-
"inputs": [
|
| 159 |
-
{
|
| 160 |
-
"name": "bundle",
|
| 161 |
-
"position": "left",
|
| 162 |
-
"type": {
|
| 163 |
-
"type": "<class 'lynxkite_graph_analytics.core.Bundle'>"
|
| 164 |
-
}
|
| 165 |
-
}
|
| 166 |
-
],
|
| 167 |
-
"name": "View tables",
|
| 168 |
-
"outputs": [],
|
| 169 |
-
"params": [
|
| 170 |
-
{
|
| 171 |
-
"default": 100,
|
| 172 |
-
"name": "limit",
|
| 173 |
-
"type": {
|
| 174 |
-
"type": "<class 'int'>"
|
| 175 |
-
}
|
| 176 |
-
}
|
| 177 |
-
],
|
| 178 |
-
"type": "table_view"
|
| 179 |
-
},
|
| 180 |
-
"op_id": "View tables",
|
| 181 |
-
"params": {
|
| 182 |
-
"limit": 100.0
|
| 183 |
-
},
|
| 184 |
-
"status": "done",
|
| 185 |
-
"title": "View tables"
|
| 186 |
-
},
|
| 187 |
-
"dragHandle": ".drag-handle",
|
| 188 |
-
"height": 200.0,
|
| 189 |
-
"id": "View tables 1",
|
| 190 |
-
"position": {
|
| 191 |
-
"x": 485.0,
|
| 192 |
-
"y": -31.0
|
| 193 |
-
},
|
| 194 |
-
"type": "table_view",
|
| 195 |
-
"width": 200.0
|
| 196 |
-
},
|
| 197 |
-
{
|
| 198 |
-
"data": {
|
| 199 |
-
"display": {
|
| 200 |
-
"dataframes": {
|
| 201 |
-
"df": {
|
| 202 |
-
"columns": [
|
| 203 |
-
"b"
|
| 204 |
-
],
|
| 205 |
-
"data": [
|
| 206 |
-
[
|
| 207 |
-
0
|
| 208 |
-
],
|
| 209 |
-
[
|
| 210 |
-
1
|
| 211 |
-
],
|
| 212 |
-
[
|
| 213 |
-
2
|
| 214 |
-
],
|
| 215 |
-
[
|
| 216 |
-
3
|
| 217 |
-
],
|
| 218 |
-
[
|
| 219 |
-
4
|
| 220 |
-
],
|
| 221 |
-
[
|
| 222 |
-
5
|
| 223 |
-
],
|
| 224 |
-
[
|
| 225 |
-
6
|
| 226 |
-
],
|
| 227 |
-
[
|
| 228 |
-
7
|
| 229 |
-
],
|
| 230 |
-
[
|
| 231 |
-
8
|
| 232 |
-
],
|
| 233 |
-
[
|
| 234 |
-
9
|
| 235 |
-
]
|
| 236 |
-
]
|
| 237 |
-
}
|
| 238 |
-
},
|
| 239 |
-
"other": {},
|
| 240 |
-
"relations": []
|
| 241 |
-
},
|
| 242 |
-
"error": null,
|
| 243 |
-
"input_metadata": [
|
| 244 |
-
{
|
| 245 |
-
"dataframes": {
|
| 246 |
-
"df": {
|
| 247 |
-
"columns": [
|
| 248 |
-
"b"
|
| 249 |
-
]
|
| 250 |
-
}
|
| 251 |
-
},
|
| 252 |
-
"other": {},
|
| 253 |
-
"relations": []
|
| 254 |
-
}
|
| 255 |
-
],
|
| 256 |
-
"meta": {
|
| 257 |
-
"categories": [],
|
| 258 |
-
"color": "orange",
|
| 259 |
-
"doc": null,
|
| 260 |
-
"id": "View tables",
|
| 261 |
-
"inputs": [
|
| 262 |
-
{
|
| 263 |
-
"name": "bundle",
|
| 264 |
-
"position": "left",
|
| 265 |
-
"type": {
|
| 266 |
-
"type": "<class 'lynxkite_graph_analytics.core.Bundle'>"
|
| 267 |
-
}
|
| 268 |
-
}
|
| 269 |
-
],
|
| 270 |
-
"name": "View tables",
|
| 271 |
-
"outputs": [],
|
| 272 |
-
"params": [
|
| 273 |
-
{
|
| 274 |
-
"default": 100,
|
| 275 |
-
"name": "limit",
|
| 276 |
-
"type": {
|
| 277 |
-
"type": "<class 'int'>"
|
| 278 |
-
}
|
| 279 |
-
}
|
| 280 |
-
],
|
| 281 |
-
"type": "table_view"
|
| 282 |
-
},
|
| 283 |
-
"op_id": "View tables",
|
| 284 |
-
"params": {
|
| 285 |
-
"limit": 100.0
|
| 286 |
-
},
|
| 287 |
-
"status": "done",
|
| 288 |
-
"title": "View tables"
|
| 289 |
-
},
|
| 290 |
-
"dragHandle": ".drag-handle",
|
| 291 |
-
"height": 215.0,
|
| 292 |
-
"id": "View tables 2",
|
| 293 |
-
"position": {
|
| 294 |
-
"x": 480.0,
|
| 295 |
-
"y": 191.0
|
| 296 |
-
},
|
| 297 |
-
"type": "table_view",
|
| 298 |
-
"width": 225.0
|
| 299 |
-
}
|
| 300 |
-
]
|
| 301 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
examples/NetworkX demo.lynxkite.json
DELETED
|
The diff for this file is too large to render.
See raw diff
|
|
|
examples/Word2vec.lynxkite.json
DELETED
|
The diff for this file is too large to render.
See raw diff
|
|
|
examples/fake_data.py
DELETED
|
@@ -1,21 +0,0 @@
|
|
| 1 |
-
from lynxkite.core.ops import op
|
| 2 |
-
from faker import Faker # ty: ignore[unresolved-import]
|
| 3 |
-
import pandas as pd
|
| 4 |
-
|
| 5 |
-
faker = Faker()
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
@op("LynxKite Graph Analytics", "Fake data")
|
| 9 |
-
def fake(*, n=10):
|
| 10 |
-
"""Creates a DataFrame with random-generated names and postal addresses.
|
| 11 |
-
|
| 12 |
-
Parameters:
|
| 13 |
-
n: Number of rows to create.
|
| 14 |
-
"""
|
| 15 |
-
df = pd.DataFrame(
|
| 16 |
-
{
|
| 17 |
-
"name": [faker.name() for _ in range(n)],
|
| 18 |
-
"address": [faker.address() for _ in range(n)],
|
| 19 |
-
}
|
| 20 |
-
)
|
| 21 |
-
return df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
examples/make_image_table.py
DELETED
|
@@ -1,11 +0,0 @@
|
|
| 1 |
-
from lynxkite.core.ops import op
|
| 2 |
-
import pandas as pd
|
| 3 |
-
import base64
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
@op("LynxKite Graph Analytics", "Example image table")
|
| 7 |
-
def make_image_table():
|
| 8 |
-
svg = '<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 64 64" enable-background="new 0 0 64 64"><path d="M56 2 18.8 42.909 8 34.729 2 34.729 18.8 62 62 2z"/></svg>'
|
| 9 |
-
data = "data:image/svg+xml;base64," + base64.b64encode(svg.encode("utf-8")).decode("utf-8")
|
| 10 |
-
http = "https://upload.wikimedia.org/wikipedia/commons/2/2e/Emojione_BW_2714.svg"
|
| 11 |
-
return pd.DataFrame({"names": ["svg", "data", "http"], "images": [svg, data, http]})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
examples/matplotlib_example.py
DELETED
|
@@ -1,34 +0,0 @@
|
|
| 1 |
-
# From https://matplotlib.org/stable/gallery/images_contours_and_fields/contour_corner_mask.html
|
| 2 |
-
import matplotlib.pyplot as plt
|
| 3 |
-
import numpy as np
|
| 4 |
-
from lynxkite.core.ops import op
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
@op("LynxKite Graph Analytics", "Matplotlib example", view="matplotlib")
|
| 8 |
-
def example():
|
| 9 |
-
# Data to plot.
|
| 10 |
-
x, y = np.meshgrid(np.arange(7), np.arange(10))
|
| 11 |
-
z = np.sin(0.5 * x) * np.cos(0.52 * y)
|
| 12 |
-
|
| 13 |
-
# Mask various z values.
|
| 14 |
-
mask = np.zeros_like(z, dtype=bool)
|
| 15 |
-
mask[2, 3:5] = True
|
| 16 |
-
mask[3:5, 4] = True
|
| 17 |
-
mask[7, 2] = True
|
| 18 |
-
mask[5, 0] = True
|
| 19 |
-
mask[0, 6] = True
|
| 20 |
-
z = np.ma.array(z, mask=mask)
|
| 21 |
-
print(z)
|
| 22 |
-
|
| 23 |
-
corner_masks = [False, True]
|
| 24 |
-
fig, axs = plt.subplots(ncols=2)
|
| 25 |
-
for ax, corner_mask in zip(axs, corner_masks):
|
| 26 |
-
cs = ax.contourf(x, y, z, corner_mask=corner_mask)
|
| 27 |
-
ax.contour(cs, colors="k")
|
| 28 |
-
ax.set_title(f"{corner_mask=}")
|
| 29 |
-
|
| 30 |
-
# Plot grid.
|
| 31 |
-
ax.grid(c="k", ls="-", alpha=0.3)
|
| 32 |
-
|
| 33 |
-
# Indicate masked points with red circles.
|
| 34 |
-
ax.plot(np.ma.array(x, mask=~mask), y, "ro")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
examples/multi_output_demo.py
DELETED
|
@@ -1,24 +0,0 @@
|
|
| 1 |
-
from lynxkite.core.ops import op
|
| 2 |
-
import pandas as pd
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
@op("LynxKite Graph Analytics", "Examples", "Multi-output example", outputs=["one", "two"])
|
| 6 |
-
def multi_output(*, a_limit=4, b_limit=10):
|
| 7 |
-
"""
|
| 8 |
-
Returns two outputs. Also demonstrates Numpy-style docstrings.
|
| 9 |
-
|
| 10 |
-
Parameters
|
| 11 |
-
----------
|
| 12 |
-
a_limit : int
|
| 13 |
-
Number of elements in output "one".
|
| 14 |
-
b_limit : int
|
| 15 |
-
Number of elements in output "two".
|
| 16 |
-
|
| 17 |
-
Returns
|
| 18 |
-
-------
|
| 19 |
-
A dict with two DataFrames in it.
|
| 20 |
-
"""
|
| 21 |
-
return {
|
| 22 |
-
"one": pd.DataFrame({"a": range(a_limit)}),
|
| 23 |
-
"two": pd.DataFrame({"b": range(b_limit)}),
|
| 24 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
examples/ode_lstm.py
DELETED
|
@@ -1,54 +0,0 @@
|
|
| 1 |
-
from lynxkite.core.ops import op_registration, LongStr
|
| 2 |
-
from lynxkite_graph_analytics.core import Bundle
|
| 3 |
-
from matplotlib import pyplot as plt
|
| 4 |
-
import numpy as np
|
| 5 |
-
import pandas as pd
|
| 6 |
-
import json
|
| 7 |
-
|
| 8 |
-
op = op_registration("LynxKite Graph Analytics")
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
@op("Drop NA")
|
| 12 |
-
def drop_na(df: pd.DataFrame):
|
| 13 |
-
return df.replace("", np.nan).dropna()
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
@op("Sort by")
|
| 17 |
-
def sort_by(df: pd.DataFrame, *, key_columns: str):
|
| 18 |
-
df = df.copy()
|
| 19 |
-
df.sort_values(
|
| 20 |
-
by=[k.strip() for k in key_columns.split(",")],
|
| 21 |
-
inplace=True,
|
| 22 |
-
ignore_index=True,
|
| 23 |
-
)
|
| 24 |
-
return df
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
@op("Group by")
|
| 28 |
-
def group_by(df: pd.DataFrame, *, key_columns: str, aggregation: LongStr):
|
| 29 |
-
key_columns = [k.strip() for k in key_columns.split(",")]
|
| 30 |
-
j = json.loads(aggregation)
|
| 31 |
-
for k, vs in j.items():
|
| 32 |
-
j[k] = [list if v == "list" else v for v in vs]
|
| 33 |
-
res = df.groupby(key_columns).agg(j).reset_index()
|
| 34 |
-
res.columns = ["_".join(col) for col in res.columns]
|
| 35 |
-
return res
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
@op("Take first element of list")
|
| 39 |
-
def take_first_element(df: pd.DataFrame, *, column: str):
|
| 40 |
-
df = df.copy()
|
| 41 |
-
df[f"{column}_first_element"] = df[column].apply(lambda x: x[0])
|
| 42 |
-
return df
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
@op("Plot time series", view="matplotlib")
|
| 46 |
-
def plot_time_series(bundle: Bundle, *, table_name: str, index: int, x_column: str, y_columns: str):
|
| 47 |
-
df = bundle.dfs[table_name]
|
| 48 |
-
y_columns = [y.strip() for y in y_columns.split(",")]
|
| 49 |
-
x = df[x_column].iloc[index]
|
| 50 |
-
for y_column in y_columns:
|
| 51 |
-
y = df[y_column].iloc[index]
|
| 52 |
-
plt.plot(x, y, "o-", label=y_column)
|
| 53 |
-
plt.xlabel(x_column)
|
| 54 |
-
plt.legend()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
examples/requirements.txt
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
# Example of a requirements.txt file. LynxKite will automatically install anything you put here.
|
| 2 |
-
faker
|
| 3 |
-
matplotlib
|
|
|
|
|
|
|
|
|
|
|
|
examples/sql.lynxkite.json
DELETED
|
The diff for this file is too large to render.
See raw diff
|
|
|
examples/uploads/example-pizza.md
DELETED
|
@@ -1,136 +0,0 @@
|
|
| 1 |
-
hello
|
| 2 |
-
|
| 3 |
-
### 1. **Overview**
|
| 4 |
-
|
| 5 |
-
This document outlines the pricing structure and available options for our pizza delivery service. The goal is to provide clear guidance on the pricing tiers, additional offerings, and optional extras to ensure consistency across all locations and platforms (phone, online, in-app). All pricing is based on current market trends, food costs, and competitive analysis.
|
| 6 |
-
|
| 7 |
-
---
|
| 8 |
-
|
| 9 |
-
### 2. **Pizza Options**
|
| 10 |
-
|
| 11 |
-
#### 2.1 **Size & Base Pricing**
|
| 12 |
-
|
| 13 |
-
| Size | Diameter | Price (Cheese Pizza) |
|
| 14 |
-
|------------------|------------|----------------------|
|
| 15 |
-
| Small | 10 inches | $8.99 |
|
| 16 |
-
| Medium | 12 inches | $11.99 |
|
| 17 |
-
| Large | 14 inches | $14.99 |
|
| 18 |
-
| Extra Large | 16 inches | $17.99 |
|
| 19 |
-
|
| 20 |
-
**Note**: Cheese pizza pricing includes sauce and cheese. Toppings are additional (see section 2.3).
|
| 21 |
-
|
| 22 |
-
#### 2.2 **Crust Options**
|
| 23 |
-
|
| 24 |
-
| Crust Type | Description | Price Adjustment |
|
| 25 |
-
|------------------|------------------------------------------|------------------|
|
| 26 |
-
| Classic Hand-Tossed | Soft, airy texture | No Change |
|
| 27 |
-
| Thin & Crispy | Light and crunchy | No Change |
|
| 28 |
-
| Stuffed Crust | Filled with mozzarella | +$2.00 (M-XL) |
|
| 29 |
-
| Gluten-Free | 10" only; made with rice flour | +$2.50 (Small Only) |
|
| 30 |
-
|
| 31 |
-
---
|
| 32 |
-
|
| 33 |
-
### 3. **Toppings**
|
| 34 |
-
|
| 35 |
-
#### 3.1 **Standard Toppings**
|
| 36 |
-
**Price per topping:**
|
| 37 |
-
|
| 38 |
-
- Small: $1.00
|
| 39 |
-
- Medium: $1.50
|
| 40 |
-
- Large: $2.00
|
| 41 |
-
- Extra Large: $2.50
|
| 42 |
-
|
| 43 |
-
| Topping | Category |
|
| 44 |
-
|------------------|----------------|
|
| 45 |
-
| Pepperoni | Meat |
|
| 46 |
-
| Sausage | Meat |
|
| 47 |
-
| Mushrooms | Vegetable |
|
| 48 |
-
| Onions | Vegetable |
|
| 49 |
-
| Bell Peppers | Vegetable |
|
| 50 |
-
| Olives | Vegetable |
|
| 51 |
-
| Extra Cheese | Dairy |
|
| 52 |
-
|
| 53 |
-
#### 3.2 **Premium Toppings**
|
| 54 |
-
**Price per topping:**
|
| 55 |
-
|
| 56 |
-
- Small: $1.75
|
| 57 |
-
- Medium: $2.25
|
| 58 |
-
- Large: $2.75
|
| 59 |
-
- Extra Large: $3.25
|
| 60 |
-
|
| 61 |
-
| Topping | Category |
|
| 62 |
-
|------------------|----------------|
|
| 63 |
-
| Grilled Chicken | Meat |
|
| 64 |
-
| Bacon | Meat |
|
| 65 |
-
| Sun-Dried Tomatoes| Vegetable |
|
| 66 |
-
| Artichoke Hearts | Vegetable |
|
| 67 |
-
| Feta Cheese | Dairy |
|
| 68 |
-
| Vegan Cheese | Dairy Alternative |
|
| 69 |
-
|
| 70 |
-
---
|
| 71 |
-
|
| 72 |
-
### 4. **Specialty Pizzas**
|
| 73 |
-
|
| 74 |
-
Specialty pizzas include a combination of premium toppings and are available in all sizes. Prices below are for Medium size, with additional costs for upgrading to larger sizes.
|
| 75 |
-
|
| 76 |
-
| Pizza Name | Description | Price (Medium) |
|
| 77 |
-
|----------------------|----------------------------------------------------|-----------------|
|
| 78 |
-
| Meat Lover’s | Pepperoni, sausage, bacon, ham | $16.99 |
|
| 79 |
-
| Veggie Delight | Mushrooms, bell peppers, onions, olives | $14.99 |
|
| 80 |
-
| BBQ Chicken | BBQ sauce, grilled chicken, red onions, cilantro | $17.99 |
|
| 81 |
-
| Margherita | Fresh mozzarella, tomatoes, basil | $15.99 |
|
| 82 |
-
| Hawaiian | Ham, pineapple | $14.99 |
|
| 83 |
-
|
| 84 |
-
---
|
| 85 |
-
|
| 86 |
-
### 5. **Additional Menu Items**
|
| 87 |
-
|
| 88 |
-
#### 5.1 **Side Orders**
|
| 89 |
-
|
| 90 |
-
| Item | Description | Price |
|
| 91 |
-
|--------------------|--------------------------------------|---------------|
|
| 92 |
-
| Garlic Breadsticks | Served with marinara dipping sauce | $5.99 |
|
| 93 |
-
| Chicken Wings | Buffalo, BBQ, or plain (10 pieces) | $9.99 |
|
| 94 |
-
| Mozzarella Sticks | Served with marinara (8 pieces) | $6.99 |
|
| 95 |
-
| Caesar Salad | Romaine, croutons, Caesar dressing | $7.99 |
|
| 96 |
-
|
| 97 |
-
#### 5.2 **Desserts**
|
| 98 |
-
|
| 99 |
-
| Item | Description | Price |
|
| 100 |
-
|--------------------|--------------------------------------|---------------|
|
| 101 |
-
| Chocolate Brownies | Chewy and rich (6 pieces) | $4.99 |
|
| 102 |
-
| Cinnamon Sticks | Dusted with cinnamon sugar | $5.99 |
|
| 103 |
-
|
| 104 |
-
---
|
| 105 |
-
|
| 106 |
-
### 6. **Drinks**
|
| 107 |
-
|
| 108 |
-
| Size | Price |
|
| 109 |
-
|--------------------|---------------|
|
| 110 |
-
| 20 oz Bottle | $1.99 |
|
| 111 |
-
| 2-Liter Bottle | $3.50 |
|
| 112 |
-
|
| 113 |
-
Available options: Coke, Diet Coke, Sprite, Root Beer, Lemonade.
|
| 114 |
-
|
| 115 |
-
---
|
| 116 |
-
|
| 117 |
-
### 7. **Delivery Fees & Minimum Order**
|
| 118 |
-
|
| 119 |
-
- **Delivery Fee**: $2.99
|
| 120 |
-
- **Minimum Order**: $12.00
|
| 121 |
-
|
| 122 |
-
*Note: Delivery fees and minimum order thresholds apply to all delivery orders within a 5-mile radius. Additional charges may apply for orders outside this zone.*
|
| 123 |
-
|
| 124 |
-
---
|
| 125 |
-
|
| 126 |
-
### 8. **Promotions & Discounts**
|
| 127 |
-
|
| 128 |
-
- **Monday Madness**: Buy one large pizza, get a second pizza for 50% off.
|
| 129 |
-
- **Student Discount**: 10% off with valid student ID (pickup only).
|
| 130 |
-
- **Family Deal**: 2 large pizzas, 1 side, and 2-liter soda for $29.99.
|
| 131 |
-
|
| 132 |
-
---
|
| 133 |
-
|
| 134 |
-
### 9. **Conclusion**
|
| 135 |
-
|
| 136 |
-
This pricing and menu structure is designed to offer a wide range of choices for our customers while maintaining competitive pricing and ensuring profitability. Please ensure all team members are familiar with the details in this document and implement it accordingly.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
examples/uploads/molecules2.csv
DELETED
|
@@ -1,4 +0,0 @@
|
|
| 1 |
-
name,smiles
|
| 2 |
-
ciprofloxacin,C1CNCCN1c(c2)c(F)cc3c2N(C4CC4)C=C(C3=O)C(=O)O
|
| 3 |
-
caffeine,CN1C=NC2=C1C(=O)N(C(=O)N2C)C
|
| 4 |
-
α-d-glucopyranose,C([C@@H]1[C@H]([C@@H]([C@H]([C@H](O1)O)O)O)O)O
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
examples/uploads/plus-one-dataset.parquet
DELETED
|
Binary file (7.54 kB)
|
|
|
examples/word2vec.py
DELETED
|
@@ -1,27 +0,0 @@
|
|
| 1 |
-
from lynxkite.core.ops import op
|
| 2 |
-
import pandas as pd
|
| 3 |
-
|
| 4 |
-
ENV = "LynxKite Graph Analytics"
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
@op(ENV, "Word2vec for the top 1000 words", slow=True)
|
| 8 |
-
def word2vec_1000():
|
| 9 |
-
import staticvectors # ty: ignore[unresolved-import]
|
| 10 |
-
|
| 11 |
-
model = staticvectors.StaticVectors("neuml/word2vec-quantized")
|
| 12 |
-
df = pd.read_csv(
|
| 13 |
-
"https://gist.githubusercontent.com/deekayen/4148741/raw/98d35708fa344717d8eee15d11987de6c8e26d7d/1-1000.txt",
|
| 14 |
-
names=["word"],
|
| 15 |
-
)
|
| 16 |
-
df["embedding"] = model.embeddings(df.word.tolist()).tolist()
|
| 17 |
-
return df
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
@op(ENV, "Take first N")
|
| 21 |
-
def first_n(df: pd.DataFrame, *, n=10):
|
| 22 |
-
return df.head(n)
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
@op(ENV, "Sample N")
|
| 26 |
-
def sample_n(df: pd.DataFrame, *, n=10):
|
| 27 |
-
return df.sample(n)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|