darabos commited on
Commit
7d69c0d
·
1 Parent(s): d81ec39

Delete upstream demos.

Browse files
examples/Airlines demo.lynxkite.json DELETED
The diff for this file is too large to render. See raw diff
 
examples/Image processing.lynxkite.json DELETED
@@ -1,303 +0,0 @@
1
- {
2
- "edges": [
3
- {
4
- "id": "xy-edge__Open image 1output-View image 1image",
5
- "source": "Open image 1",
6
- "sourceHandle": "output",
7
- "target": "View image 1",
8
- "targetHandle": "image"
9
- },
10
- {
11
- "id": "xy-edge__To grayscale 1output-View image 2image",
12
- "source": "To grayscale 1",
13
- "sourceHandle": "output",
14
- "target": "View image 2",
15
- "targetHandle": "image"
16
- },
17
- {
18
- "id": "xy-edge__Blur 1output-To grayscale 1image",
19
- "source": "Blur 1",
20
- "sourceHandle": "output",
21
- "target": "To grayscale 1",
22
- "targetHandle": "image"
23
- },
24
- {
25
- "id": "Open image 1 Flip vertically 1",
26
- "source": "Open image 1",
27
- "sourceHandle": "output",
28
- "target": "Flip vertically 1",
29
- "targetHandle": "image"
30
- },
31
- {
32
- "id": "Flip vertically 1 Blur 1",
33
- "source": "Flip vertically 1",
34
- "sourceHandle": "output",
35
- "target": "Blur 1",
36
- "targetHandle": "image"
37
- }
38
- ],
39
- "env": "Pillow",
40
- "nodes": [
41
- {
42
- "data": {
43
- "__execution_delay": 0.0,
44
- "collapsed": null,
45
- "display": null,
46
- "error": null,
47
- "input_metadata": null,
48
- "meta": {
49
- "inputs": [],
50
- "name": "Open image",
51
- "outputs": [
52
- {
53
- "name": "output",
54
- "position": "right",
55
- "type": {
56
- "type": "None"
57
- }
58
- }
59
- ],
60
- "params": [
61
- {
62
- "default": null,
63
- "name": "filename",
64
- "type": {
65
- "type": "<class 'str'>"
66
- }
67
- }
68
- ],
69
- "type": "basic"
70
- },
71
- "params": {
72
- "filename": "https://media.licdn.com/dms/image/v2/C4E03AQEq4tdJKQiNHQ/profile-displayphoto-shrink_200_200/profile-displayphoto-shrink_200_200/0/1657270040827?e=2147483647&v=beta&t=lDxix0_0-_K7NUFqgPdzxY5-P7f73bWpPS_XRre842c"
73
- },
74
- "status": "done",
75
- "title": "Open image"
76
- },
77
- "dragHandle": ".bg-primary",
78
- "height": 222.0,
79
- "id": "Open image 1",
80
- "parentId": null,
81
- "position": {
82
- "x": -316.51795927908694,
83
- "y": 122.80901061526373
84
- },
85
- "type": "basic",
86
- "width": 422.0
87
- },
88
- {
89
- "data": {
90
- "display": "",
91
- "error": null,
92
- "input_metadata": null,
93
- "meta": {
94
- "inputs": [
95
- {
96
- "name": "image",
97
- "position": "left",
98
- "type": {
99
- "type": "<module 'PIL.Image' from '/media/nvme/darabos/lynxkite-2024/.venv/lib/python3.11/site-packages/PIL/Image.py'>"
100
- }
101
- }
102
- ],
103
- "name": "View image",
104
- "outputs": [],
105
- "params": [],
106
- "type": "image"
107
- },
108
- "params": {},
109
- "status": "done",
110
- "title": "View image"
111
- },
112
- "dragHandle": ".bg-primary",
113
- "height": 288.0,
114
- "id": "View image 1",
115
- "parentId": null,
116
- "position": {
117
- "x": 371.2152385614552,
118
- "y": -243.68185336918702
119
- },
120
- "type": "image",
121
- "width": 265.0
122
- },
123
- {
124
- "data": {
125
- "display": "",
126
- "error": null,
127
- "input_metadata": null,
128
- "meta": {
129
- "inputs": [
130
- {
131
- "name": "image",
132
- "position": "left",
133
- "type": {
134
- "type": "<module 'PIL.Image' from '/media/nvme/darabos/lynxkite-2024/.venv/lib/python3.11/site-packages/PIL/Image.py'>"
135
- }
136
- }
137
- ],
138
- "name": "View image",
139
- "outputs": [],
140
- "params": [],
141
- "type": "image"
142
- },
143
- "params": {},
144
- "status": "done",
145
- "title": "View image"
146
- },
147
- "dragHandle": ".bg-primary",
148
- "height": 456.0,
149
- "id": "View image 2",
150
- "parentId": null,
151
- "position": {
152
- "x": 1068.1904563045216,
153
- "y": 313.7040149772122
154
- },
155
- "type": "image",
156
- "width": 398.0
157
- },
158
- {
159
- "data": {
160
- "__execution_delay": null,
161
- "collapsed": true,
162
- "display": null,
163
- "error": null,
164
- "input_metadata": null,
165
- "meta": {
166
- "inputs": [
167
- {
168
- "name": "image",
169
- "position": "left",
170
- "type": {
171
- "type": "<module 'PIL.Image' from '/media/nvme/darabos/lynxkite-2024/.venv/lib/python3.11/site-packages/PIL/Image.py'>"
172
- }
173
- }
174
- ],
175
- "name": "To grayscale",
176
- "outputs": [
177
- {
178
- "name": "output",
179
- "position": "right",
180
- "type": {
181
- "type": "None"
182
- }
183
- }
184
- ],
185
- "params": [],
186
- "type": "basic"
187
- },
188
- "params": {},
189
- "status": "done",
190
- "title": "To grayscale"
191
- },
192
- "dragHandle": ".bg-primary",
193
- "height": 200.0,
194
- "id": "To grayscale 1",
195
- "parentId": null,
196
- "position": {
197
- "x": 788.18031953735,
198
- "y": 541.1434137066244
199
- },
200
- "type": "basic",
201
- "width": 200.0
202
- },
203
- {
204
- "data": {
205
- "__execution_delay": 0.0,
206
- "collapsed": null,
207
- "display": null,
208
- "error": null,
209
- "input_metadata": null,
210
- "meta": {
211
- "inputs": [
212
- {
213
- "name": "image",
214
- "position": "left",
215
- "type": {
216
- "type": "<module 'PIL.Image' from '/media/nvme/darabos/lynxkite-2024/.venv/lib/python3.11/site-packages/PIL/Image.py'>"
217
- }
218
- }
219
- ],
220
- "name": "Blur",
221
- "outputs": [
222
- {
223
- "name": "output",
224
- "position": "right",
225
- "type": {
226
- "type": "None"
227
- }
228
- }
229
- ],
230
- "params": [
231
- {
232
- "default": 5.0,
233
- "name": "radius",
234
- "type": {
235
- "type": "<class 'float'>"
236
- }
237
- }
238
- ],
239
- "type": "basic"
240
- },
241
- "params": {
242
- "radius": "5"
243
- },
244
- "status": "done",
245
- "title": "Blur"
246
- },
247
- "dragHandle": ".bg-primary",
248
- "height": 200.0,
249
- "id": "Blur 1",
250
- "parentId": null,
251
- "position": {
252
- "x": 505.15961556359304,
253
- "y": 539.8477981917164
254
- },
255
- "type": "basic",
256
- "width": 200.0
257
- },
258
- {
259
- "data": {
260
- "__execution_delay": null,
261
- "collapsed": true,
262
- "display": null,
263
- "error": null,
264
- "input_metadata": null,
265
- "meta": {
266
- "inputs": [
267
- {
268
- "name": "image",
269
- "position": "left",
270
- "type": {
271
- "type": "<module 'PIL.Image' from '/media/nvme/darabos/lynxkite-2024/.venv/lib/python3.11/site-packages/PIL/Image.py'>"
272
- }
273
- }
274
- ],
275
- "name": "Flip vertically",
276
- "outputs": [
277
- {
278
- "name": "output",
279
- "position": "right",
280
- "type": {
281
- "type": "None"
282
- }
283
- }
284
- ],
285
- "params": [],
286
- "type": "basic"
287
- },
288
- "params": {},
289
- "status": "done",
290
- "title": "Flip vertically"
291
- },
292
- "dragHandle": ".bg-primary",
293
- "height": 200.0,
294
- "id": "Flip vertically 1",
295
- "position": {
296
- "x": 148.51544517498044,
297
- "y": 288.98657171134255
298
- },
299
- "type": "basic",
300
- "width": 200.0
301
- }
302
- ]
303
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
examples/Image table.lynxkite.json DELETED
@@ -1,364 +0,0 @@
1
- {
2
- "edges": [
3
- {
4
- "id": "Example image table 1 View tables 1",
5
- "source": "Example image table 1",
6
- "sourceHandle": "output",
7
- "target": "View tables 1",
8
- "targetHandle": "bundle"
9
- },
10
- {
11
- "id": "Import CSV 1 Draw molecules 1",
12
- "source": "Import CSV 1",
13
- "sourceHandle": "output",
14
- "target": "Draw molecules 1",
15
- "targetHandle": "df"
16
- },
17
- {
18
- "id": "Draw molecules 1 View tables 2",
19
- "source": "Draw molecules 1",
20
- "sourceHandle": "output",
21
- "target": "View tables 2",
22
- "targetHandle": "bundle"
23
- }
24
- ],
25
- "env": "LynxKite Graph Analytics",
26
- "nodes": [
27
- {
28
- "data": {
29
- "__execution_delay": null,
30
- "collapsed": false,
31
- "display": null,
32
- "error": null,
33
- "input_metadata": [],
34
- "meta": {
35
- "color": "orange",
36
- "inputs": [],
37
- "name": "Example image table",
38
- "outputs": [
39
- {
40
- "name": "output",
41
- "position": "right",
42
- "type": {
43
- "type": "None"
44
- }
45
- }
46
- ],
47
- "params": [],
48
- "type": "basic"
49
- },
50
- "params": {},
51
- "status": "done",
52
- "title": "Example image table"
53
- },
54
- "dragHandle": ".bg-primary",
55
- "height": 200.0,
56
- "id": "Example image table 1",
57
- "position": {
58
- "x": 356.1935187064265,
59
- "y": 224.8472733628614
60
- },
61
- "type": "basic",
62
- "width": 280.0
63
- },
64
- {
65
- "data": {
66
- "display": {
67
- "dataframes": {
68
- "df": {
69
- "columns": [
70
- "names",
71
- "images"
72
- ],
73
- "data": [
74
- [
75
- "svg",
76
- "<svg xmlns=\"http://www.w3.org/2000/svg\" viewBox=\"0 0 64 64\" enable-background=\"new 0 0 64 64\"><path d=\"M56 2 18.8 42.909 8 34.729 2 34.729 18.8 62 62 2z\"/></svg>"
77
- ],
78
- [
79
- "data",
80
- ""
81
- ],
82
- [
83
- "http",
84
- "https://upload.wikimedia.org/wikipedia/commons/2/2e/Emojione_BW_2714.svg"
85
- ]
86
- ]
87
- }
88
- },
89
- "other": {},
90
- "relations": []
91
- },
92
- "error": null,
93
- "input_metadata": [
94
- {
95
- "dataframes": {
96
- "df": {
97
- "columns": [
98
- "images",
99
- "names"
100
- ]
101
- }
102
- },
103
- "other": {},
104
- "relations": []
105
- }
106
- ],
107
- "meta": {
108
- "color": "orange",
109
- "inputs": [
110
- {
111
- "name": "bundle",
112
- "position": "left",
113
- "type": {
114
- "type": "<class 'lynxkite_graph_analytics.core.Bundle'>"
115
- }
116
- }
117
- ],
118
- "name": "View tables",
119
- "outputs": [],
120
- "params": [
121
- {
122
- "default": 100,
123
- "name": "limit",
124
- "type": {
125
- "type": "<class 'int'>"
126
- }
127
- }
128
- ],
129
- "type": "table_view"
130
- },
131
- "params": {
132
- "limit": 100.0
133
- },
134
- "status": "done",
135
- "title": "View tables"
136
- },
137
- "dragHandle": ".bg-primary",
138
- "height": 440.0,
139
- "id": "View tables 1",
140
- "position": {
141
- "x": 757.4687936995374,
142
- "y": 116.39895719598661
143
- },
144
- "type": "table_view",
145
- "width": 376.0
146
- },
147
- {
148
- "data": {
149
- "__execution_delay": 0.0,
150
- "collapsed": null,
151
- "display": null,
152
- "error": null,
153
- "input_metadata": [],
154
- "meta": {
155
- "color": "orange",
156
- "inputs": [],
157
- "name": "Import CSV",
158
- "outputs": [
159
- {
160
- "name": "output",
161
- "position": "right",
162
- "type": {
163
- "type": "None"
164
- }
165
- }
166
- ],
167
- "params": [
168
- {
169
- "default": null,
170
- "name": "filename",
171
- "type": {
172
- "type": "<class 'str'>"
173
- }
174
- },
175
- {
176
- "default": "<from file>",
177
- "name": "columns",
178
- "type": {
179
- "type": "<class 'str'>"
180
- }
181
- },
182
- {
183
- "default": "<auto>",
184
- "name": "separator",
185
- "type": {
186
- "type": "<class 'str'>"
187
- }
188
- }
189
- ],
190
- "type": "basic"
191
- },
192
- "params": {
193
- "columns": "<from file>",
194
- "filename": "uploads/molecules2.csv",
195
- "separator": "<auto>"
196
- },
197
- "status": "done",
198
- "title": "Import CSV"
199
- },
200
- "dragHandle": ".bg-primary",
201
- "height": 339.0,
202
- "id": "Import CSV 1",
203
- "position": {
204
- "x": 13.802068621055497,
205
- "y": -269.65065144888104
206
- },
207
- "type": "basic",
208
- "width": 296.0
209
- },
210
- {
211
- "data": {
212
- "display": {
213
- "dataframes": {
214
- "df": {
215
- "columns": [
216
- "name",
217
- "smiles",
218
- "image"
219
- ],
220
- "data": [
221
- [
222
- "ciprofloxacin",
223
- "C1CNCCN1c(c2)c(F)cc3c2N(C4CC4)C=C(C3=O)C(=O)O",
224
- ""
225
- ],
226
- [
227
- "caffeine",
228
- "CN1C=NC2=C1C(=O)N(C(=O)N2C)C",
229
- ""
230
- ],
231
- [
232
- "\u03b1-d-glucopyranose",
233
- "C([C@@H]1[C@H]([C@@H]([C@H]([C@H](O1)O)O)O)O)O",
234
- ""
235
- ]
236
- ]
237
- }
238
- },
239
- "other": {},
240
- "relations": []
241
- },
242
- "error": null,
243
- "input_metadata": [
244
- {
245
- "dataframes": {
246
- "df": {
247
- "columns": [
248
- "image",
249
- "name",
250
- "smiles"
251
- ]
252
- }
253
- },
254
- "other": {},
255
- "relations": []
256
- }
257
- ],
258
- "meta": {
259
- "color": "orange",
260
- "inputs": [
261
- {
262
- "name": "bundle",
263
- "position": "left",
264
- "type": {
265
- "type": "<class 'lynxkite_graph_analytics.core.Bundle'>"
266
- }
267
- }
268
- ],
269
- "name": "View tables",
270
- "outputs": [],
271
- "params": [
272
- {
273
- "default": 100,
274
- "name": "limit",
275
- "type": {
276
- "type": "<class 'int'>"
277
- }
278
- }
279
- ],
280
- "type": "table_view"
281
- },
282
- "params": {
283
- "limit": 100.0
284
- },
285
- "status": "planned",
286
- "title": "View tables"
287
- },
288
- "dragHandle": ".bg-primary",
289
- "height": 418.0,
290
- "id": "View tables 2",
291
- "position": {
292
- "x": 815.4121289519509,
293
- "y": -330.8232285057863
294
- },
295
- "type": "table_view",
296
- "width": 1116.0
297
- },
298
- {
299
- "data": {
300
- "__execution_delay": 0.0,
301
- "collapsed": null,
302
- "display": null,
303
- "error": "module 'rdkit.Chem' has no attribute 'Draw'",
304
- "input_metadata": [
305
- {}
306
- ],
307
- "meta": {
308
- "color": "orange",
309
- "inputs": [
310
- {
311
- "name": "df",
312
- "position": "left",
313
- "type": {
314
- "type": "<class 'pandas.core.frame.DataFrame'>"
315
- }
316
- }
317
- ],
318
- "name": "Draw molecules",
319
- "outputs": [
320
- {
321
- "name": "output",
322
- "position": "right",
323
- "type": {
324
- "type": "None"
325
- }
326
- }
327
- ],
328
- "params": [
329
- {
330
- "default": null,
331
- "name": "smiles_column",
332
- "type": {
333
- "type": "<class 'str'>"
334
- }
335
- },
336
- {
337
- "default": "image",
338
- "name": "image_column",
339
- "type": {
340
- "type": "<class 'str'>"
341
- }
342
- }
343
- ],
344
- "type": "basic"
345
- },
346
- "params": {
347
- "image_column": "image",
348
- "smiles_column": "smiles"
349
- },
350
- "status": "done",
351
- "title": "Draw molecules"
352
- },
353
- "dragHandle": ".bg-primary",
354
- "height": 296.0,
355
- "id": "Draw molecules 1",
356
- "position": {
357
- "x": 351.1956913898301,
358
- "y": -235.00831568554486
359
- },
360
- "type": "basic",
361
- "width": 212.0
362
- }
363
- ]
364
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
examples/Model definition.lynxkite.json DELETED
@@ -1,671 +0,0 @@
1
- {
2
- "edges": [
3
- {
4
- "id": "MSE loss 2 Optimizer 2",
5
- "source": "MSE loss 2",
6
- "sourceHandle": "output",
7
- "target": "Optimizer 2",
8
- "targetHandle": "loss"
9
- },
10
- {
11
- "id": "Activation 1 Repeat 1",
12
- "source": "Activation 1",
13
- "sourceHandle": "output",
14
- "target": "Repeat 1",
15
- "targetHandle": "input"
16
- },
17
- {
18
- "id": "Linear 1 Activation 1",
19
- "source": "Linear 1",
20
- "sourceHandle": "output",
21
- "target": "Activation 1",
22
- "targetHandle": "x"
23
- },
24
- {
25
- "id": "Repeat 1 Linear 1",
26
- "source": "Repeat 1",
27
- "sourceHandle": "output",
28
- "target": "Linear 1",
29
- "targetHandle": "x"
30
- },
31
- {
32
- "id": "Input: tensor 1 Linear 1",
33
- "source": "Input: tensor 1",
34
- "sourceHandle": "output",
35
- "target": "Linear 1",
36
- "targetHandle": "x"
37
- },
38
- {
39
- "id": "Constant vector 1 Add 1",
40
- "source": "Constant vector 1",
41
- "sourceHandle": "output",
42
- "target": "Add 1",
43
- "targetHandle": "b"
44
- },
45
- {
46
- "id": "Input: tensor 3 Add 1",
47
- "source": "Input: tensor 3",
48
- "sourceHandle": "output",
49
- "target": "Add 1",
50
- "targetHandle": "a"
51
- },
52
- {
53
- "id": "Add 1 MSE loss 2",
54
- "source": "Add 1",
55
- "sourceHandle": "output",
56
- "target": "MSE loss 2",
57
- "targetHandle": "y"
58
- },
59
- {
60
- "id": "Activation 1 Output 1",
61
- "source": "Activation 1",
62
- "sourceHandle": "output",
63
- "target": "Output 1",
64
- "targetHandle": "x"
65
- },
66
- {
67
- "id": "Output 1 MSE loss 2",
68
- "source": "Output 1",
69
- "sourceHandle": "x",
70
- "target": "MSE loss 2",
71
- "targetHandle": "x"
72
- }
73
- ],
74
- "env": "PyTorch model",
75
- "nodes": [
76
- {
77
- "data": {
78
- "__execution_delay": 0.0,
79
- "collapsed": null,
80
- "display": null,
81
- "error": null,
82
- "input_metadata": null,
83
- "meta": {
84
- "categories": [],
85
- "color": "green",
86
- "doc": null,
87
- "id": "Optimizer",
88
- "inputs": [
89
- {
90
- "name": "loss",
91
- "position": "bottom",
92
- "type": {
93
- "type": "tensor"
94
- }
95
- }
96
- ],
97
- "name": "Optimizer",
98
- "outputs": [],
99
- "params": [
100
- {
101
- "default": "AdamW",
102
- "name": "type",
103
- "type": {
104
- "enum": [
105
- "AdamW",
106
- "Adafactor",
107
- "Adagrad",
108
- "SGD",
109
- "Lion",
110
- "Paged AdamW",
111
- "Galore AdamW"
112
- ]
113
- }
114
- },
115
- {
116
- "default": 0.0001,
117
- "name": "lr",
118
- "type": {
119
- "type": "<class 'float'>"
120
- }
121
- }
122
- ],
123
- "type": "basic"
124
- },
125
- "op_id": "Optimizer",
126
- "params": {
127
- "lr": "0.1",
128
- "type": "SGD"
129
- },
130
- "status": "done",
131
- "title": "Optimizer"
132
- },
133
- "dragHandle": ".drag-handle",
134
- "height": 250.0,
135
- "id": "Optimizer 2",
136
- "position": {
137
- "x": 359.75221367487865,
138
- "y": -1150.2183224762075
139
- },
140
- "type": "basic",
141
- "width": 232.0
142
- },
143
- {
144
- "data": {
145
- "__execution_delay": 0.0,
146
- "collapsed": null,
147
- "display": null,
148
- "error": null,
149
- "input_metadata": null,
150
- "meta": {
151
- "categories": [],
152
- "color": "orange",
153
- "doc": null,
154
- "id": "Activation",
155
- "inputs": [
156
- {
157
- "name": "x",
158
- "position": "bottom",
159
- "type": {
160
- "type": "<class 'inspect._empty'>"
161
- }
162
- }
163
- ],
164
- "name": "Activation",
165
- "outputs": [
166
- {
167
- "name": "output",
168
- "position": "top",
169
- "type": {
170
- "type": "None"
171
- }
172
- }
173
- ],
174
- "params": [
175
- {
176
- "default": "ReLU",
177
- "name": "type",
178
- "type": {
179
- "enum": [
180
- "ELU",
181
- "GELU",
182
- "LeakyReLU",
183
- "Mish",
184
- "PReLU",
185
- "ReLU",
186
- "Sigmoid",
187
- "SiLU",
188
- "Softplus",
189
- "Tanh"
190
- ]
191
- }
192
- }
193
- ],
194
- "type": "basic"
195
- },
196
- "op_id": "Activation",
197
- "params": {
198
- "type": "LeakyReLU"
199
- },
200
- "status": "done",
201
- "title": "Activation"
202
- },
203
- "dragHandle": ".drag-handle",
204
- "height": 200.0,
205
- "id": "Activation 1",
206
- "position": {
207
- "x": 99.77615018185415,
208
- "y": -249.43925929074078
209
- },
210
- "type": "basic",
211
- "width": 200.0
212
- },
213
- {
214
- "data": {
215
- "__execution_delay": 0.0,
216
- "collapsed": null,
217
- "display": null,
218
- "error": null,
219
- "input_metadata": null,
220
- "meta": {
221
- "categories": [],
222
- "color": "gray",
223
- "doc": null,
224
- "id": "Input: tensor",
225
- "inputs": [],
226
- "name": "Input: tensor",
227
- "outputs": [
228
- {
229
- "name": "output",
230
- "position": "top",
231
- "type": {
232
- "type": "tensor"
233
- }
234
- }
235
- ],
236
- "params": [
237
- {
238
- "default": null,
239
- "name": "name",
240
- "type": {
241
- "type": "None"
242
- }
243
- }
244
- ],
245
- "type": "basic"
246
- },
247
- "op_id": "Input: tensor",
248
- "params": {
249
- "name": "Y"
250
- },
251
- "status": "done",
252
- "title": "Input: tensor"
253
- },
254
- "dragHandle": ".drag-handle",
255
- "height": 200.0,
256
- "id": "Input: tensor 3",
257
- "position": {
258
- "x": 454.7823474758749,
259
- "y": -212.0655794519241
260
- },
261
- "type": "basic",
262
- "width": 200.0
263
- },
264
- {
265
- "data": {
266
- "__execution_delay": null,
267
- "collapsed": true,
268
- "display": null,
269
- "error": null,
270
- "input_metadata": null,
271
- "meta": {
272
- "categories": [],
273
- "color": "orange",
274
- "doc": null,
275
- "id": "MSE loss",
276
- "inputs": [
277
- {
278
- "name": "x",
279
- "position": "bottom",
280
- "type": {
281
- "type": "<class 'inspect._empty'>"
282
- }
283
- },
284
- {
285
- "name": "y",
286
- "position": "bottom",
287
- "type": {
288
- "type": "<class 'inspect._empty'>"
289
- }
290
- }
291
- ],
292
- "name": "MSE loss",
293
- "outputs": [
294
- {
295
- "name": "output",
296
- "position": "top",
297
- "type": {
298
- "type": "None"
299
- }
300
- }
301
- ],
302
- "params": [],
303
- "type": "basic"
304
- },
305
- "op_id": "MSE loss",
306
- "params": {},
307
- "status": "done",
308
- "title": "MSE loss"
309
- },
310
- "dragHandle": ".drag-handle",
311
- "height": 200.0,
312
- "id": "MSE loss 2",
313
- "position": {
314
- "x": 375.21624462193034,
315
- "y": -721.0552036572305
316
- },
317
- "type": "basic",
318
- "width": 200.0
319
- },
320
- {
321
- "data": {
322
- "__execution_delay": 0.0,
323
- "collapsed": null,
324
- "display": null,
325
- "error": null,
326
- "input_metadata": null,
327
- "meta": {
328
- "categories": [],
329
- "color": "orange",
330
- "doc": null,
331
- "id": "Repeat",
332
- "inputs": [
333
- {
334
- "name": "input",
335
- "position": "top",
336
- "type": {
337
- "type": "tensor"
338
- }
339
- }
340
- ],
341
- "name": "Repeat",
342
- "outputs": [
343
- {
344
- "name": "output",
345
- "position": "bottom",
346
- "type": {
347
- "type": "tensor"
348
- }
349
- }
350
- ],
351
- "params": [
352
- {
353
- "default": 1.0,
354
- "name": "times",
355
- "type": {
356
- "type": "<class 'int'>"
357
- }
358
- },
359
- {
360
- "default": false,
361
- "name": "same_weights",
362
- "type": {
363
- "type": "<class 'bool'>"
364
- }
365
- }
366
- ],
367
- "type": "basic"
368
- },
369
- "op_id": "Repeat",
370
- "params": {
371
- "same_weights": false,
372
- "times": "2"
373
- },
374
- "status": "done",
375
- "title": "Repeat"
376
- },
377
- "dragHandle": ".drag-handle",
378
- "height": 200.0,
379
- "id": "Repeat 1",
380
- "position": {
381
- "x": -210.0,
382
- "y": -135.0
383
- },
384
- "type": "basic",
385
- "width": 200.0
386
- },
387
- {
388
- "data": {
389
- "__execution_delay": 0.0,
390
- "collapsed": null,
391
- "display": null,
392
- "error": null,
393
- "input_metadata": null,
394
- "meta": {
395
- "categories": [],
396
- "color": "blue",
397
- "doc": null,
398
- "id": "Linear",
399
- "inputs": [
400
- {
401
- "name": "x",
402
- "position": "bottom",
403
- "type": {
404
- "type": "<class 'inspect._empty'>"
405
- }
406
- }
407
- ],
408
- "name": "Linear",
409
- "outputs": [
410
- {
411
- "name": "output",
412
- "position": "top",
413
- "type": {
414
- "type": "None"
415
- }
416
- }
417
- ],
418
- "params": [
419
- {
420
- "default": 1024.0,
421
- "name": "output_dim",
422
- "type": {
423
- "type": "<class 'int'>"
424
- }
425
- }
426
- ],
427
- "type": "basic"
428
- },
429
- "op_id": "Linear",
430
- "params": {
431
- "output_dim": "4"
432
- },
433
- "status": "done",
434
- "title": "Linear"
435
- },
436
- "dragHandle": ".drag-handle",
437
- "height": 189.0,
438
- "id": "Linear 1",
439
- "position": {
440
- "x": 98.54861342271252,
441
- "y": 14.121603973834155
442
- },
443
- "type": "basic",
444
- "width": 199.0
445
- },
446
- {
447
- "data": {
448
- "__execution_delay": 0.0,
449
- "collapsed": null,
450
- "display": null,
451
- "error": null,
452
- "input_metadata": null,
453
- "meta": {
454
- "categories": [],
455
- "color": "gray",
456
- "doc": null,
457
- "id": "Input: tensor",
458
- "inputs": [],
459
- "name": "Input: tensor",
460
- "outputs": [
461
- {
462
- "name": "output",
463
- "position": "top",
464
- "type": {
465
- "type": "tensor"
466
- }
467
- }
468
- ],
469
- "params": [
470
- {
471
- "default": null,
472
- "name": "name",
473
- "type": {
474
- "type": "None"
475
- }
476
- }
477
- ],
478
- "type": "basic"
479
- },
480
- "op_id": "Input: tensor",
481
- "params": {
482
- "name": "X"
483
- },
484
- "status": "done",
485
- "title": "Input: tensor"
486
- },
487
- "dragHandle": ".drag-handle",
488
- "height": 200.0,
489
- "id": "Input: tensor 1",
490
- "position": {
491
- "x": 108.75735538875443,
492
- "y": 331.53404347930933
493
- },
494
- "type": "basic",
495
- "width": 200.0
496
- },
497
- {
498
- "data": {
499
- "__execution_delay": 0.0,
500
- "collapsed": null,
501
- "display": null,
502
- "error": null,
503
- "input_metadata": null,
504
- "meta": {
505
- "categories": [],
506
- "color": "orange",
507
- "doc": null,
508
- "id": "Constant vector",
509
- "inputs": [],
510
- "name": "Constant vector",
511
- "outputs": [
512
- {
513
- "name": "output",
514
- "position": "top",
515
- "type": {
516
- "type": "None"
517
- }
518
- }
519
- ],
520
- "params": [
521
- {
522
- "default": 0.0,
523
- "name": "value",
524
- "type": {
525
- "type": "<class 'int'>"
526
- }
527
- },
528
- {
529
- "default": 1.0,
530
- "name": "size",
531
- "type": {
532
- "type": "<class 'int'>"
533
- }
534
- }
535
- ],
536
- "type": "basic"
537
- },
538
- "op_id": "Constant vector",
539
- "params": {
540
- "size": "1",
541
- "value": "1"
542
- },
543
- "status": "done",
544
- "title": "Constant vector"
545
- },
546
- "dragHandle": ".drag-handle",
547
- "height": 258.0,
548
- "id": "Constant vector 1",
549
- "position": {
550
- "x": 846.2767459753351,
551
- "y": -226.90556526533476
552
- },
553
- "type": "basic",
554
- "width": 238.0
555
- },
556
- {
557
- "data": {
558
- "__execution_delay": null,
559
- "collapsed": true,
560
- "display": null,
561
- "error": null,
562
- "input_metadata": null,
563
- "meta": {
564
- "categories": [],
565
- "color": "orange",
566
- "doc": null,
567
- "id": "Add",
568
- "inputs": [
569
- {
570
- "name": "a",
571
- "position": "bottom",
572
- "type": {
573
- "type": "<class 'inspect._empty'>"
574
- }
575
- },
576
- {
577
- "name": "b",
578
- "position": "bottom",
579
- "type": {
580
- "type": "<class 'inspect._empty'>"
581
- }
582
- }
583
- ],
584
- "name": "Add",
585
- "outputs": [
586
- {
587
- "name": "output",
588
- "position": "top",
589
- "type": {
590
- "type": "None"
591
- }
592
- }
593
- ],
594
- "params": [],
595
- "type": "basic"
596
- },
597
- "op_id": "Add",
598
- "params": {},
599
- "status": "done",
600
- "title": "Add"
601
- },
602
- "dragHandle": ".drag-handle",
603
- "height": 200.0,
604
- "id": "Add 1",
605
- "position": {
606
- "x": 631.934390777073,
607
- "y": -395.6855954439944
608
- },
609
- "type": "basic",
610
- "width": 200.0
611
- },
612
- {
613
- "data": {
614
- "__execution_delay": null,
615
- "collapsed": true,
616
- "display": null,
617
- "error": null,
618
- "input_metadata": null,
619
- "meta": {
620
- "categories": [],
621
- "color": "gray",
622
- "doc": null,
623
- "id": "Output",
624
- "inputs": [
625
- {
626
- "name": "x",
627
- "position": "bottom",
628
- "type": {
629
- "type": "tensor"
630
- }
631
- }
632
- ],
633
- "name": "Output",
634
- "outputs": [
635
- {
636
- "name": "x",
637
- "position": "top",
638
- "type": {
639
- "type": "tensor"
640
- }
641
- }
642
- ],
643
- "params": [
644
- {
645
- "default": null,
646
- "name": "name",
647
- "type": {
648
- "type": "None"
649
- }
650
- }
651
- ],
652
- "type": "basic"
653
- },
654
- "op_id": "Output",
655
- "params": {},
656
- "status": "done",
657
- "title": "Output"
658
- },
659
- "dragHandle": ".drag-handle",
660
- "height": 200.0,
661
- "id": "Output 1",
662
- "position": {
663
- "x": 119.83887514325258,
664
- "y": -453.23756095856885
665
- },
666
- "type": "basic",
667
- "width": 200.0
668
- }
669
- ],
670
- "paused": false
671
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
examples/Model use.lynxkite.json DELETED
The diff for this file is too large to render. See raw diff
 
examples/Multi-output demo.lynxkite.json DELETED
@@ -1,301 +0,0 @@
1
- {
2
- "edges": [
3
- {
4
- "id": "Multi-output example 1 one View tables 1 bundle",
5
- "source": "Multi-output example 1",
6
- "sourceHandle": "one",
7
- "target": "View tables 1",
8
- "targetHandle": "bundle"
9
- },
10
- {
11
- "id": "Multi-output example 1 two View tables 2 bundle",
12
- "source": "Multi-output example 1",
13
- "sourceHandle": "two",
14
- "target": "View tables 2",
15
- "targetHandle": "bundle"
16
- }
17
- ],
18
- "env": "LynxKite Graph Analytics",
19
- "nodes": [
20
- {
21
- "data": {
22
- "__execution_delay": 0.0,
23
- "collapsed": false,
24
- "display": null,
25
- "error": null,
26
- "input_metadata": [],
27
- "meta": {
28
- "categories": [
29
- "Examples"
30
- ],
31
- "color": "orange",
32
- "doc": [
33
- {
34
- "kind": "text",
35
- "value": "Returns two outputs. Also demonstrates Numpy-style docstrings."
36
- },
37
- {
38
- "kind": "parameters",
39
- "value": [
40
- {
41
- "annotation": "int",
42
- "description": "Number of elements in output \"one\".",
43
- "name": "a_limit"
44
- },
45
- {
46
- "annotation": "int",
47
- "description": "Number of elements in output \"two\".",
48
- "name": "b_limit"
49
- }
50
- ]
51
- },
52
- {
53
- "kind": "returns",
54
- "value": [
55
- {
56
- "annotation": "A dict with two DataFrames in it.",
57
- "description": "",
58
- "name": ""
59
- }
60
- ]
61
- }
62
- ],
63
- "id": "Examples > Multi-output example",
64
- "inputs": [],
65
- "name": "Multi-output example",
66
- "outputs": [
67
- {
68
- "name": "one",
69
- "position": "right",
70
- "type": {
71
- "type": "None"
72
- }
73
- },
74
- {
75
- "name": "two",
76
- "position": "right",
77
- "type": {
78
- "type": "None"
79
- }
80
- }
81
- ],
82
- "params": [
83
- {
84
- "default": 4,
85
- "name": "a_limit",
86
- "type": {
87
- "type": "<class 'int'>"
88
- }
89
- },
90
- {
91
- "default": 10,
92
- "name": "b_limit",
93
- "type": {
94
- "type": "<class 'int'>"
95
- }
96
- }
97
- ],
98
- "type": "basic"
99
- },
100
- "op_id": "Examples > Multi-output example",
101
- "params": {
102
- "a_limit": "2",
103
- "b_limit": "10"
104
- },
105
- "status": "done",
106
- "title": "Multi-output example"
107
- },
108
- "dragHandle": ".drag-handle",
109
- "height": 275.0,
110
- "id": "Multi-output example 1",
111
- "position": {
112
- "x": 86.0,
113
- "y": 33.0
114
- },
115
- "type": "basic",
116
- "width": 200.0
117
- },
118
- {
119
- "data": {
120
- "display": {
121
- "dataframes": {
122
- "df": {
123
- "columns": [
124
- "a"
125
- ],
126
- "data": [
127
- [
128
- 0
129
- ],
130
- [
131
- 1
132
- ]
133
- ]
134
- }
135
- },
136
- "other": {},
137
- "relations": []
138
- },
139
- "error": null,
140
- "input_metadata": [
141
- {
142
- "dataframes": {
143
- "df": {
144
- "columns": [
145
- "a"
146
- ]
147
- }
148
- },
149
- "other": {},
150
- "relations": []
151
- }
152
- ],
153
- "meta": {
154
- "categories": [],
155
- "color": "orange",
156
- "doc": null,
157
- "id": "View tables",
158
- "inputs": [
159
- {
160
- "name": "bundle",
161
- "position": "left",
162
- "type": {
163
- "type": "<class 'lynxkite_graph_analytics.core.Bundle'>"
164
- }
165
- }
166
- ],
167
- "name": "View tables",
168
- "outputs": [],
169
- "params": [
170
- {
171
- "default": 100,
172
- "name": "limit",
173
- "type": {
174
- "type": "<class 'int'>"
175
- }
176
- }
177
- ],
178
- "type": "table_view"
179
- },
180
- "op_id": "View tables",
181
- "params": {
182
- "limit": 100.0
183
- },
184
- "status": "done",
185
- "title": "View tables"
186
- },
187
- "dragHandle": ".drag-handle",
188
- "height": 200.0,
189
- "id": "View tables 1",
190
- "position": {
191
- "x": 485.0,
192
- "y": -31.0
193
- },
194
- "type": "table_view",
195
- "width": 200.0
196
- },
197
- {
198
- "data": {
199
- "display": {
200
- "dataframes": {
201
- "df": {
202
- "columns": [
203
- "b"
204
- ],
205
- "data": [
206
- [
207
- 0
208
- ],
209
- [
210
- 1
211
- ],
212
- [
213
- 2
214
- ],
215
- [
216
- 3
217
- ],
218
- [
219
- 4
220
- ],
221
- [
222
- 5
223
- ],
224
- [
225
- 6
226
- ],
227
- [
228
- 7
229
- ],
230
- [
231
- 8
232
- ],
233
- [
234
- 9
235
- ]
236
- ]
237
- }
238
- },
239
- "other": {},
240
- "relations": []
241
- },
242
- "error": null,
243
- "input_metadata": [
244
- {
245
- "dataframes": {
246
- "df": {
247
- "columns": [
248
- "b"
249
- ]
250
- }
251
- },
252
- "other": {},
253
- "relations": []
254
- }
255
- ],
256
- "meta": {
257
- "categories": [],
258
- "color": "orange",
259
- "doc": null,
260
- "id": "View tables",
261
- "inputs": [
262
- {
263
- "name": "bundle",
264
- "position": "left",
265
- "type": {
266
- "type": "<class 'lynxkite_graph_analytics.core.Bundle'>"
267
- }
268
- }
269
- ],
270
- "name": "View tables",
271
- "outputs": [],
272
- "params": [
273
- {
274
- "default": 100,
275
- "name": "limit",
276
- "type": {
277
- "type": "<class 'int'>"
278
- }
279
- }
280
- ],
281
- "type": "table_view"
282
- },
283
- "op_id": "View tables",
284
- "params": {
285
- "limit": 100.0
286
- },
287
- "status": "done",
288
- "title": "View tables"
289
- },
290
- "dragHandle": ".drag-handle",
291
- "height": 215.0,
292
- "id": "View tables 2",
293
- "position": {
294
- "x": 480.0,
295
- "y": 191.0
296
- },
297
- "type": "table_view",
298
- "width": 225.0
299
- }
300
- ]
301
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
examples/NetworkX demo.lynxkite.json DELETED
The diff for this file is too large to render. See raw diff
 
examples/Word2vec.lynxkite.json DELETED
The diff for this file is too large to render. See raw diff
 
examples/fake_data.py DELETED
@@ -1,21 +0,0 @@
1
- from lynxkite.core.ops import op
2
- from faker import Faker # ty: ignore[unresolved-import]
3
- import pandas as pd
4
-
5
- faker = Faker()
6
-
7
-
8
- @op("LynxKite Graph Analytics", "Fake data")
9
- def fake(*, n=10):
10
- """Creates a DataFrame with random-generated names and postal addresses.
11
-
12
- Parameters:
13
- n: Number of rows to create.
14
- """
15
- df = pd.DataFrame(
16
- {
17
- "name": [faker.name() for _ in range(n)],
18
- "address": [faker.address() for _ in range(n)],
19
- }
20
- )
21
- return df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
examples/make_image_table.py DELETED
@@ -1,11 +0,0 @@
1
- from lynxkite.core.ops import op
2
- import pandas as pd
3
- import base64
4
-
5
-
6
- @op("LynxKite Graph Analytics", "Example image table")
7
- def make_image_table():
8
- svg = '<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 64 64" enable-background="new 0 0 64 64"><path d="M56 2 18.8 42.909 8 34.729 2 34.729 18.8 62 62 2z"/></svg>'
9
- data = "data:image/svg+xml;base64," + base64.b64encode(svg.encode("utf-8")).decode("utf-8")
10
- http = "https://upload.wikimedia.org/wikipedia/commons/2/2e/Emojione_BW_2714.svg"
11
- return pd.DataFrame({"names": ["svg", "data", "http"], "images": [svg, data, http]})
 
 
 
 
 
 
 
 
 
 
 
 
examples/matplotlib_example.py DELETED
@@ -1,34 +0,0 @@
1
- # From https://matplotlib.org/stable/gallery/images_contours_and_fields/contour_corner_mask.html
2
- import matplotlib.pyplot as plt
3
- import numpy as np
4
- from lynxkite.core.ops import op
5
-
6
-
7
- @op("LynxKite Graph Analytics", "Matplotlib example", view="matplotlib")
8
- def example():
9
- # Data to plot.
10
- x, y = np.meshgrid(np.arange(7), np.arange(10))
11
- z = np.sin(0.5 * x) * np.cos(0.52 * y)
12
-
13
- # Mask various z values.
14
- mask = np.zeros_like(z, dtype=bool)
15
- mask[2, 3:5] = True
16
- mask[3:5, 4] = True
17
- mask[7, 2] = True
18
- mask[5, 0] = True
19
- mask[0, 6] = True
20
- z = np.ma.array(z, mask=mask)
21
- print(z)
22
-
23
- corner_masks = [False, True]
24
- fig, axs = plt.subplots(ncols=2)
25
- for ax, corner_mask in zip(axs, corner_masks):
26
- cs = ax.contourf(x, y, z, corner_mask=corner_mask)
27
- ax.contour(cs, colors="k")
28
- ax.set_title(f"{corner_mask=}")
29
-
30
- # Plot grid.
31
- ax.grid(c="k", ls="-", alpha=0.3)
32
-
33
- # Indicate masked points with red circles.
34
- ax.plot(np.ma.array(x, mask=~mask), y, "ro")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
examples/multi_output_demo.py DELETED
@@ -1,24 +0,0 @@
1
- from lynxkite.core.ops import op
2
- import pandas as pd
3
-
4
-
5
- @op("LynxKite Graph Analytics", "Examples", "Multi-output example", outputs=["one", "two"])
6
- def multi_output(*, a_limit=4, b_limit=10):
7
- """
8
- Returns two outputs. Also demonstrates Numpy-style docstrings.
9
-
10
- Parameters
11
- ----------
12
- a_limit : int
13
- Number of elements in output "one".
14
- b_limit : int
15
- Number of elements in output "two".
16
-
17
- Returns
18
- -------
19
- A dict with two DataFrames in it.
20
- """
21
- return {
22
- "one": pd.DataFrame({"a": range(a_limit)}),
23
- "two": pd.DataFrame({"b": range(b_limit)}),
24
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
examples/ode_lstm.py DELETED
@@ -1,54 +0,0 @@
1
- from lynxkite.core.ops import op_registration, LongStr
2
- from lynxkite_graph_analytics.core import Bundle
3
- from matplotlib import pyplot as plt
4
- import numpy as np
5
- import pandas as pd
6
- import json
7
-
8
- op = op_registration("LynxKite Graph Analytics")
9
-
10
-
11
- @op("Drop NA")
12
- def drop_na(df: pd.DataFrame):
13
- return df.replace("", np.nan).dropna()
14
-
15
-
16
- @op("Sort by")
17
- def sort_by(df: pd.DataFrame, *, key_columns: str):
18
- df = df.copy()
19
- df.sort_values(
20
- by=[k.strip() for k in key_columns.split(",")],
21
- inplace=True,
22
- ignore_index=True,
23
- )
24
- return df
25
-
26
-
27
- @op("Group by")
28
- def group_by(df: pd.DataFrame, *, key_columns: str, aggregation: LongStr):
29
- key_columns = [k.strip() for k in key_columns.split(",")]
30
- j = json.loads(aggregation)
31
- for k, vs in j.items():
32
- j[k] = [list if v == "list" else v for v in vs]
33
- res = df.groupby(key_columns).agg(j).reset_index()
34
- res.columns = ["_".join(col) for col in res.columns]
35
- return res
36
-
37
-
38
- @op("Take first element of list")
39
- def take_first_element(df: pd.DataFrame, *, column: str):
40
- df = df.copy()
41
- df[f"{column}_first_element"] = df[column].apply(lambda x: x[0])
42
- return df
43
-
44
-
45
- @op("Plot time series", view="matplotlib")
46
- def plot_time_series(bundle: Bundle, *, table_name: str, index: int, x_column: str, y_columns: str):
47
- df = bundle.dfs[table_name]
48
- y_columns = [y.strip() for y in y_columns.split(",")]
49
- x = df[x_column].iloc[index]
50
- for y_column in y_columns:
51
- y = df[y_column].iloc[index]
52
- plt.plot(x, y, "o-", label=y_column)
53
- plt.xlabel(x_column)
54
- plt.legend()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
examples/requirements.txt DELETED
@@ -1,3 +0,0 @@
1
- # Example of a requirements.txt file. LynxKite will automatically install anything you put here.
2
- faker
3
- matplotlib
 
 
 
 
examples/sql.lynxkite.json DELETED
The diff for this file is too large to render. See raw diff
 
examples/uploads/example-pizza.md DELETED
@@ -1,136 +0,0 @@
1
- hello
2
-
3
- ### 1. **Overview**
4
-
5
- This document outlines the pricing structure and available options for our pizza delivery service. The goal is to provide clear guidance on the pricing tiers, additional offerings, and optional extras to ensure consistency across all locations and platforms (phone, online, in-app). All pricing is based on current market trends, food costs, and competitive analysis.
6
-
7
- ---
8
-
9
- ### 2. **Pizza Options**
10
-
11
- #### 2.1 **Size & Base Pricing**
12
-
13
- | Size | Diameter | Price (Cheese Pizza) |
14
- |------------------|------------|----------------------|
15
- | Small | 10 inches | $8.99 |
16
- | Medium | 12 inches | $11.99 |
17
- | Large | 14 inches | $14.99 |
18
- | Extra Large | 16 inches | $17.99 |
19
-
20
- **Note**: Cheese pizza pricing includes sauce and cheese. Toppings are additional (see section 2.3).
21
-
22
- #### 2.2 **Crust Options**
23
-
24
- | Crust Type | Description | Price Adjustment |
25
- |------------------|------------------------------------------|------------------|
26
- | Classic Hand-Tossed | Soft, airy texture | No Change |
27
- | Thin & Crispy | Light and crunchy | No Change |
28
- | Stuffed Crust | Filled with mozzarella | +$2.00 (M-XL) |
29
- | Gluten-Free | 10" only; made with rice flour | +$2.50 (Small Only) |
30
-
31
- ---
32
-
33
- ### 3. **Toppings**
34
-
35
- #### 3.1 **Standard Toppings**
36
- **Price per topping:**
37
-
38
- - Small: $1.00
39
- - Medium: $1.50
40
- - Large: $2.00
41
- - Extra Large: $2.50
42
-
43
- | Topping | Category |
44
- |------------------|----------------|
45
- | Pepperoni | Meat |
46
- | Sausage | Meat |
47
- | Mushrooms | Vegetable |
48
- | Onions | Vegetable |
49
- | Bell Peppers | Vegetable |
50
- | Olives | Vegetable |
51
- | Extra Cheese | Dairy |
52
-
53
- #### 3.2 **Premium Toppings**
54
- **Price per topping:**
55
-
56
- - Small: $1.75
57
- - Medium: $2.25
58
- - Large: $2.75
59
- - Extra Large: $3.25
60
-
61
- | Topping | Category |
62
- |------------------|----------------|
63
- | Grilled Chicken | Meat |
64
- | Bacon | Meat |
65
- | Sun-Dried Tomatoes| Vegetable |
66
- | Artichoke Hearts | Vegetable |
67
- | Feta Cheese | Dairy |
68
- | Vegan Cheese | Dairy Alternative |
69
-
70
- ---
71
-
72
- ### 4. **Specialty Pizzas**
73
-
74
- Specialty pizzas include a combination of premium toppings and are available in all sizes. Prices below are for Medium size, with additional costs for upgrading to larger sizes.
75
-
76
- | Pizza Name | Description | Price (Medium) |
77
- |----------------------|----------------------------------------------------|-----------------|
78
- | Meat Lover’s | Pepperoni, sausage, bacon, ham | $16.99 |
79
- | Veggie Delight | Mushrooms, bell peppers, onions, olives | $14.99 |
80
- | BBQ Chicken | BBQ sauce, grilled chicken, red onions, cilantro | $17.99 |
81
- | Margherita | Fresh mozzarella, tomatoes, basil | $15.99 |
82
- | Hawaiian | Ham, pineapple | $14.99 |
83
-
84
- ---
85
-
86
- ### 5. **Additional Menu Items**
87
-
88
- #### 5.1 **Side Orders**
89
-
90
- | Item | Description | Price |
91
- |--------------------|--------------------------------------|---------------|
92
- | Garlic Breadsticks | Served with marinara dipping sauce | $5.99 |
93
- | Chicken Wings | Buffalo, BBQ, or plain (10 pieces) | $9.99 |
94
- | Mozzarella Sticks | Served with marinara (8 pieces) | $6.99 |
95
- | Caesar Salad | Romaine, croutons, Caesar dressing | $7.99 |
96
-
97
- #### 5.2 **Desserts**
98
-
99
- | Item | Description | Price |
100
- |--------------------|--------------------------------------|---------------|
101
- | Chocolate Brownies | Chewy and rich (6 pieces) | $4.99 |
102
- | Cinnamon Sticks | Dusted with cinnamon sugar | $5.99 |
103
-
104
- ---
105
-
106
- ### 6. **Drinks**
107
-
108
- | Size | Price |
109
- |--------------------|---------------|
110
- | 20 oz Bottle | $1.99 |
111
- | 2-Liter Bottle | $3.50 |
112
-
113
- Available options: Coke, Diet Coke, Sprite, Root Beer, Lemonade.
114
-
115
- ---
116
-
117
- ### 7. **Delivery Fees & Minimum Order**
118
-
119
- - **Delivery Fee**: $2.99
120
- - **Minimum Order**: $12.00
121
-
122
- *Note: Delivery fees and minimum order thresholds apply to all delivery orders within a 5-mile radius. Additional charges may apply for orders outside this zone.*
123
-
124
- ---
125
-
126
- ### 8. **Promotions & Discounts**
127
-
128
- - **Monday Madness**: Buy one large pizza, get a second pizza for 50% off.
129
- - **Student Discount**: 10% off with valid student ID (pickup only).
130
- - **Family Deal**: 2 large pizzas, 1 side, and 2-liter soda for $29.99.
131
-
132
- ---
133
-
134
- ### 9. **Conclusion**
135
-
136
- This pricing and menu structure is designed to offer a wide range of choices for our customers while maintaining competitive pricing and ensuring profitability. Please ensure all team members are familiar with the details in this document and implement it accordingly.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
examples/uploads/molecules2.csv DELETED
@@ -1,4 +0,0 @@
1
- name,smiles
2
- ciprofloxacin,C1CNCCN1c(c2)c(F)cc3c2N(C4CC4)C=C(C3=O)C(=O)O
3
- caffeine,CN1C=NC2=C1C(=O)N(C(=O)N2C)C
4
- α-d-glucopyranose,C([C@@H]1[C@H]([C@@H]([C@H]([C@H](O1)O)O)O)O)O
 
 
 
 
 
examples/uploads/plus-one-dataset.parquet DELETED
Binary file (7.54 kB)
 
examples/word2vec.py DELETED
@@ -1,27 +0,0 @@
1
- from lynxkite.core.ops import op
2
- import pandas as pd
3
-
4
- ENV = "LynxKite Graph Analytics"
5
-
6
-
7
- @op(ENV, "Word2vec for the top 1000 words", slow=True)
8
- def word2vec_1000():
9
- import staticvectors # ty: ignore[unresolved-import]
10
-
11
- model = staticvectors.StaticVectors("neuml/word2vec-quantized")
12
- df = pd.read_csv(
13
- "https://gist.githubusercontent.com/deekayen/4148741/raw/98d35708fa344717d8eee15d11987de6c8e26d7d/1-1000.txt",
14
- names=["word"],
15
- )
16
- df["embedding"] = model.embeddings(df.word.tolist()).tolist()
17
- return df
18
-
19
-
20
- @op(ENV, "Take first N")
21
- def first_n(df: pd.DataFrame, *, n=10):
22
- return df.head(n)
23
-
24
-
25
- @op(ENV, "Sample N")
26
- def sample_n(df: pd.DataFrame, *, n=10):
27
- return df.sample(n)