Spaces:
Running
Running
Update Cheminformatrics use Cases (#155)
Browse files* Update Cheminformatrics use Cases
Add _cheminfo_tools.py with lipinksi filter , View Mol Image , View mol filter with smarts and smiles and highlights are done .
* Delete binary files. Create "Cheminformatics" folder for examples.
* MACCSkeys was undefined. rows was unused.
* Give ops human-readable names.
* Example workspace without images.
* Collapse parameters on "image" type boxes.
* Allow slow visualization boxes too.
* Simpler gallery drawing.
* Output for visualizations is now left empty.
---------
Co-authored-by: Daniel Darabos <darabos.daniel@gmail.com>
- examples/Cheminformatics/Example workspace.lynxkite.json +986 -0
- examples/Cheminformatics/cheminfo_tools.py +305 -0
- examples/Image table.lynxkite.json +13 -13
- examples/draw_molecules.py +2 -0
- examples/uploads/CHEMBL313_sel.csv +109 -0
- lynxkite-app/web/src/workspace/nodes/NodeWithImage.tsx +1 -1
- lynxkite-core/src/lynxkite/core/ops.py +9 -9
- lynxkite-core/src/lynxkite/core/workspace.py +8 -5
- lynxkite-core/tests/test_ops.py +1 -1
- lynxkite-graph-analytics/src/lynxkite_graph_analytics/core.py +1 -0
examples/Cheminformatics/Example workspace.lynxkite.json
ADDED
|
@@ -0,0 +1,986 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"edges": [
|
| 3 |
+
{
|
| 4 |
+
"id": "Import CSV 1 Draw molecules 1",
|
| 5 |
+
"source": "Import CSV 1",
|
| 6 |
+
"sourceHandle": "output",
|
| 7 |
+
"target": "Draw molecules 1",
|
| 8 |
+
"targetHandle": "df"
|
| 9 |
+
},
|
| 10 |
+
{
|
| 11 |
+
"id": "Draw molecules 1 View tables 1",
|
| 12 |
+
"source": "Draw molecules 1",
|
| 13 |
+
"sourceHandle": "output",
|
| 14 |
+
"target": "View tables 1",
|
| 15 |
+
"targetHandle": "bundle"
|
| 16 |
+
},
|
| 17 |
+
{
|
| 18 |
+
"id": "Import file 1 View mol filter 1",
|
| 19 |
+
"source": "Import file 1",
|
| 20 |
+
"sourceHandle": "output",
|
| 21 |
+
"target": "View mol filter 1",
|
| 22 |
+
"targetHandle": "bundle"
|
| 23 |
+
},
|
| 24 |
+
{
|
| 25 |
+
"id": "Draw molecules 2 View tables 2",
|
| 26 |
+
"source": "Draw molecules 2",
|
| 27 |
+
"sourceHandle": "output",
|
| 28 |
+
"target": "View tables 2",
|
| 29 |
+
"targetHandle": "bundle"
|
| 30 |
+
},
|
| 31 |
+
{
|
| 32 |
+
"id": "Import file 1 Train QSAR model 1",
|
| 33 |
+
"source": "Import file 1",
|
| 34 |
+
"sourceHandle": "output",
|
| 35 |
+
"target": "Train QSAR model 1",
|
| 36 |
+
"targetHandle": "bundle"
|
| 37 |
+
},
|
| 38 |
+
{
|
| 39 |
+
"id": "Train QSAR model 1 View tables 3",
|
| 40 |
+
"source": "Train QSAR model 1",
|
| 41 |
+
"sourceHandle": "output",
|
| 42 |
+
"target": "View tables 3",
|
| 43 |
+
"targetHandle": "bundle"
|
| 44 |
+
},
|
| 45 |
+
{
|
| 46 |
+
"id": "Import file 1 Lipinski filter 1",
|
| 47 |
+
"source": "Import file 1",
|
| 48 |
+
"sourceHandle": "output",
|
| 49 |
+
"target": "Lipinski filter 1",
|
| 50 |
+
"targetHandle": "bundle"
|
| 51 |
+
},
|
| 52 |
+
{
|
| 53 |
+
"id": "Lipinski filter 1 Draw molecules 2",
|
| 54 |
+
"source": "Lipinski filter 1",
|
| 55 |
+
"sourceHandle": "output",
|
| 56 |
+
"target": "Draw molecules 2",
|
| 57 |
+
"targetHandle": "df"
|
| 58 |
+
},
|
| 59 |
+
{
|
| 60 |
+
"id": "Import file 1 View mol image 1",
|
| 61 |
+
"source": "Import file 1",
|
| 62 |
+
"sourceHandle": "output",
|
| 63 |
+
"target": "View mol image 1",
|
| 64 |
+
"targetHandle": "bundle"
|
| 65 |
+
}
|
| 66 |
+
],
|
| 67 |
+
"env": "LynxKite Graph Analytics",
|
| 68 |
+
"nodes": [
|
| 69 |
+
{
|
| 70 |
+
"data": {
|
| 71 |
+
"__execution_delay": 0.0,
|
| 72 |
+
"collapsed": false,
|
| 73 |
+
"display": null,
|
| 74 |
+
"error": null,
|
| 75 |
+
"input_metadata": [],
|
| 76 |
+
"meta": {
|
| 77 |
+
"color": "orange",
|
| 78 |
+
"inputs": [],
|
| 79 |
+
"name": "Import CSV",
|
| 80 |
+
"outputs": [
|
| 81 |
+
{
|
| 82 |
+
"name": "output",
|
| 83 |
+
"position": "right",
|
| 84 |
+
"type": {
|
| 85 |
+
"type": "None"
|
| 86 |
+
}
|
| 87 |
+
}
|
| 88 |
+
],
|
| 89 |
+
"params": [
|
| 90 |
+
{
|
| 91 |
+
"default": null,
|
| 92 |
+
"name": "filename",
|
| 93 |
+
"type": {
|
| 94 |
+
"type": "<class 'str'>"
|
| 95 |
+
}
|
| 96 |
+
},
|
| 97 |
+
{
|
| 98 |
+
"default": "<from file>",
|
| 99 |
+
"name": "columns",
|
| 100 |
+
"type": {
|
| 101 |
+
"type": "<class 'str'>"
|
| 102 |
+
}
|
| 103 |
+
},
|
| 104 |
+
{
|
| 105 |
+
"default": "<auto>",
|
| 106 |
+
"name": "separator",
|
| 107 |
+
"type": {
|
| 108 |
+
"type": "<class 'str'>"
|
| 109 |
+
}
|
| 110 |
+
}
|
| 111 |
+
],
|
| 112 |
+
"type": "basic"
|
| 113 |
+
},
|
| 114 |
+
"params": {
|
| 115 |
+
"columns": "<from file>",
|
| 116 |
+
"filename": "uploads/CHEMBL313_sel.csv",
|
| 117 |
+
"separator": "<auto>"
|
| 118 |
+
},
|
| 119 |
+
"status": "done",
|
| 120 |
+
"title": "Import CSV"
|
| 121 |
+
},
|
| 122 |
+
"dragHandle": ".bg-primary",
|
| 123 |
+
"height": 206.0,
|
| 124 |
+
"id": "Import CSV 1",
|
| 125 |
+
"position": {
|
| 126 |
+
"x": -1645.1133255451734,
|
| 127 |
+
"y": -601.1570975227908
|
| 128 |
+
},
|
| 129 |
+
"type": "basic",
|
| 130 |
+
"width": 314.0
|
| 131 |
+
},
|
| 132 |
+
{
|
| 133 |
+
"data": {
|
| 134 |
+
"__execution_delay": null,
|
| 135 |
+
"collapsed": false,
|
| 136 |
+
"error": null,
|
| 137 |
+
"input_metadata": [
|
| 138 |
+
{
|
| 139 |
+
"dataframes": {
|
| 140 |
+
"df": {
|
| 141 |
+
"columns": [
|
| 142 |
+
"Name",
|
| 143 |
+
"SMILES",
|
| 144 |
+
"image",
|
| 145 |
+
"pIC50"
|
| 146 |
+
]
|
| 147 |
+
}
|
| 148 |
+
},
|
| 149 |
+
"other": {},
|
| 150 |
+
"relations": []
|
| 151 |
+
}
|
| 152 |
+
],
|
| 153 |
+
"meta": {
|
| 154 |
+
"color": "orange",
|
| 155 |
+
"inputs": [
|
| 156 |
+
{
|
| 157 |
+
"name": "bundle",
|
| 158 |
+
"position": "left",
|
| 159 |
+
"type": {
|
| 160 |
+
"type": "<class 'lynxkite_graph_analytics.core.Bundle'>"
|
| 161 |
+
}
|
| 162 |
+
}
|
| 163 |
+
],
|
| 164 |
+
"name": "View tables",
|
| 165 |
+
"outputs": [],
|
| 166 |
+
"params": [
|
| 167 |
+
{
|
| 168 |
+
"default": 100,
|
| 169 |
+
"name": "limit",
|
| 170 |
+
"type": {
|
| 171 |
+
"type": "<class 'int'>"
|
| 172 |
+
}
|
| 173 |
+
}
|
| 174 |
+
],
|
| 175 |
+
"type": "table_view"
|
| 176 |
+
},
|
| 177 |
+
"params": {},
|
| 178 |
+
"status": "done",
|
| 179 |
+
"title": "View tables"
|
| 180 |
+
},
|
| 181 |
+
"dragHandle": ".bg-primary",
|
| 182 |
+
"height": 296.0,
|
| 183 |
+
"id": "View tables 1",
|
| 184 |
+
"position": {
|
| 185 |
+
"x": -870.3210345250492,
|
| 186 |
+
"y": -671.6118451917321
|
| 187 |
+
},
|
| 188 |
+
"type": "table_view",
|
| 189 |
+
"width": 682.0
|
| 190 |
+
},
|
| 191 |
+
{
|
| 192 |
+
"data": {
|
| 193 |
+
"__execution_delay": 0.0,
|
| 194 |
+
"collapsed": null,
|
| 195 |
+
"display": null,
|
| 196 |
+
"error": null,
|
| 197 |
+
"input_metadata": [],
|
| 198 |
+
"meta": {
|
| 199 |
+
"color": "orange",
|
| 200 |
+
"inputs": [],
|
| 201 |
+
"name": "Import file",
|
| 202 |
+
"outputs": [
|
| 203 |
+
{
|
| 204 |
+
"name": "output",
|
| 205 |
+
"position": "right",
|
| 206 |
+
"type": {
|
| 207 |
+
"type": "None"
|
| 208 |
+
}
|
| 209 |
+
}
|
| 210 |
+
],
|
| 211 |
+
"params": [
|
| 212 |
+
{
|
| 213 |
+
"default": null,
|
| 214 |
+
"name": "file_path",
|
| 215 |
+
"type": {
|
| 216 |
+
"type": "<class 'str'>"
|
| 217 |
+
}
|
| 218 |
+
},
|
| 219 |
+
{
|
| 220 |
+
"default": null,
|
| 221 |
+
"name": "table_name",
|
| 222 |
+
"type": {
|
| 223 |
+
"type": "<class 'str'>"
|
| 224 |
+
}
|
| 225 |
+
},
|
| 226 |
+
{
|
| 227 |
+
"default": null,
|
| 228 |
+
"name": "file_format",
|
| 229 |
+
"type": {
|
| 230 |
+
"enum": [
|
| 231 |
+
"csv",
|
| 232 |
+
"parquet",
|
| 233 |
+
"json",
|
| 234 |
+
"excel"
|
| 235 |
+
]
|
| 236 |
+
}
|
| 237 |
+
},
|
| 238 |
+
{
|
| 239 |
+
"default": "csv",
|
| 240 |
+
"groups": {
|
| 241 |
+
"csv": [
|
| 242 |
+
{
|
| 243 |
+
"default": "<from file>",
|
| 244 |
+
"name": "columns",
|
| 245 |
+
"type": {
|
| 246 |
+
"type": "<class 'str'>"
|
| 247 |
+
}
|
| 248 |
+
},
|
| 249 |
+
{
|
| 250 |
+
"default": "<auto>",
|
| 251 |
+
"name": "separator",
|
| 252 |
+
"type": {
|
| 253 |
+
"type": "<class 'str'>"
|
| 254 |
+
}
|
| 255 |
+
}
|
| 256 |
+
],
|
| 257 |
+
"excel": [
|
| 258 |
+
{
|
| 259 |
+
"default": "Sheet1",
|
| 260 |
+
"name": "sheet_name",
|
| 261 |
+
"type": {
|
| 262 |
+
"type": "<class 'str'>"
|
| 263 |
+
}
|
| 264 |
+
}
|
| 265 |
+
],
|
| 266 |
+
"json": [],
|
| 267 |
+
"parquet": []
|
| 268 |
+
},
|
| 269 |
+
"name": "file_format_group",
|
| 270 |
+
"selector": {
|
| 271 |
+
"default": "csv",
|
| 272 |
+
"name": "file_format",
|
| 273 |
+
"type": {
|
| 274 |
+
"enum": [
|
| 275 |
+
"csv",
|
| 276 |
+
"parquet",
|
| 277 |
+
"json",
|
| 278 |
+
"excel"
|
| 279 |
+
]
|
| 280 |
+
}
|
| 281 |
+
},
|
| 282 |
+
"type": "group"
|
| 283 |
+
}
|
| 284 |
+
],
|
| 285 |
+
"type": "basic"
|
| 286 |
+
},
|
| 287 |
+
"params": {
|
| 288 |
+
"columns": "<from file>",
|
| 289 |
+
"file_format": "csv",
|
| 290 |
+
"file_format_group": "csv",
|
| 291 |
+
"file_path": "uploads/CHEMBL313_sel.csv",
|
| 292 |
+
"table_name": "data"
|
| 293 |
+
},
|
| 294 |
+
"status": "done",
|
| 295 |
+
"title": "Import file"
|
| 296 |
+
},
|
| 297 |
+
"dragHandle": ".bg-primary",
|
| 298 |
+
"height": 331.0,
|
| 299 |
+
"id": "Import file 1",
|
| 300 |
+
"position": {
|
| 301 |
+
"x": -1690.536661950572,
|
| 302 |
+
"y": -192.47882875357882
|
| 303 |
+
},
|
| 304 |
+
"type": "basic",
|
| 305 |
+
"width": 326.0
|
| 306 |
+
},
|
| 307 |
+
{
|
| 308 |
+
"data": {
|
| 309 |
+
"__execution_delay": 0.0,
|
| 310 |
+
"collapsed": null,
|
| 311 |
+
"display": null,
|
| 312 |
+
"error": null,
|
| 313 |
+
"input_metadata": [
|
| 314 |
+
{}
|
| 315 |
+
],
|
| 316 |
+
"meta": {
|
| 317 |
+
"color": "orange",
|
| 318 |
+
"inputs": [
|
| 319 |
+
{
|
| 320 |
+
"name": "df",
|
| 321 |
+
"position": "left",
|
| 322 |
+
"type": {
|
| 323 |
+
"type": "<class 'pandas.core.frame.DataFrame'>"
|
| 324 |
+
}
|
| 325 |
+
}
|
| 326 |
+
],
|
| 327 |
+
"name": "Draw molecules",
|
| 328 |
+
"outputs": [
|
| 329 |
+
{
|
| 330 |
+
"name": "output",
|
| 331 |
+
"position": "right",
|
| 332 |
+
"type": {
|
| 333 |
+
"type": "None"
|
| 334 |
+
}
|
| 335 |
+
}
|
| 336 |
+
],
|
| 337 |
+
"params": [
|
| 338 |
+
{
|
| 339 |
+
"default": null,
|
| 340 |
+
"name": "smiles_column",
|
| 341 |
+
"type": {
|
| 342 |
+
"type": "<class 'str'>"
|
| 343 |
+
}
|
| 344 |
+
},
|
| 345 |
+
{
|
| 346 |
+
"default": "image",
|
| 347 |
+
"name": "image_column",
|
| 348 |
+
"type": {
|
| 349 |
+
"type": "<class 'str'>"
|
| 350 |
+
}
|
| 351 |
+
}
|
| 352 |
+
],
|
| 353 |
+
"type": "basic"
|
| 354 |
+
},
|
| 355 |
+
"params": {
|
| 356 |
+
"image_column": "image",
|
| 357 |
+
"smiles_column": "SMILES"
|
| 358 |
+
},
|
| 359 |
+
"status": "done",
|
| 360 |
+
"title": "Draw molecules"
|
| 361 |
+
},
|
| 362 |
+
"dragHandle": ".bg-primary",
|
| 363 |
+
"height": 225.0,
|
| 364 |
+
"id": "Draw molecules 1",
|
| 365 |
+
"position": {
|
| 366 |
+
"x": -1168.2624512141447,
|
| 367 |
+
"y": -616.8610881973451
|
| 368 |
+
},
|
| 369 |
+
"type": "basic",
|
| 370 |
+
"width": 234.0
|
| 371 |
+
},
|
| 372 |
+
{
|
| 373 |
+
"data": {
|
| 374 |
+
"__execution_delay": 0.0,
|
| 375 |
+
"collapsed": null,
|
| 376 |
+
"error": null,
|
| 377 |
+
"input_metadata": [
|
| 378 |
+
{
|
| 379 |
+
"dataframes": {
|
| 380 |
+
"data": {
|
| 381 |
+
"columns": [
|
| 382 |
+
"Name",
|
| 383 |
+
"SMILES",
|
| 384 |
+
"mol",
|
| 385 |
+
"pIC50"
|
| 386 |
+
]
|
| 387 |
+
}
|
| 388 |
+
},
|
| 389 |
+
"other": {},
|
| 390 |
+
"relations": []
|
| 391 |
+
}
|
| 392 |
+
],
|
| 393 |
+
"meta": {
|
| 394 |
+
"color": "orange",
|
| 395 |
+
"inputs": [
|
| 396 |
+
{
|
| 397 |
+
"name": "bundle",
|
| 398 |
+
"position": "left",
|
| 399 |
+
"type": {
|
| 400 |
+
"type": "<class 'inspect._empty'>"
|
| 401 |
+
}
|
| 402 |
+
}
|
| 403 |
+
],
|
| 404 |
+
"name": "View mol filter",
|
| 405 |
+
"outputs": [],
|
| 406 |
+
"params": [
|
| 407 |
+
{
|
| 408 |
+
"default": null,
|
| 409 |
+
"name": "table_name",
|
| 410 |
+
"type": {
|
| 411 |
+
"type": "<class 'str'>"
|
| 412 |
+
}
|
| 413 |
+
},
|
| 414 |
+
{
|
| 415 |
+
"default": null,
|
| 416 |
+
"name": "SMILES_Column",
|
| 417 |
+
"type": {
|
| 418 |
+
"type": "<class 'str'>"
|
| 419 |
+
}
|
| 420 |
+
},
|
| 421 |
+
{
|
| 422 |
+
"default": null,
|
| 423 |
+
"name": "mols_per_row",
|
| 424 |
+
"type": {
|
| 425 |
+
"type": "<class 'int'>"
|
| 426 |
+
}
|
| 427 |
+
},
|
| 428 |
+
{
|
| 429 |
+
"default": null,
|
| 430 |
+
"name": "filter_smarts",
|
| 431 |
+
"type": {
|
| 432 |
+
"type": "<class 'str'>"
|
| 433 |
+
}
|
| 434 |
+
},
|
| 435 |
+
{
|
| 436 |
+
"default": null,
|
| 437 |
+
"name": "filter_smiles",
|
| 438 |
+
"type": {
|
| 439 |
+
"type": "<class 'str'>"
|
| 440 |
+
}
|
| 441 |
+
},
|
| 442 |
+
{
|
| 443 |
+
"default": true,
|
| 444 |
+
"name": "highlight",
|
| 445 |
+
"type": {
|
| 446 |
+
"type": "<class 'bool'>"
|
| 447 |
+
}
|
| 448 |
+
}
|
| 449 |
+
],
|
| 450 |
+
"type": "image"
|
| 451 |
+
},
|
| 452 |
+
"params": {
|
| 453 |
+
"SMILES_Column": "SMILES",
|
| 454 |
+
"filter_smarts": "",
|
| 455 |
+
"filter_smiles": "CN1C2CC(CC1CC2)c1ccccc1",
|
| 456 |
+
"highlight": true,
|
| 457 |
+
"mols_per_row": "4",
|
| 458 |
+
"table_name": "data"
|
| 459 |
+
},
|
| 460 |
+
"status": "done",
|
| 461 |
+
"title": "View mol filter"
|
| 462 |
+
},
|
| 463 |
+
"dragHandle": ".bg-primary",
|
| 464 |
+
"height": 229.0,
|
| 465 |
+
"id": "View mol filter 1",
|
| 466 |
+
"position": {
|
| 467 |
+
"x": -796.5179679488858,
|
| 468 |
+
"y": -20.974048336481403
|
| 469 |
+
},
|
| 470 |
+
"type": "image",
|
| 471 |
+
"width": 416.0
|
| 472 |
+
},
|
| 473 |
+
{
|
| 474 |
+
"data": {
|
| 475 |
+
"__execution_delay": 0.0,
|
| 476 |
+
"collapsed": null,
|
| 477 |
+
"display": null,
|
| 478 |
+
"error": null,
|
| 479 |
+
"input_metadata": [
|
| 480 |
+
{}
|
| 481 |
+
],
|
| 482 |
+
"meta": {
|
| 483 |
+
"color": "orange",
|
| 484 |
+
"inputs": [
|
| 485 |
+
{
|
| 486 |
+
"name": "df",
|
| 487 |
+
"position": "left",
|
| 488 |
+
"type": {
|
| 489 |
+
"type": "<class 'pandas.core.frame.DataFrame'>"
|
| 490 |
+
}
|
| 491 |
+
}
|
| 492 |
+
],
|
| 493 |
+
"name": "Draw molecules",
|
| 494 |
+
"outputs": [
|
| 495 |
+
{
|
| 496 |
+
"name": "output",
|
| 497 |
+
"position": "right",
|
| 498 |
+
"type": {
|
| 499 |
+
"type": "None"
|
| 500 |
+
}
|
| 501 |
+
}
|
| 502 |
+
],
|
| 503 |
+
"params": [
|
| 504 |
+
{
|
| 505 |
+
"default": null,
|
| 506 |
+
"name": "smiles_column",
|
| 507 |
+
"type": {
|
| 508 |
+
"type": "<class 'str'>"
|
| 509 |
+
}
|
| 510 |
+
},
|
| 511 |
+
{
|
| 512 |
+
"default": "image",
|
| 513 |
+
"name": "image_column",
|
| 514 |
+
"type": {
|
| 515 |
+
"type": "<class 'str'>"
|
| 516 |
+
}
|
| 517 |
+
}
|
| 518 |
+
],
|
| 519 |
+
"type": "basic"
|
| 520 |
+
},
|
| 521 |
+
"params": {
|
| 522 |
+
"image_column": "image",
|
| 523 |
+
"smiles_column": "SMILES"
|
| 524 |
+
},
|
| 525 |
+
"status": "done",
|
| 526 |
+
"title": "Draw molecules"
|
| 527 |
+
},
|
| 528 |
+
"dragHandle": ".bg-primary",
|
| 529 |
+
"height": 184.0,
|
| 530 |
+
"id": "Draw molecules 2",
|
| 531 |
+
"position": {
|
| 532 |
+
"x": -280.6043043496203,
|
| 533 |
+
"y": 151.45994649399827
|
| 534 |
+
},
|
| 535 |
+
"type": "basic",
|
| 536 |
+
"width": 234.0
|
| 537 |
+
},
|
| 538 |
+
{
|
| 539 |
+
"data": {
|
| 540 |
+
"error": null,
|
| 541 |
+
"input_metadata": [
|
| 542 |
+
{
|
| 543 |
+
"dataframes": {
|
| 544 |
+
"df": {
|
| 545 |
+
"columns": [
|
| 546 |
+
"HBA",
|
| 547 |
+
"HBD",
|
| 548 |
+
"MW",
|
| 549 |
+
"Name",
|
| 550 |
+
"SMILES",
|
| 551 |
+
"image",
|
| 552 |
+
"logP",
|
| 553 |
+
"pIC50",
|
| 554 |
+
"pass_lipinski"
|
| 555 |
+
]
|
| 556 |
+
}
|
| 557 |
+
},
|
| 558 |
+
"other": {},
|
| 559 |
+
"relations": []
|
| 560 |
+
}
|
| 561 |
+
],
|
| 562 |
+
"meta": {
|
| 563 |
+
"color": "orange",
|
| 564 |
+
"inputs": [
|
| 565 |
+
{
|
| 566 |
+
"name": "bundle",
|
| 567 |
+
"position": "left",
|
| 568 |
+
"type": {
|
| 569 |
+
"type": "<class 'lynxkite_graph_analytics.core.Bundle'>"
|
| 570 |
+
}
|
| 571 |
+
}
|
| 572 |
+
],
|
| 573 |
+
"name": "View tables",
|
| 574 |
+
"outputs": [],
|
| 575 |
+
"params": [
|
| 576 |
+
{
|
| 577 |
+
"default": 100,
|
| 578 |
+
"name": "limit",
|
| 579 |
+
"type": {
|
| 580 |
+
"type": "<class 'int'>"
|
| 581 |
+
}
|
| 582 |
+
}
|
| 583 |
+
],
|
| 584 |
+
"type": "table_view"
|
| 585 |
+
},
|
| 586 |
+
"params": {
|
| 587 |
+
"limit": 100.0
|
| 588 |
+
},
|
| 589 |
+
"status": "done",
|
| 590 |
+
"title": "View tables"
|
| 591 |
+
},
|
| 592 |
+
"dragHandle": ".bg-primary",
|
| 593 |
+
"height": 429.0,
|
| 594 |
+
"id": "View tables 2",
|
| 595 |
+
"position": {
|
| 596 |
+
"x": 50.96521878343134,
|
| 597 |
+
"y": 102.82896600710055
|
| 598 |
+
},
|
| 599 |
+
"type": "table_view",
|
| 600 |
+
"width": 821.0
|
| 601 |
+
},
|
| 602 |
+
{
|
| 603 |
+
"data": {
|
| 604 |
+
"__execution_delay": 0.0,
|
| 605 |
+
"collapsed": null,
|
| 606 |
+
"display": null,
|
| 607 |
+
"error": null,
|
| 608 |
+
"input_metadata": [
|
| 609 |
+
{
|
| 610 |
+
"dataframes": {
|
| 611 |
+
"data": {
|
| 612 |
+
"columns": [
|
| 613 |
+
"Name",
|
| 614 |
+
"SMILES",
|
| 615 |
+
"pIC50"
|
| 616 |
+
]
|
| 617 |
+
}
|
| 618 |
+
},
|
| 619 |
+
"other": {},
|
| 620 |
+
"relations": []
|
| 621 |
+
}
|
| 622 |
+
],
|
| 623 |
+
"meta": {
|
| 624 |
+
"color": "orange",
|
| 625 |
+
"inputs": [
|
| 626 |
+
{
|
| 627 |
+
"name": "bundle",
|
| 628 |
+
"position": "left",
|
| 629 |
+
"type": {
|
| 630 |
+
"type": "<class 'inspect._empty'>"
|
| 631 |
+
}
|
| 632 |
+
}
|
| 633 |
+
],
|
| 634 |
+
"name": "Train QSAR model",
|
| 635 |
+
"outputs": [
|
| 636 |
+
{
|
| 637 |
+
"name": "output",
|
| 638 |
+
"position": "right",
|
| 639 |
+
"type": {
|
| 640 |
+
"type": "None"
|
| 641 |
+
}
|
| 642 |
+
}
|
| 643 |
+
],
|
| 644 |
+
"params": [
|
| 645 |
+
{
|
| 646 |
+
"default": null,
|
| 647 |
+
"name": "table_name",
|
| 648 |
+
"type": {
|
| 649 |
+
"type": "<class 'str'>"
|
| 650 |
+
}
|
| 651 |
+
},
|
| 652 |
+
{
|
| 653 |
+
"default": null,
|
| 654 |
+
"name": "smiles_col",
|
| 655 |
+
"type": {
|
| 656 |
+
"type": "<class 'str'>"
|
| 657 |
+
}
|
| 658 |
+
},
|
| 659 |
+
{
|
| 660 |
+
"default": null,
|
| 661 |
+
"name": "target_col",
|
| 662 |
+
"type": {
|
| 663 |
+
"type": "<class 'str'>"
|
| 664 |
+
}
|
| 665 |
+
},
|
| 666 |
+
{
|
| 667 |
+
"default": null,
|
| 668 |
+
"name": "fp_type",
|
| 669 |
+
"type": {
|
| 670 |
+
"type": "<class 'str'>"
|
| 671 |
+
}
|
| 672 |
+
},
|
| 673 |
+
{
|
| 674 |
+
"default": 2,
|
| 675 |
+
"name": "radius",
|
| 676 |
+
"type": {
|
| 677 |
+
"type": "<class 'int'>"
|
| 678 |
+
}
|
| 679 |
+
},
|
| 680 |
+
{
|
| 681 |
+
"default": 2048,
|
| 682 |
+
"name": "n_bits",
|
| 683 |
+
"type": {
|
| 684 |
+
"type": "<class 'int'>"
|
| 685 |
+
}
|
| 686 |
+
},
|
| 687 |
+
{
|
| 688 |
+
"default": 0.2,
|
| 689 |
+
"name": "test_size",
|
| 690 |
+
"type": {
|
| 691 |
+
"type": "<class 'float'>"
|
| 692 |
+
}
|
| 693 |
+
},
|
| 694 |
+
{
|
| 695 |
+
"default": 42,
|
| 696 |
+
"name": "random_state",
|
| 697 |
+
"type": {
|
| 698 |
+
"type": "<class 'int'>"
|
| 699 |
+
}
|
| 700 |
+
},
|
| 701 |
+
{
|
| 702 |
+
"default": "Models",
|
| 703 |
+
"name": "out_dir",
|
| 704 |
+
"type": {
|
| 705 |
+
"type": "<class 'str'>"
|
| 706 |
+
}
|
| 707 |
+
}
|
| 708 |
+
],
|
| 709 |
+
"type": "basic"
|
| 710 |
+
},
|
| 711 |
+
"params": {
|
| 712 |
+
"fp_type": "ecfp",
|
| 713 |
+
"n_bits": 2048.0,
|
| 714 |
+
"out_dir": "Models",
|
| 715 |
+
"radius": 2.0,
|
| 716 |
+
"random_state": 42.0,
|
| 717 |
+
"smiles_col": "SMILES",
|
| 718 |
+
"table_name": "data",
|
| 719 |
+
"target_col": "pIC50",
|
| 720 |
+
"test_size": 0.2
|
| 721 |
+
},
|
| 722 |
+
"status": "done",
|
| 723 |
+
"title": "Train QSAR model"
|
| 724 |
+
},
|
| 725 |
+
"dragHandle": ".bg-primary",
|
| 726 |
+
"height": 288.0,
|
| 727 |
+
"id": "Train QSAR model 1",
|
| 728 |
+
"position": {
|
| 729 |
+
"x": -1159.342067985799,
|
| 730 |
+
"y": -309.43299496669476
|
| 731 |
+
},
|
| 732 |
+
"type": "basic",
|
| 733 |
+
"width": 329.0
|
| 734 |
+
},
|
| 735 |
+
{
|
| 736 |
+
"data": {
|
| 737 |
+
"display": {
|
| 738 |
+
"dataframes": {
|
| 739 |
+
"df": {
|
| 740 |
+
"columns": [
|
| 741 |
+
"split",
|
| 742 |
+
"R2",
|
| 743 |
+
"MAE",
|
| 744 |
+
"RMSE"
|
| 745 |
+
],
|
| 746 |
+
"data": [
|
| 747 |
+
[
|
| 748 |
+
"train",
|
| 749 |
+
0.9417380311136551,
|
| 750 |
+
0.24223013565891363,
|
| 751 |
+
0.3009354647304392
|
| 752 |
+
],
|
| 753 |
+
[
|
| 754 |
+
"test",
|
| 755 |
+
0.27586659127848734,
|
| 756 |
+
0.8443154545454546,
|
| 757 |
+
1.098891477150744
|
| 758 |
+
]
|
| 759 |
+
]
|
| 760 |
+
}
|
| 761 |
+
},
|
| 762 |
+
"other": {},
|
| 763 |
+
"relations": []
|
| 764 |
+
},
|
| 765 |
+
"error": null,
|
| 766 |
+
"input_metadata": [
|
| 767 |
+
{
|
| 768 |
+
"dataframes": {
|
| 769 |
+
"df": {
|
| 770 |
+
"columns": [
|
| 771 |
+
"MAE",
|
| 772 |
+
"R2",
|
| 773 |
+
"RMSE",
|
| 774 |
+
"split"
|
| 775 |
+
]
|
| 776 |
+
}
|
| 777 |
+
},
|
| 778 |
+
"other": {},
|
| 779 |
+
"relations": []
|
| 780 |
+
}
|
| 781 |
+
],
|
| 782 |
+
"meta": {
|
| 783 |
+
"color": "orange",
|
| 784 |
+
"inputs": [
|
| 785 |
+
{
|
| 786 |
+
"name": "bundle",
|
| 787 |
+
"position": "left",
|
| 788 |
+
"type": {
|
| 789 |
+
"type": "<class 'lynxkite_graph_analytics.core.Bundle'>"
|
| 790 |
+
}
|
| 791 |
+
}
|
| 792 |
+
],
|
| 793 |
+
"name": "View tables",
|
| 794 |
+
"outputs": [],
|
| 795 |
+
"params": [
|
| 796 |
+
{
|
| 797 |
+
"default": 100,
|
| 798 |
+
"name": "limit",
|
| 799 |
+
"type": {
|
| 800 |
+
"type": "<class 'int'>"
|
| 801 |
+
}
|
| 802 |
+
}
|
| 803 |
+
],
|
| 804 |
+
"type": "table_view"
|
| 805 |
+
},
|
| 806 |
+
"params": {
|
| 807 |
+
"limit": 100.0
|
| 808 |
+
},
|
| 809 |
+
"status": "done",
|
| 810 |
+
"title": "View tables"
|
| 811 |
+
},
|
| 812 |
+
"dragHandle": ".bg-primary",
|
| 813 |
+
"height": 291.0,
|
| 814 |
+
"id": "View tables 3",
|
| 815 |
+
"position": {
|
| 816 |
+
"x": -757.0926975107354,
|
| 817 |
+
"y": -321.469271323077
|
| 818 |
+
},
|
| 819 |
+
"type": "table_view",
|
| 820 |
+
"width": 496.0
|
| 821 |
+
},
|
| 822 |
+
{
|
| 823 |
+
"data": {
|
| 824 |
+
"__execution_delay": 0.0,
|
| 825 |
+
"collapsed": null,
|
| 826 |
+
"display": null,
|
| 827 |
+
"error": null,
|
| 828 |
+
"input_metadata": [
|
| 829 |
+
{
|
| 830 |
+
"dataframes": {
|
| 831 |
+
"data": {
|
| 832 |
+
"columns": [
|
| 833 |
+
"Name",
|
| 834 |
+
"SMILES",
|
| 835 |
+
"mol",
|
| 836 |
+
"pIC50"
|
| 837 |
+
]
|
| 838 |
+
}
|
| 839 |
+
},
|
| 840 |
+
"other": {},
|
| 841 |
+
"relations": []
|
| 842 |
+
}
|
| 843 |
+
],
|
| 844 |
+
"meta": {
|
| 845 |
+
"color": "orange",
|
| 846 |
+
"inputs": [
|
| 847 |
+
{
|
| 848 |
+
"name": "bundle",
|
| 849 |
+
"position": "left",
|
| 850 |
+
"type": {
|
| 851 |
+
"type": "<class 'inspect._empty'>"
|
| 852 |
+
}
|
| 853 |
+
}
|
| 854 |
+
],
|
| 855 |
+
"name": "Lipinski filter",
|
| 856 |
+
"outputs": [
|
| 857 |
+
{
|
| 858 |
+
"name": "output",
|
| 859 |
+
"position": "right",
|
| 860 |
+
"type": {
|
| 861 |
+
"type": "None"
|
| 862 |
+
}
|
| 863 |
+
}
|
| 864 |
+
],
|
| 865 |
+
"params": [
|
| 866 |
+
{
|
| 867 |
+
"default": null,
|
| 868 |
+
"name": "table_name",
|
| 869 |
+
"type": {
|
| 870 |
+
"type": "<class 'str'>"
|
| 871 |
+
}
|
| 872 |
+
},
|
| 873 |
+
{
|
| 874 |
+
"default": null,
|
| 875 |
+
"name": "column_name",
|
| 876 |
+
"type": {
|
| 877 |
+
"type": "<class 'str'>"
|
| 878 |
+
}
|
| 879 |
+
},
|
| 880 |
+
{
|
| 881 |
+
"default": true,
|
| 882 |
+
"name": "strict_lipinski",
|
| 883 |
+
"type": {
|
| 884 |
+
"type": "<class 'bool'>"
|
| 885 |
+
}
|
| 886 |
+
}
|
| 887 |
+
],
|
| 888 |
+
"type": "basic"
|
| 889 |
+
},
|
| 890 |
+
"params": {
|
| 891 |
+
"column_name": "SMILES",
|
| 892 |
+
"strict_lipinski": true,
|
| 893 |
+
"table_name": "data"
|
| 894 |
+
},
|
| 895 |
+
"status": "done",
|
| 896 |
+
"title": "Lipinski filter"
|
| 897 |
+
},
|
| 898 |
+
"dragHandle": ".bg-primary",
|
| 899 |
+
"height": 299.0,
|
| 900 |
+
"id": "Lipinski filter 1",
|
| 901 |
+
"position": {
|
| 902 |
+
"x": -720.0507400376052,
|
| 903 |
+
"y": 276.1650594718383
|
| 904 |
+
},
|
| 905 |
+
"type": "basic",
|
| 906 |
+
"width": 402.0
|
| 907 |
+
},
|
| 908 |
+
{
|
| 909 |
+
"data": {
|
| 910 |
+
"__execution_delay": 0.0,
|
| 911 |
+
"collapsed": null,
|
| 912 |
+
"error": null,
|
| 913 |
+
"input_metadata": [
|
| 914 |
+
{
|
| 915 |
+
"dataframes": {
|
| 916 |
+
"data": {
|
| 917 |
+
"columns": [
|
| 918 |
+
"Name",
|
| 919 |
+
"SMILES",
|
| 920 |
+
"mol",
|
| 921 |
+
"pIC50"
|
| 922 |
+
]
|
| 923 |
+
}
|
| 924 |
+
},
|
| 925 |
+
"other": {},
|
| 926 |
+
"relations": []
|
| 927 |
+
}
|
| 928 |
+
],
|
| 929 |
+
"meta": {
|
| 930 |
+
"color": "orange",
|
| 931 |
+
"inputs": [
|
| 932 |
+
{
|
| 933 |
+
"name": "bundle",
|
| 934 |
+
"position": "left",
|
| 935 |
+
"type": {
|
| 936 |
+
"type": "<class 'inspect._empty'>"
|
| 937 |
+
}
|
| 938 |
+
}
|
| 939 |
+
],
|
| 940 |
+
"name": "View mol image",
|
| 941 |
+
"outputs": [],
|
| 942 |
+
"params": [
|
| 943 |
+
{
|
| 944 |
+
"default": null,
|
| 945 |
+
"name": "table_name",
|
| 946 |
+
"type": {
|
| 947 |
+
"type": "<class 'str'>"
|
| 948 |
+
}
|
| 949 |
+
},
|
| 950 |
+
{
|
| 951 |
+
"default": null,
|
| 952 |
+
"name": "smiles_column",
|
| 953 |
+
"type": {
|
| 954 |
+
"type": "<class 'str'>"
|
| 955 |
+
}
|
| 956 |
+
},
|
| 957 |
+
{
|
| 958 |
+
"default": null,
|
| 959 |
+
"name": "mols_per_row",
|
| 960 |
+
"type": {
|
| 961 |
+
"type": "<class 'int'>"
|
| 962 |
+
}
|
| 963 |
+
}
|
| 964 |
+
],
|
| 965 |
+
"type": "image"
|
| 966 |
+
},
|
| 967 |
+
"params": {
|
| 968 |
+
"mols_per_row": "4",
|
| 969 |
+
"smiles_column": "SMILES",
|
| 970 |
+
"table_name": "data"
|
| 971 |
+
},
|
| 972 |
+
"status": "done",
|
| 973 |
+
"title": "View mol image"
|
| 974 |
+
},
|
| 975 |
+
"dragHandle": ".bg-primary",
|
| 976 |
+
"height": 309.0,
|
| 977 |
+
"id": "View mol image 1",
|
| 978 |
+
"position": {
|
| 979 |
+
"x": -1378.339896172849,
|
| 980 |
+
"y": 280.2327514185724
|
| 981 |
+
},
|
| 982 |
+
"type": "image",
|
| 983 |
+
"width": 363.0
|
| 984 |
+
}
|
| 985 |
+
]
|
| 986 |
+
}
|
examples/Cheminformatics/cheminfo_tools.py
ADDED
|
@@ -0,0 +1,305 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import pickle
|
| 3 |
+
from lynxkite.core.ops import op
|
| 4 |
+
from matplotlib import pyplot as plt
|
| 5 |
+
import pandas as pd
|
| 6 |
+
from rdkit.Chem.Draw import rdMolDraw2D
|
| 7 |
+
from PIL import Image
|
| 8 |
+
from rdkit import Chem
|
| 9 |
+
from rdkit.Chem import Descriptors
|
| 10 |
+
from rdkit.Chem import Crippen, Lipinski
|
| 11 |
+
from rdkit import DataStructs
|
| 12 |
+
import math
|
| 13 |
+
import io
|
| 14 |
+
from rdkit.Chem import AllChem
|
| 15 |
+
from sklearn.ensemble import RandomForestRegressor
|
| 16 |
+
from sklearn.metrics import r2_score, mean_absolute_error, mean_squared_error
|
| 17 |
+
from sklearn.model_selection import train_test_split
|
| 18 |
+
import numpy as np
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
@op("LynxKite Graph Analytics", "View mol filter", view="matplotlib", slow=True)
|
| 22 |
+
def mol_filter(
|
| 23 |
+
bundle,
|
| 24 |
+
*,
|
| 25 |
+
table_name: str,
|
| 26 |
+
SMILES_Column: str,
|
| 27 |
+
mols_per_row: int,
|
| 28 |
+
filter_smarts: str = None,
|
| 29 |
+
filter_smiles: str = None,
|
| 30 |
+
highlight: bool = True,
|
| 31 |
+
):
|
| 32 |
+
"""
|
| 33 |
+
Draws a grid of molecules in square boxes, with optional filtering and substructure highlighting.
|
| 34 |
+
|
| 35 |
+
Parameters:
|
| 36 |
+
- bundle: data bundle containing a DataFrame in bundle.dfs[table_name]
|
| 37 |
+
- table_name: name of the table in bundle.dfs
|
| 38 |
+
- column_name: column containing SMILES strings
|
| 39 |
+
- mols_per_row: number of molecules per row in the grid
|
| 40 |
+
- filter_smarts: SMARTS pattern to filter and highlight
|
| 41 |
+
- filter_smiles: SMILES substructure to filter and highlight (if filter_smarts is None)
|
| 42 |
+
- highlight: whether to highlight matching substructures
|
| 43 |
+
"""
|
| 44 |
+
# get DataFrame
|
| 45 |
+
df = bundle.dfs[table_name].copy()
|
| 46 |
+
df["mol"] = df[SMILES_Column].apply(Chem.MolFromSmiles)
|
| 47 |
+
df = df[df["mol"].notnull()].reset_index(drop=True)
|
| 48 |
+
|
| 49 |
+
# compile substructure query if provided
|
| 50 |
+
query = None
|
| 51 |
+
if filter_smarts:
|
| 52 |
+
query = Chem.MolFromSmarts(filter_smarts)
|
| 53 |
+
elif filter_smiles:
|
| 54 |
+
query = Chem.MolFromSmiles(filter_smiles)
|
| 55 |
+
|
| 56 |
+
# compute properties and legends
|
| 57 |
+
df["MW"] = df["mol"].apply(Descriptors.MolWt)
|
| 58 |
+
df["logP"] = df["mol"].apply(Crippen.MolLogP)
|
| 59 |
+
df["HBD"] = df["mol"].apply(Lipinski.NumHDonors)
|
| 60 |
+
df["HBA"] = df["mol"].apply(Lipinski.NumHAcceptors)
|
| 61 |
+
|
| 62 |
+
legends = []
|
| 63 |
+
for _, row in df.iterrows():
|
| 64 |
+
mol = row["mol"]
|
| 65 |
+
# filter by substructure
|
| 66 |
+
if query and not mol.HasSubstructMatch(query):
|
| 67 |
+
continue
|
| 68 |
+
|
| 69 |
+
# find atom and bond matches
|
| 70 |
+
atom_ids, bond_ids = [], []
|
| 71 |
+
if highlight and query:
|
| 72 |
+
atom_ids = list(mol.GetSubstructMatch(query))
|
| 73 |
+
# find bonds where both ends are in atom_ids
|
| 74 |
+
for bond in mol.GetBonds():
|
| 75 |
+
a1 = bond.GetBeginAtomIdx()
|
| 76 |
+
a2 = bond.GetEndAtomIdx()
|
| 77 |
+
if a1 in atom_ids and a2 in atom_ids:
|
| 78 |
+
bond_ids.append(bond.GetIdx())
|
| 79 |
+
|
| 80 |
+
legend = (
|
| 81 |
+
f"{row['Name']} pIC50={row['pIC50']:.2f}\n"
|
| 82 |
+
f"MW={row['MW']:.1f}, logP={row['logP']:.2f}\n"
|
| 83 |
+
f"HBD={row['HBD']}, HBA={row['HBA']}"
|
| 84 |
+
)
|
| 85 |
+
legends.append((mol, legend, atom_ids, bond_ids))
|
| 86 |
+
|
| 87 |
+
if not legends:
|
| 88 |
+
raise ValueError("No molecules passed the filter.")
|
| 89 |
+
|
| 90 |
+
# draw each filtered molecule
|
| 91 |
+
images = []
|
| 92 |
+
for mol, legend, atom_ids, bond_ids in legends:
|
| 93 |
+
drawer = rdMolDraw2D.MolDraw2DCairo(400, 350)
|
| 94 |
+
opts = drawer.drawOptions()
|
| 95 |
+
opts.legendFontSize = 200
|
| 96 |
+
drawer.DrawMolecule(mol, legend=legend, highlightAtoms=atom_ids, highlightBonds=bond_ids)
|
| 97 |
+
drawer.FinishDrawing()
|
| 98 |
+
|
| 99 |
+
sub_png = drawer.GetDrawingText()
|
| 100 |
+
sub_img = Image.open(io.BytesIO(sub_png))
|
| 101 |
+
images.append(sub_img)
|
| 102 |
+
|
| 103 |
+
plot_gallery(images, num_cols=mols_per_row)
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
@op("LynxKite Graph Analytics", "Lipinski filter")
|
| 107 |
+
def lipinski_filter(bundle, *, table_name: str, column_name: str, strict_lipinski: bool = True):
|
| 108 |
+
# copy bundle and get DataFrame
|
| 109 |
+
bundle = bundle.copy()
|
| 110 |
+
df = bundle.dfs[table_name].copy()
|
| 111 |
+
df["mol"] = df[column_name].apply(Chem.MolFromSmiles)
|
| 112 |
+
df = df[df["mol"].notnull()].reset_index(drop=True)
|
| 113 |
+
|
| 114 |
+
# compute properties
|
| 115 |
+
df["MW"] = df["mol"].apply(Descriptors.MolWt)
|
| 116 |
+
df["logP"] = df["mol"].apply(Crippen.MolLogP)
|
| 117 |
+
df["HBD"] = df["mol"].apply(Lipinski.NumHDonors)
|
| 118 |
+
df["HBA"] = df["mol"].apply(Lipinski.NumHAcceptors)
|
| 119 |
+
|
| 120 |
+
# compute a boolean pass/fail for Lipinski
|
| 121 |
+
df["pass_lipinski"] = (
|
| 122 |
+
(df["MW"] <= 500) & (df["logP"] <= 5) & (df["HBD"] <= 5) & (df["HBA"] <= 10)
|
| 123 |
+
)
|
| 124 |
+
df = df.drop("mol", axis=1)
|
| 125 |
+
|
| 126 |
+
# if strict_lipinski, drop those that fail
|
| 127 |
+
if strict_lipinski:
|
| 128 |
+
failed = df.loc[~df["pass_lipinski"], column_name].tolist()
|
| 129 |
+
df = df[df["pass_lipinski"]].reset_index(drop=True)
|
| 130 |
+
if failed:
|
| 131 |
+
print(f"Dropped {len(failed)} molecules that failed Lipinski: {failed}")
|
| 132 |
+
|
| 133 |
+
return df
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
@op("LynxKite Graph Analytics", "View mol image", view="matplotlib", slow=True)
|
| 137 |
+
def mol_image(bundle, *, table_name: str, smiles_column: str, mols_per_row: int):
|
| 138 |
+
df = bundle.dfs[table_name].copy()
|
| 139 |
+
df["mol"] = df[smiles_column].apply(Chem.MolFromSmiles)
|
| 140 |
+
df = df[df["mol"].notnull()].reset_index(drop=True)
|
| 141 |
+
df["MW"] = df["mol"].apply(Descriptors.MolWt)
|
| 142 |
+
df["logP"] = df["mol"].apply(Crippen.MolLogP)
|
| 143 |
+
df["HBD"] = df["mol"].apply(Lipinski.NumHDonors)
|
| 144 |
+
df["HBA"] = df["mol"].apply(Lipinski.NumHAcceptors)
|
| 145 |
+
|
| 146 |
+
legends = []
|
| 147 |
+
for _, row in df.iterrows():
|
| 148 |
+
legends.append(
|
| 149 |
+
f"{row['Name']} pIC50={row['pIC50']:.2f}\n"
|
| 150 |
+
f"MW={row['MW']:.1f}, logP={row['logP']:.2f}\n"
|
| 151 |
+
f"HBD={row['HBD']}, HBA={row['HBA']}"
|
| 152 |
+
)
|
| 153 |
+
|
| 154 |
+
mols = df["mol"].tolist()
|
| 155 |
+
if not mols:
|
| 156 |
+
raise ValueError("No valid molecules to draw.")
|
| 157 |
+
|
| 158 |
+
# --- draw each molecule into its own sub‐image and paste ---
|
| 159 |
+
images = []
|
| 160 |
+
for mol, legend in zip(mols, legends):
|
| 161 |
+
# draw one molecule
|
| 162 |
+
drawer = rdMolDraw2D.MolDraw2DCairo(400, 350)
|
| 163 |
+
opts = drawer.drawOptions()
|
| 164 |
+
opts.legendFontSize = 200
|
| 165 |
+
drawer.DrawMolecule(mol, legend=legend)
|
| 166 |
+
drawer.FinishDrawing()
|
| 167 |
+
sub_png = drawer.GetDrawingText()
|
| 168 |
+
sub_img = Image.open(io.BytesIO(sub_png))
|
| 169 |
+
images.append(sub_img)
|
| 170 |
+
|
| 171 |
+
plot_gallery(images, num_cols=mols_per_row)
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
def plot_gallery(images, num_cols):
|
| 175 |
+
num_rows = math.ceil(len(images) / num_cols)
|
| 176 |
+
fig, axes = plt.subplots(num_rows, num_cols, figsize=(num_cols * 4, num_rows * 3.5))
|
| 177 |
+
axes = axes.flatten()
|
| 178 |
+
for i, ax in enumerate(axes):
|
| 179 |
+
if i < len(images):
|
| 180 |
+
ax.imshow(images[i])
|
| 181 |
+
ax.set_xticks([])
|
| 182 |
+
ax.set_yticks([])
|
| 183 |
+
plt.tight_layout()
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
@op("LynxKite Graph Analytics", "Train QSAR model")
|
| 187 |
+
def build_qsar_model(
|
| 188 |
+
bundle,
|
| 189 |
+
*,
|
| 190 |
+
table_name: str,
|
| 191 |
+
smiles_col: str,
|
| 192 |
+
target_col: str,
|
| 193 |
+
fp_type: str,
|
| 194 |
+
radius: int = 2,
|
| 195 |
+
n_bits: int = 2048,
|
| 196 |
+
test_size: float = 0.2,
|
| 197 |
+
random_state: int = 42,
|
| 198 |
+
out_dir: str = "Models",
|
| 199 |
+
):
|
| 200 |
+
"""
|
| 201 |
+
Train and save a RandomForest QSAR model using one fingerprint type.
|
| 202 |
+
|
| 203 |
+
Parameters
|
| 204 |
+
----------
|
| 205 |
+
bundle : any
|
| 206 |
+
An object with a dict‐like attribute `.dfs` mapping table names to DataFrames.
|
| 207 |
+
table_name : str
|
| 208 |
+
Key into bundle.dfs to get the DataFrame.
|
| 209 |
+
smiles_col : str
|
| 210 |
+
Name of the column containing SMILES strings.
|
| 211 |
+
target_col : str
|
| 212 |
+
Name of the column containing the numeric response.
|
| 213 |
+
fp_type : str
|
| 214 |
+
Fingerprint to compute: "ecfp", "rdkit", "torsion", "atompair", or "maccs".
|
| 215 |
+
radius : int
|
| 216 |
+
Radius for the Morgan (ECFP) fingerprint.
|
| 217 |
+
n_bits : int
|
| 218 |
+
Bit‐vector length for all fp types except MACCS (167).
|
| 219 |
+
test_size : float
|
| 220 |
+
Fraction of data held out for testing.
|
| 221 |
+
random_state : int
|
| 222 |
+
Random seed for reproducibility.
|
| 223 |
+
out_dir : str
|
| 224 |
+
Directory in which to save `qsar_model_<fp_type>.pkl`.
|
| 225 |
+
|
| 226 |
+
Returns
|
| 227 |
+
-------
|
| 228 |
+
model : RandomForestRegressor
|
| 229 |
+
The trained QSAR model.
|
| 230 |
+
metrics_df : pandas.DataFrame
|
| 231 |
+
R², MAE and RMSE on train and test splits.
|
| 232 |
+
"""
|
| 233 |
+
# 1) load and sanitize data
|
| 234 |
+
df = bundle.dfs.get(table_name)
|
| 235 |
+
if df is None:
|
| 236 |
+
raise KeyError(f"Table '{table_name}' not found in bundle.dfs")
|
| 237 |
+
df = df.copy()
|
| 238 |
+
df["mol"] = df[smiles_col].apply(Chem.MolFromSmiles)
|
| 239 |
+
df = df[df["mol"].notnull()].reset_index(drop=True)
|
| 240 |
+
if df.empty:
|
| 241 |
+
raise ValueError(f"No valid molecules in '{smiles_col}'")
|
| 242 |
+
|
| 243 |
+
# 2) create a fixed train/test split
|
| 244 |
+
indices = np.arange(len(df))
|
| 245 |
+
train_idx, test_idx = train_test_split(indices, test_size=test_size, random_state=random_state)
|
| 246 |
+
|
| 247 |
+
# 3) featurize
|
| 248 |
+
fps = []
|
| 249 |
+
for mol in df["mol"]:
|
| 250 |
+
if fp_type == "ecfp":
|
| 251 |
+
bv = AllChem.GetMorganFingerprintAsBitVect(mol, radius, nBits=n_bits)
|
| 252 |
+
arr = np.zeros((n_bits,), dtype=np.int8)
|
| 253 |
+
DataStructs.ConvertToNumpyArray(bv, arr)
|
| 254 |
+
elif fp_type == "rdkit":
|
| 255 |
+
bv = Chem.RDKFingerprint(mol, fpSize=n_bits)
|
| 256 |
+
arr = np.zeros((n_bits,), dtype=np.int8)
|
| 257 |
+
DataStructs.ConvertToNumpyArray(bv, arr)
|
| 258 |
+
elif fp_type == "torsion":
|
| 259 |
+
bv = AllChem.GetHashedTopologicalTorsionFingerprintAsBitVect(mol, nBits=n_bits)
|
| 260 |
+
arr = np.zeros((n_bits,), dtype=np.int8)
|
| 261 |
+
DataStructs.ConvertToNumpyArray(bv, arr)
|
| 262 |
+
elif fp_type == "atompair":
|
| 263 |
+
bv = AllChem.GetHashedAtomPairFingerprintAsBitVect(mol, nBits=n_bits)
|
| 264 |
+
arr = np.zeros((n_bits,), dtype=np.int8)
|
| 265 |
+
DataStructs.ConvertToNumpyArray(bv, arr)
|
| 266 |
+
elif fp_type == "maccs":
|
| 267 |
+
bv = Chem.MACCSkeys.GenMACCSKeys(mol) # 167 bits
|
| 268 |
+
arr = np.zeros((167,), dtype=np.int8)
|
| 269 |
+
DataStructs.ConvertToNumpyArray(bv, arr)
|
| 270 |
+
else:
|
| 271 |
+
raise ValueError(f"Unsupported fingerprint type: '{fp_type}'")
|
| 272 |
+
fps.append(arr)
|
| 273 |
+
|
| 274 |
+
X = np.vstack(fps)
|
| 275 |
+
y = df[target_col].values
|
| 276 |
+
|
| 277 |
+
# 4) split features/labels
|
| 278 |
+
X_train, y_train = X[train_idx], y[train_idx]
|
| 279 |
+
X_test, y_test = X[test_idx], y[test_idx]
|
| 280 |
+
|
| 281 |
+
# 5) train RandomForest
|
| 282 |
+
model = RandomForestRegressor(random_state=random_state)
|
| 283 |
+
model.fit(X_train, y_train)
|
| 284 |
+
|
| 285 |
+
# 6) compute performance metrics
|
| 286 |
+
def _metrics(y_true, y_pred):
|
| 287 |
+
mse = mean_squared_error(y_true, y_pred)
|
| 288 |
+
return {
|
| 289 |
+
"R2": r2_score(y_true, y_pred),
|
| 290 |
+
"MAE": mean_absolute_error(y_true, y_pred),
|
| 291 |
+
"RMSE": np.sqrt(mse),
|
| 292 |
+
}
|
| 293 |
+
|
| 294 |
+
train_m = _metrics(y_train, model.predict(X_train))
|
| 295 |
+
test_m = _metrics(y_test, model.predict(X_test))
|
| 296 |
+
metrics_df = pd.DataFrame([{"split": "train", **train_m}, {"split": "test", **test_m}])
|
| 297 |
+
|
| 298 |
+
# 7) save the model
|
| 299 |
+
os.makedirs(out_dir, exist_ok=True)
|
| 300 |
+
model_file = os.path.join(out_dir, f"qsar_model_{fp_type}.pkl")
|
| 301 |
+
with open(model_file, "wb") as fout:
|
| 302 |
+
pickle.dump(model, fout)
|
| 303 |
+
|
| 304 |
+
print(f"Trained & saved QSAR model for '{fp_type}' → {model_file}")
|
| 305 |
+
return metrics_df
|
examples/Image table.lynxkite.json
CHANGED
|
@@ -27,7 +27,7 @@
|
|
| 27 |
{
|
| 28 |
"data": {
|
| 29 |
"__execution_delay": null,
|
| 30 |
-
"collapsed":
|
| 31 |
"display": null,
|
| 32 |
"error": null,
|
| 33 |
"input_metadata": [],
|
|
@@ -55,8 +55,8 @@
|
|
| 55 |
"height": 200.0,
|
| 56 |
"id": "Example image table 1",
|
| 57 |
"position": {
|
| 58 |
-
"x":
|
| 59 |
-
"y":
|
| 60 |
},
|
| 61 |
"type": "basic",
|
| 62 |
"width": 280.0
|
|
@@ -138,8 +138,8 @@
|
|
| 138 |
"height": 440.0,
|
| 139 |
"id": "View tables 1",
|
| 140 |
"position": {
|
| 141 |
-
"x":
|
| 142 |
-
"y":
|
| 143 |
},
|
| 144 |
"type": "table_view",
|
| 145 |
"width": 376.0
|
|
@@ -198,14 +198,14 @@
|
|
| 198 |
"title": "Import CSV"
|
| 199 |
},
|
| 200 |
"dragHandle": ".bg-primary",
|
| 201 |
-
"height":
|
| 202 |
"id": "Import CSV 1",
|
| 203 |
"position": {
|
| 204 |
"x": 13.802068621055497,
|
| 205 |
"y": -269.65065144888104
|
| 206 |
},
|
| 207 |
"type": "basic",
|
| 208 |
-
"width":
|
| 209 |
},
|
| 210 |
{
|
| 211 |
"data": {
|
|
@@ -282,15 +282,15 @@
|
|
| 282 |
"params": {
|
| 283 |
"limit": 100.0
|
| 284 |
},
|
| 285 |
-
"status": "
|
| 286 |
"title": "View tables"
|
| 287 |
},
|
| 288 |
"dragHandle": ".bg-primary",
|
| 289 |
"height": 418.0,
|
| 290 |
"id": "View tables 2",
|
| 291 |
"position": {
|
| 292 |
-
"x":
|
| 293 |
-
"y": -
|
| 294 |
},
|
| 295 |
"type": "table_view",
|
| 296 |
"width": 1116.0
|
|
@@ -300,7 +300,7 @@
|
|
| 300 |
"__execution_delay": 0.0,
|
| 301 |
"collapsed": null,
|
| 302 |
"display": null,
|
| 303 |
-
"error":
|
| 304 |
"input_metadata": [
|
| 305 |
{}
|
| 306 |
],
|
|
@@ -354,8 +354,8 @@
|
|
| 354 |
"height": 296.0,
|
| 355 |
"id": "Draw molecules 1",
|
| 356 |
"position": {
|
| 357 |
-
"x":
|
| 358 |
-
"y": -
|
| 359 |
},
|
| 360 |
"type": "basic",
|
| 361 |
"width": 212.0
|
|
|
|
| 27 |
{
|
| 28 |
"data": {
|
| 29 |
"__execution_delay": null,
|
| 30 |
+
"collapsed": false,
|
| 31 |
"display": null,
|
| 32 |
"error": null,
|
| 33 |
"input_metadata": [],
|
|
|
|
| 55 |
"height": 200.0,
|
| 56 |
"id": "Example image table 1",
|
| 57 |
"position": {
|
| 58 |
+
"x": 356.1935187064265,
|
| 59 |
+
"y": 224.8472733628614
|
| 60 |
},
|
| 61 |
"type": "basic",
|
| 62 |
"width": 280.0
|
|
|
|
| 138 |
"height": 440.0,
|
| 139 |
"id": "View tables 1",
|
| 140 |
"position": {
|
| 141 |
+
"x": 757.4687936995374,
|
| 142 |
+
"y": 116.39895719598661
|
| 143 |
},
|
| 144 |
"type": "table_view",
|
| 145 |
"width": 376.0
|
|
|
|
| 198 |
"title": "Import CSV"
|
| 199 |
},
|
| 200 |
"dragHandle": ".bg-primary",
|
| 201 |
+
"height": 339.0,
|
| 202 |
"id": "Import CSV 1",
|
| 203 |
"position": {
|
| 204 |
"x": 13.802068621055497,
|
| 205 |
"y": -269.65065144888104
|
| 206 |
},
|
| 207 |
"type": "basic",
|
| 208 |
+
"width": 296.0
|
| 209 |
},
|
| 210 |
{
|
| 211 |
"data": {
|
|
|
|
| 282 |
"params": {
|
| 283 |
"limit": 100.0
|
| 284 |
},
|
| 285 |
+
"status": "planned",
|
| 286 |
"title": "View tables"
|
| 287 |
},
|
| 288 |
"dragHandle": ".bg-primary",
|
| 289 |
"height": 418.0,
|
| 290 |
"id": "View tables 2",
|
| 291 |
"position": {
|
| 292 |
+
"x": 815.4121289519509,
|
| 293 |
+
"y": -330.8232285057863
|
| 294 |
},
|
| 295 |
"type": "table_view",
|
| 296 |
"width": 1116.0
|
|
|
|
| 300 |
"__execution_delay": 0.0,
|
| 301 |
"collapsed": null,
|
| 302 |
"display": null,
|
| 303 |
+
"error": "module 'rdkit.Chem' has no attribute 'Draw'",
|
| 304 |
"input_metadata": [
|
| 305 |
{}
|
| 306 |
],
|
|
|
|
| 354 |
"height": 296.0,
|
| 355 |
"id": "Draw molecules 1",
|
| 356 |
"position": {
|
| 357 |
+
"x": 351.1956913898301,
|
| 358 |
+
"y": -235.00831568554486
|
| 359 |
},
|
| 360 |
"type": "basic",
|
| 361 |
"width": 212.0
|
examples/draw_molecules.py
CHANGED
|
@@ -15,6 +15,8 @@ def smiles_to_data(smiles):
|
|
| 15 |
import rdkit
|
| 16 |
|
| 17 |
m = rdkit.Chem.MolFromSmiles(smiles)
|
|
|
|
|
|
|
| 18 |
img = rdkit.Chem.Draw.MolToImage(m)
|
| 19 |
data = pil_to_data(img)
|
| 20 |
return data
|
|
|
|
| 15 |
import rdkit
|
| 16 |
|
| 17 |
m = rdkit.Chem.MolFromSmiles(smiles)
|
| 18 |
+
if m is None:
|
| 19 |
+
return None
|
| 20 |
img = rdkit.Chem.Draw.MolToImage(m)
|
| 21 |
data = pil_to_data(img)
|
| 22 |
return data
|
examples/uploads/CHEMBL313_sel.csv
ADDED
|
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
SMILES,Name,pIC50
|
| 2 |
+
Cc1ccc(C2CC3CCC(C2C(=O)OC(C)C)N3C)cc1,CHEMBL321806,5.99
|
| 3 |
+
Cc1ccc(C2CC3CCC(C2C(=O)Oc2ccccc2)N3C)cc1,CHEMBL340912,5.81
|
| 4 |
+
CN1C2CCC1C(C(=O)Oc1ccccc1)C(c1ccc(I)cc1)C2,CHEMBL340761,7.29
|
| 5 |
+
CC(C)OC(=O)C1C(c2ccc(I)cc2)CC2CCC1N2C,CHEMBL127546,7.9
|
| 6 |
+
COC(=O)C1C(c2ccc(Br)cc2)CC2CCC1N2C,CHEMBL97887,8.31
|
| 7 |
+
CC(C)OC(=O)C1C(c2ccc(Cl)cc2)CC2CCC1N2C,CHEMBL127040,6.89
|
| 8 |
+
COC(=O)C1C2CCC(CC1c1ccc(F)cc1)N2,CHEMBL80515,8.14
|
| 9 |
+
COC(=O)C1C(c2cccc(I)c2)CC2CCC1N2C,CHEMBL67387,8.01
|
| 10 |
+
CCc1cc(C2C(c3ccc(C)cc3)CC3CCC2N3C)on1,CHEMBL317904,6.24
|
| 11 |
+
Cc1ccc(C2CC3CCC(C2c2cc(C(C)C)no2)N3C)cc1,CHEMBL322400,5.41
|
| 12 |
+
Cc1ccc(C2CC3CCC(C2c2cc(C)no2)N3C)cc1,CHEMBL103228,6.46
|
| 13 |
+
CC(C)c1cc(C2C(c3ccc(Cl)cc3)CC3CCC2N3C)on1,CHEMBL321780,6.68
|
| 14 |
+
Cc1ccc(C2CC3CCC(C2c2ccno2)N3C)cc1,CHEMBL317905,7.42
|
| 15 |
+
CN1C2CCC1C(c1ccno1)C(c1ccc(Cl)cc1)C2,CHEMBL103523,8.09
|
| 16 |
+
Cc1cc(C2C(c3ccc(Cl)cc3)CC3CCC2N3C)on1,CHEMBL316528,7.28
|
| 17 |
+
CCc1cc(C2C(c3ccc(Cl)cc3)CC3CCC2N3C)on1,CHEMBL103227,6.55
|
| 18 |
+
CN1C2CCC1C(c1cc(C(C)(C)C)no1)C(c1ccc(Cl)cc1)C2,CHEMBL100652,5.47
|
| 19 |
+
COC(=O)C1C(c2ccc(C)cc2)CC2CCC1N2CCF,CHEMBL105089,6.43
|
| 20 |
+
CN1C2CCC1C(C(=O)OCCF)C(c1ccc(I)cc1)C2,CHEMBL318961,8.59
|
| 21 |
+
O=C(OCCF)C1C(c2ccc(I)cc2)CC2CCC1N2CCCF,CHEMBL317444,7.88
|
| 22 |
+
Cc1ccc(C2CC3CCC(C2C(=O)OCCCF)N3C)cc1,CHEMBL430504,6.49
|
| 23 |
+
CN1C2CCC1C(C(=O)OCCCF)C(c1ccc(I)cc1)C2,CHEMBL105693,8.78
|
| 24 |
+
COC(=O)C1C(c2ccc(Br)cc2)CC2CCC1N2CCCF,CHEMBL433159,7.44
|
| 25 |
+
COC(=O)C1C2CCC(CC1c1ccc(I)cc1)N2,CHEMBL14613,10.215
|
| 26 |
+
COC(=O)C1C(c2ccc(C)cc2)CC2CCC1N2CCCF,CHEMBL319052,5.88
|
| 27 |
+
COC(=O)[C@@H]1C2CCC(C[C@@H]1c1ccc(C)cc1)N2C/C=C/I,CHEMBL2113648,6.3
|
| 28 |
+
C=Cc1ccc(C2CC3CCC(N3)C2C(=O)CC)cc1,CHEMBL85492,9.49
|
| 29 |
+
CCC(=O)C1C(c2ccc(C(C)C)cc2)CC2CCC1N2C,CHEMBL278122,7.443
|
| 30 |
+
C=C(C)c1ccc(C2CC3CCC(N3)C2C(=O)CC)cc1,CHEMBL85877,9.96
|
| 31 |
+
CCC(=O)C1C2CCC(CC1c1ccc(C)cc1)N2,CHEMBL87983,7.72
|
| 32 |
+
CCC(=O)C1C(c2ccc(C(CC)CC)cc2)CC2CCC1N2C,CHEMBL314919,6.27
|
| 33 |
+
C=C(C)c1ccc(C2CC3CCC(C2C(=O)CC)N3C)cc1,CHEMBL82807,9.09
|
| 34 |
+
C=Cc1ccc(C2CC3CCC(C2C(=O)CC)N3C)cc1,CHEMBL314361,8.49
|
| 35 |
+
CCC(=O)C1C2CCC(CC1c1ccc(C(CC)CC)cc1)N2,CHEMBL87678,6.82
|
| 36 |
+
CCC(=O)C1C(c2ccc(C3CCCCC3)cc2)CC2CCC1N2C,CHEMBL87739,7.01
|
| 37 |
+
CCC(=O)C1C2CCC(CC1c1ccc(C(C)C)cc1)N2,CHEMBL85256,8.28
|
| 38 |
+
O[C@H]1CCCC[C@@H]1N1C2CCC1CC(c1ccccc1)C2,CHEMBL338411,5.47
|
| 39 |
+
Cc1ccc(C2CC3CCC(C2c2cc(C(C)(C)C)no2)N3C)cc1,CHEMBL317909,4.59
|
| 40 |
+
COC(=O)C1C(c2cccc(-c3ccco3)c2)CC2CCC1N2C,CHEMBL303494,7.38
|
| 41 |
+
COC(=O)C1C2CCC(CC1c1cccc(I)c1)N2,CHEMBL66068,8.87
|
| 42 |
+
COC(=O)C1C(c2cccc(-c3ccccc3)c2)CC2CCC1N2C,CHEMBL294733,7.45
|
| 43 |
+
COC(=O)C1C(c2cccc(-c3ccsc3)c2)CC2CCC1N2C,CHEMBL303232,7.08
|
| 44 |
+
CC(=O)C1C(c2ccc(C)cc2)CC2CCC1N2C,CHEMBL23141,6.91
|
| 45 |
+
CC(=O)C1C(c2ccc(F)cc2)CC2CCC1N2C,CHEMBL22665,6.07
|
| 46 |
+
CCC(=O)C1C(c2ccc(-c3ccccc3)cc2)CC2CCC1N2C,CHEMBL22518,8.37
|
| 47 |
+
CCC(=O)C1C(c2ccccc2)CC2CCC1N2C,CHEMBL23875,6.0
|
| 48 |
+
CCC(=O)C1C(c2ccc(C(C)(C)C)cc2)CC2CCC1N2C,CHEMBL22377,5.75
|
| 49 |
+
CC(=O)C1C(c2ccccc2)CC2CCC1N2C,CHEMBL416007,5.87
|
| 50 |
+
CCc1ccc(C2CC3CCC(C2C(C)=O)N3C)cc1,CHEMBL23974,7.11
|
| 51 |
+
CCC(=O)C1C(c2ccc(F)cc2)CC2CCC1N2C,CHEMBL23655,6.2
|
| 52 |
+
COC(=O)C1C(c2ccc(I)cc2)CC2CCC1N2CCF,CHEMBL358006,9.85
|
| 53 |
+
COC(=O)C1C(c2ccc(I)cc2)CC2CCC1N2CCCI,CHEMBL153200,8.05
|
| 54 |
+
COC(=O)C1C(c2ccc(I)cc2)CC2CCC1N2CC1CC1,CHEMBL150084,8.89
|
| 55 |
+
COC(=O)C1C(c2ccc(I)cc2)CC2CCC1N2CC(F)F,CHEMBL356166,8.02
|
| 56 |
+
COC(=O)C1C(c2ccc(I)cc2)CC2CCC1N2CCCO,CHEMBL357300,8.6
|
| 57 |
+
COC(=O)C1C(c2ccc(I)cc2)CC2CCC1N2CCCCl,CHEMBL345553,9.49
|
| 58 |
+
CC(C)OC(=O)C1C(c2ccc(I)cc2)CC2CCC1N2CCF,CHEMBL346872,7.66
|
| 59 |
+
COC(=O)C1C(c2ccc(I)cc2)CC2CCC1N2CC(OC)OC,CHEMBL153361,8.77
|
| 60 |
+
COC(=O)CN1C2CCC1C(C(=O)OC)C(c1ccc(I)cc1)C2,CHEMBL149801,9.09
|
| 61 |
+
CC(C)OC(=O)C1C(c2ccc(I)cc2)CC2CCC1N2CCCF,CHEMBL345760,7.31
|
| 62 |
+
COC(=O)[C@@H]1C2CCC(C[C@@H]1c1ccc(I)cc1)N2CC(=O)N(C)C,CHEMBL2112890,8.19
|
| 63 |
+
COC(=O)C1C(c2ccc(I)cc2)CC2CCC1N2CCCBr,CHEMBL356652,9.46
|
| 64 |
+
C[C@H](CF)OC(=O)C1C(c2ccc(Cl)cc2)CC2CCC1N2C,CHEMBL2112915,6.88
|
| 65 |
+
C[C@@H](CF)OC(=O)C1C(c2ccc(Cl)cc2)CC2CCC1N2C,CHEMBL2112916,6.86
|
| 66 |
+
Fc1ccc(C2C3CCC(C[C@H]2c2ccc(F)cc2)N3)cc1,CHEMBL325330,7.39
|
| 67 |
+
CCC(=O)C1C2CCC(CC1c1cccc(I)c1)N2,CHEMBL171565,7.8
|
| 68 |
+
CCC(=O)C1C2CCC(CC1c1ccc(/C=C/I)cc1)N2,CHEMBL352913,9.21
|
| 69 |
+
Cc1ccc(C2CC3CCC(C2C(=O)CC/C=C/I)N3C)cc1,CHEMBL169320,7.29
|
| 70 |
+
CCC(=O)C1C(c2cccc(I)c2)CC2CCC1N2C,CHEMBL168305,7.71
|
| 71 |
+
CCC(=O)C1C2CCC(CC1c1ccc(I)c(Cl)c1)N2,CHEMBL169117,8.97
|
| 72 |
+
CCC(=O)C1C2CCC(CC1c1ccc(/C=C(\C)I)cc1)N2,CHEMBL423275,9.24
|
| 73 |
+
CCC(=O)C1C(c2ccc(I)cc2)CC2CCC1N2C,CHEMBL352698,8.73
|
| 74 |
+
CCC(=O)C1C2CCC(CC1c1ccc(I)c(F)c1)N2,CHEMBL355734,8.14
|
| 75 |
+
CCC(=O)C1C2CCC(CC1c1ccc(/C=C(/C)I)cc1)N2,CHEMBL355259,9.89
|
| 76 |
+
CCC(=O)C1C2CCC(CC1c1ccc(I)cc1)N2,CHEMBL354725,8.61
|
| 77 |
+
COC(=O)C1C(c2ccc(-c3cscc3Br)cc2)CC2CCC1N2C,CHEMBL433560,8.4
|
| 78 |
+
COC(=O)C1C(c2ccc(-c3ccc(I)s3)cc2)CC2CCC1N2C,CHEMBL178773,8.34
|
| 79 |
+
COC(=O)C1C(c2ccc(-c3ccc(N)s3)cc2)CC2CCC1N2C,CHEMBL181613,7.19
|
| 80 |
+
COC(=O)C1C(c2ccc(-c3ccsc3)cc2)CC2CCC1N2C,CHEMBL435287,10.77
|
| 81 |
+
COC(=O)C1C2CCC(CC1c1ccc(-c3cccs3)cc1)N2,CHEMBL181557,9.96
|
| 82 |
+
COC(=O)C1C(c2ccc(-c3cccs3)cc2)CC2CCC1N2C,CHEMBL181609,9.82
|
| 83 |
+
COC(=O)C1C2CCC(CC1c1ccc(-c3ccsc3)cc1)N2,CHEMBL179498,9.64
|
| 84 |
+
COC(=O)C1C(c2ccc(-c3ccc(Br)s3)cc2)CC2CCC1N2C,CHEMBL180918,9.42
|
| 85 |
+
COC(=O)C1C(c2ccc(-c3ccc(Cl)s3)cc2)CC2CCC1N2C,CHEMBL369098,9.19
|
| 86 |
+
COC(=O)C1C2CCC(CC1c1ccc(C)c(F)c1)N2,CHEMBL365738,7.62
|
| 87 |
+
COC(=O)C1C2CCC(CC1c1ccc(F)c(C)c1)N2,CHEMBL195738,7.77
|
| 88 |
+
COC(=O)C1C2CCC(CC1c1cccc(F)c1)N2,CHEMBL192924,7.57
|
| 89 |
+
COC(=O)C1C2CCC(CC1c1ccc(F)c(F)c1)N2,CHEMBL366159,7.26
|
| 90 |
+
COC(=O)C1C2CCC(CC1c1cc(F)cc(F)c1)N2,CHEMBL371607,7.86
|
| 91 |
+
CN1C2CCC1C(C(=O)OCCCF)C(c1ccc(Br)cc1)C2,CHEMBL365649,8.54
|
| 92 |
+
O=C(OCCCF)C1C2CCC(CC1c1ccc(Br)cc1)N2,CHEMBL184807,9.52
|
| 93 |
+
CN1C2CCC1C(C(=O)OCCF)C(c1ccc(Br)cc1)C2,CHEMBL185608,8.29
|
| 94 |
+
O=C(OCCF)C1C2CCC(CC1c1ccc(Br)cc1)N2,CHEMBL186119,9.62
|
| 95 |
+
O=C(OCCF)C1C2CCC(CC1c1ccc(I)cc1)N2,CHEMBL186306,9.74
|
| 96 |
+
O=C(OCCF)C1C(c2ccc(Br)cc2)CC2CCC1N2CCCF,CHEMBL184123,7.74
|
| 97 |
+
CN1C2CCC1C(C(=O)NCCF)C(c1ccc(Br)cc1)C2,CHEMBL365413,7.41
|
| 98 |
+
CN1C2CCC1C(C(=O)NCCF)C(c1ccc(I)cc1)C2,CHEMBL183259,7.51
|
| 99 |
+
COC(=O)C1C2CCC(CC1c1ccc(Br)cc1)N2,CHEMBL365623,9.02
|
| 100 |
+
COC(=O)C1C2CCC(CC1c1ccc(-c3ccco3)cc1)N2,CHEMBL200044,9.82
|
| 101 |
+
COC(=O)C1C(c2ccc(-c3ccoc3)cc2)CC2CCC1N2C,CHEMBL200698,9.46
|
| 102 |
+
COC(=O)C1C(c2ccc(-c3ccco3)cc2)CC2CCC1N2C,CHEMBL199704,8.95
|
| 103 |
+
COC(=O)C1C(c2ccc(-c3nccs3)cc2)CC2CCC1N2C,CHEMBL382943,8.78
|
| 104 |
+
COC(=O)C1C(c2ccc(-c3cccnc3)cc2)CC2CCC1N2C,CHEMBL199634,8.45
|
| 105 |
+
COC(=O)C1C2CCC(CC1c1ccc(-c3nccs3)cc1)N2,CHEMBL381418,8.29
|
| 106 |
+
COC(=O)C1C(c2ccc(-c3cnccn3)cc2)CC2CCC1N2C,CHEMBL383572,7.95
|
| 107 |
+
COC(=O)C1C(c2ccc(-c3cncnc3)cc2)CC2CCC1N2C,CHEMBL372121,7.48
|
| 108 |
+
COC(=O)C1C(c2ccc(-c3ccccn3)cc2)CC2CCC1N2C,CHEMBL199407,6.79
|
| 109 |
+
COC(=O)[C@@H]1C2CCC(C[C@@H]1c1ccc(Br)cc1)N2C,CHEMBL218082,8.39
|
lynxkite-app/web/src/workspace/nodes/NodeWithImage.tsx
CHANGED
|
@@ -3,7 +3,7 @@ import { NodeWithParams } from "./NodeWithParams";
|
|
| 3 |
|
| 4 |
const NodeWithImage = (props: any) => {
|
| 5 |
return (
|
| 6 |
-
<NodeWithParams {...props}>
|
| 7 |
{props.data.display && <img src={props.data.display} alt="Node Display" />}
|
| 8 |
</NodeWithParams>
|
| 9 |
);
|
|
|
|
| 3 |
|
| 4 |
const NodeWithImage = (props: any) => {
|
| 5 |
return (
|
| 6 |
+
<NodeWithParams collapsed {...props}>
|
| 7 |
{props.data.display && <img src={props.data.display} alt="Node Display" />}
|
| 8 |
</NodeWithParams>
|
| 9 |
);
|
lynxkite-core/src/lynxkite/core/ops.py
CHANGED
|
@@ -129,7 +129,7 @@ class Result:
|
|
| 129 |
`input_metadata` is a list of JSON objects describing each input.
|
| 130 |
"""
|
| 131 |
|
| 132 |
-
output: typing.Any = None
|
| 133 |
display: ReadOnlyJSON | None = None
|
| 134 |
error: str | None = None
|
| 135 |
input_metadata: ReadOnlyJSON | None = None
|
|
@@ -187,7 +187,6 @@ class Op(BaseConfig):
|
|
| 187 |
res = self.func(*inputs, **params)
|
| 188 |
if not isinstance(res, Result):
|
| 189 |
# Automatically wrap the result in a Result object, if it isn't already.
|
| 190 |
-
res = Result(output=res)
|
| 191 |
if self.type in [
|
| 192 |
"visualization",
|
| 193 |
"table_view",
|
|
@@ -195,9 +194,10 @@ class Op(BaseConfig):
|
|
| 195 |
"image",
|
| 196 |
"molecule",
|
| 197 |
]:
|
| 198 |
-
# If the operation is
|
| 199 |
-
|
| 200 |
-
|
|
|
|
| 201 |
return res
|
| 202 |
|
| 203 |
def get_input(self, name: str):
|
|
@@ -237,6 +237,10 @@ def op(
|
|
| 237 |
|
| 238 |
def decorator(func):
|
| 239 |
sig = inspect.signature(func)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 240 |
if slow:
|
| 241 |
func = mem.cache(func)
|
| 242 |
func = _global_slow(func)
|
|
@@ -256,10 +260,6 @@ def op(
|
|
| 256 |
_outputs = [Output(name=name, type=None) for name in outputs]
|
| 257 |
else:
|
| 258 |
_outputs = [Output(name="output", type=None)] if view == "basic" else []
|
| 259 |
-
_view = view
|
| 260 |
-
if view == "matplotlib":
|
| 261 |
-
_view = "image"
|
| 262 |
-
func = matplotlib_to_image(func)
|
| 263 |
op = Op(
|
| 264 |
func=func,
|
| 265 |
name=name,
|
|
|
|
| 129 |
`input_metadata` is a list of JSON objects describing each input.
|
| 130 |
"""
|
| 131 |
|
| 132 |
+
output: typing.Any | None = None
|
| 133 |
display: ReadOnlyJSON | None = None
|
| 134 |
error: str | None = None
|
| 135 |
input_metadata: ReadOnlyJSON | None = None
|
|
|
|
| 187 |
res = self.func(*inputs, **params)
|
| 188 |
if not isinstance(res, Result):
|
| 189 |
# Automatically wrap the result in a Result object, if it isn't already.
|
|
|
|
| 190 |
if self.type in [
|
| 191 |
"visualization",
|
| 192 |
"table_view",
|
|
|
|
| 194 |
"image",
|
| 195 |
"molecule",
|
| 196 |
]:
|
| 197 |
+
# If the operation is a visualization, we use the returned value for display.
|
| 198 |
+
res = Result(display=res)
|
| 199 |
+
else:
|
| 200 |
+
res = Result(output=res)
|
| 201 |
return res
|
| 202 |
|
| 203 |
def get_input(self, name: str):
|
|
|
|
| 237 |
|
| 238 |
def decorator(func):
|
| 239 |
sig = inspect.signature(func)
|
| 240 |
+
_view = view
|
| 241 |
+
if view == "matplotlib":
|
| 242 |
+
_view = "image"
|
| 243 |
+
func = matplotlib_to_image(func)
|
| 244 |
if slow:
|
| 245 |
func = mem.cache(func)
|
| 246 |
func = _global_slow(func)
|
|
|
|
| 260 |
_outputs = [Output(name=name, type=None) for name in outputs]
|
| 261 |
else:
|
| 262 |
_outputs = [Output(name="output", type=None)] if view == "basic" else []
|
|
|
|
|
|
|
|
|
|
|
|
|
| 263 |
op = Op(
|
| 264 |
func=func,
|
| 265 |
name=name,
|
lynxkite-core/src/lynxkite/core/workspace.py
CHANGED
|
@@ -65,10 +65,14 @@ class WorkspaceNode(BaseConfig):
|
|
| 65 |
self.data.status = NodeStatus.done
|
| 66 |
if hasattr(self, "_crdt"):
|
| 67 |
with self._crdt.doc.transaction():
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
|
| 73 |
def publish_error(self, error: Exception | str | None):
|
| 74 |
"""Can be called with None to clear the error state."""
|
|
@@ -176,7 +180,6 @@ class Workspace(BaseConfig):
|
|
| 176 |
# If the node is connected to a CRDT, update that too.
|
| 177 |
if hasattr(node, "_crdt"):
|
| 178 |
node._crdt["data"]["meta"] = op.model_dump()
|
| 179 |
-
print("set metadata to", op)
|
| 180 |
if node.type != op.type:
|
| 181 |
node.type = op.type
|
| 182 |
if hasattr(node, "_crdt"):
|
|
|
|
| 65 |
self.data.status = NodeStatus.done
|
| 66 |
if hasattr(self, "_crdt"):
|
| 67 |
with self._crdt.doc.transaction():
|
| 68 |
+
try:
|
| 69 |
+
self._crdt["data"]["status"] = NodeStatus.done
|
| 70 |
+
self._crdt["data"]["display"] = self.data.display
|
| 71 |
+
self._crdt["data"]["input_metadata"] = self.data.input_metadata
|
| 72 |
+
self._crdt["data"]["error"] = self.data.error
|
| 73 |
+
except Exception as e:
|
| 74 |
+
self._crdt["data"]["error"] = str(e)
|
| 75 |
+
raise e
|
| 76 |
|
| 77 |
def publish_error(self, error: Exception | str | None):
|
| 78 |
"""Can be called with None to clear the error state."""
|
|
|
|
| 180 |
# If the node is connected to a CRDT, update that too.
|
| 181 |
if hasattr(node, "_crdt"):
|
| 182 |
node._crdt["data"]["meta"] = op.model_dump()
|
|
|
|
| 183 |
if node.type != op.type:
|
| 184 |
node.type = op.type
|
| 185 |
if hasattr(node, "_crdt"):
|
lynxkite-core/tests/test_ops.py
CHANGED
|
@@ -104,4 +104,4 @@ def test_visualization_operations_display_is_populated_automatically():
|
|
| 104 |
|
| 105 |
result = ops.CATALOGS["test"]["display_op"]()
|
| 106 |
assert isinstance(result, ops.Result)
|
| 107 |
-
assert result.
|
|
|
|
| 104 |
|
| 105 |
result = ops.CATALOGS["test"]["display_op"]()
|
| 106 |
assert isinstance(result, ops.Result)
|
| 107 |
+
assert result.display == {"display_value": 1}
|
lynxkite-graph-analytics/src/lynxkite_graph_analytics/core.py
CHANGED
|
@@ -222,6 +222,7 @@ async def _execute_node(node, ws, catalog, outputs):
|
|
| 222 |
try:
|
| 223 |
result = op(*inputs, **params)
|
| 224 |
result.output = await await_if_needed(result.output)
|
|
|
|
| 225 |
except Exception as e:
|
| 226 |
if not os.environ.get("LYNXKITE_SUPPRESS_OP_ERRORS"):
|
| 227 |
traceback.print_exc()
|
|
|
|
| 222 |
try:
|
| 223 |
result = op(*inputs, **params)
|
| 224 |
result.output = await await_if_needed(result.output)
|
| 225 |
+
result.display = await await_if_needed(result.display)
|
| 226 |
except Exception as e:
|
| 227 |
if not os.environ.get("LYNXKITE_SUPPRESS_OP_ERRORS"):
|
| 228 |
traceback.print_exc()
|