diff --git a/.gitignore b/.gitignore index 5dad1c22749d0db6dcf062e37e499a40e957cd38..34eb06dc4fbec382ac9b7a11474e5d309884dfa1 100644 --- a/.gitignore +++ b/.gitignore @@ -9,6 +9,3 @@ *.sln *.sw? __pycache__ - -# LynxKite data directory. -/data diff --git a/data/Graph RAG b/data/Graph RAG new file mode 100644 index 0000000000000000000000000000000000000000..df32d31ec368d0b929b623a6f28cb3100aed538f --- /dev/null +++ b/data/Graph RAG @@ -0,0 +1,2917 @@ +{ + "env": "LLM logic", + "nodes": [ + { + "id": "Input 1", + "type": "basic", + "data": { + "title": "Input", + "params": { + "filename": "/Users/danieldarabos/Downloads/aimo-train.csv", + "key": "problem" + }, + "display": null, + "error": null, + "meta": { + "name": "Input", + "params": { + "filename": { + "name": "filename", + "default": null, + "type": { + "format": "path" + } + }, + "key": { + "name": "key", + "default": null, + "type": { + "type": "" + } + } + }, + "inputs": {}, + "outputs": { + "output": { + "name": "output", + "type": { + "type": "None" + }, + "position": "right" + } + }, + "type": "basic", + "sub_nodes": null + } + }, + "position": { + "x": -663.9814415296167, + "y": -24.673405923964822 + }, + "parentId": null, + "width": 259, + "height": 478 + }, + { + "id": "Create prompt 1", + "type": "basic", + "data": { + "title": "Create prompt", + "params": { + "save_as": "prompt", + "template": "Similar problems:\n\n {% for item in rag %}\n{{ item.text }}\n{% endfor %}\n\nWhat would be the first step of solving the following problem? {{text}}" + }, + "display": null, + "error": null, + "meta": { + "name": "Create prompt", + "params": { + "save_as": { + "name": "save_as", + "default": "prompt", + "type": { + "type": "" + } + }, + "template": { + "name": "template", + "default": null, + "type": { + "format": "textarea" + } + } + }, + "inputs": { + "input": { + "name": "input", + "type": { + "type": "" + }, + "position": "left" + } + }, + "outputs": { + "output": { + "name": "output", + "type": { + "type": "None" + }, + "position": "right" + } + }, + "type": "basic", + "sub_nodes": null + }, + "beingResized": false, + "collapsed": false + }, + "position": { + "x": 92.48251817426697, + "y": 2.986072034314958 + }, + "parentId": null, + "width": 300, + "height": 328 + }, + { + "id": "Create prompt 2", + "type": "basic", + "data": { + "title": "Create prompt", + "params": { + "save_as": "prompt", + "template": "Is this a nice solution? {{response}}" + }, + "display": null, + "error": null, + "meta": { + "name": "Create prompt", + "params": { + "save_as": { + "name": "save_as", + "default": "prompt", + "type": { + "type": "" + } + }, + "template": { + "name": "template", + "default": null, + "type": { + "format": "textarea" + } + } + }, + "inputs": { + "input": { + "name": "input", + "type": { + "type": "" + }, + "position": "left" + } + }, + "outputs": { + "output": { + "name": "output", + "type": { + "type": "None" + }, + "position": "right" + } + }, + "type": "basic", + "sub_nodes": null + } + }, + "position": { + "x": 863.0737654843731, + "y": -68.00791743959714 + }, + "parentId": null + }, + { + "id": "View 3", + "type": "table_view", + "data": { + "title": "View", + "params": {}, + "display": { + "dataframes": { + "df": { + "columns": [ + "id", + "text", + "answer", + "rag", + "prompt", + "response" + ], + "data": [ + [ + "229ee8", + "Let $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?", + 52, + [ + { + "id": "229ee8", + "text": "Let $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?", + "answer": 52, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?." + }, + { + "id": "430b63", + "text": "What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?", + "answer": 800, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nWhat is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?." + }, + { + "id": "bedda4", + "text": "Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.", + "answer": 480, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.." + }, + { + "id": "8ee6f3", + "text": "The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?", + "answer": 320, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nThe points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?." + }, + { + "id": "739bc9", + "text": "For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?", + "answer": 199, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nFor how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?." + }, + { + "id": "5277ed", + "text": "There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?", + "answer": 211, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nThere exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?." + }, + { + "id": "82e2a0", + "text": "Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.", + "answer": 185, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nSuppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.." + }, + { + "id": "246d26", + "text": "Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?", + "answer": 250, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nEach of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?." + }, + { + "id": "2fc4ad", + "text": "Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?", + "answer": 702, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?." + }, + { + "id": "d7e9c9", + "text": "A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.", + "answer": 199, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nA function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.." + } + ], + "Is this a nice solution? 0.7139497827292313", + "0.19053007335807304" + ], + [ + "246d26", + "Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?", + 250, + [ + { + "id": "246d26", + "text": "Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?", + "answer": 250, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nEach of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?." + }, + { + "id": "2fc4ad", + "text": "Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?", + "answer": 702, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?." + }, + { + "id": "5277ed", + "text": "There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?", + "answer": 211, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nThere exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?." + }, + { + "id": "739bc9", + "text": "For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?", + "answer": 199, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nFor how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?." + }, + { + "id": "d7e9c9", + "text": "A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.", + "answer": 199, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nA function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.." + }, + { + "id": "8ee6f3", + "text": "The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?", + "answer": 320, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nThe points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?." + }, + { + "id": "82e2a0", + "text": "Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.", + "answer": 185, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nSuppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.." + }, + { + "id": "229ee8", + "text": "Let $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?", + "answer": 52, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?." + }, + { + "id": "430b63", + "text": "What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?", + "answer": 800, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nWhat is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?." + }, + { + "id": "bedda4", + "text": "Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.", + "answer": 480, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.." + } + ], + "Is this a nice solution? 0.07328817086993833", + "0.7216846012621502" + ], + [ + "2fc4ad", + "Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?", + 702, + [ + { + "id": "2fc4ad", + "text": "Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?", + "answer": 702, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?." + }, + { + "id": "246d26", + "text": "Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?", + "answer": 250, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nEach of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?." + }, + { + "id": "5277ed", + "text": "There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?", + "answer": 211, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nThere exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?." + }, + { + "id": "d7e9c9", + "text": "A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.", + "answer": 199, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nA function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.." + }, + { + "id": "82e2a0", + "text": "Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.", + "answer": 185, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nSuppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.." + }, + { + "id": "739bc9", + "text": "For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?", + "answer": 199, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nFor how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?." + }, + { + "id": "229ee8", + "text": "Let $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?", + "answer": 52, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?." + }, + { + "id": "430b63", + "text": "What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?", + "answer": 800, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nWhat is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?." + }, + { + "id": "8ee6f3", + "text": "The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?", + "answer": 320, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nThe points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?." + }, + { + "id": "bedda4", + "text": "Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.", + "answer": 480, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.." + } + ], + "Is this a nice solution? 0.032316140702087215", + "0.17170311684440376" + ], + [ + "430b63", + "What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?", + 800, + [ + { + "id": "430b63", + "text": "What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?", + "answer": 800, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nWhat is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?." + }, + { + "id": "229ee8", + "text": "Let $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?", + "answer": 52, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?." + }, + { + "id": "bedda4", + "text": "Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.", + "answer": 480, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.." + }, + { + "id": "8ee6f3", + "text": "The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?", + "answer": 320, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nThe points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?." + }, + { + "id": "739bc9", + "text": "For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?", + "answer": 199, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nFor how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?." + }, + { + "id": "d7e9c9", + "text": "A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.", + "answer": 199, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nA function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.." + }, + { + "id": "5277ed", + "text": "There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?", + "answer": 211, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nThere exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?." + }, + { + "id": "82e2a0", + "text": "Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.", + "answer": 185, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nSuppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.." + }, + { + "id": "246d26", + "text": "Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?", + "answer": 250, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nEach of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?." + }, + { + "id": "2fc4ad", + "text": "Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?", + "answer": 702, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?." + } + ], + "Is this a nice solution? 0.31766897160862206", + "0.19256153092019734" + ], + [ + "5277ed", + "There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?", + 211, + [ + { + "id": "5277ed", + "text": "There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?", + "answer": 211, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nThere exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?." + }, + { + "id": "246d26", + "text": "Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?", + "answer": 250, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nEach of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?." + }, + { + "id": "2fc4ad", + "text": "Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?", + "answer": 702, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?." + }, + { + "id": "82e2a0", + "text": "Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.", + "answer": 185, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nSuppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.." + }, + { + "id": "d7e9c9", + "text": "A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.", + "answer": 199, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nA function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.." + }, + { + "id": "8ee6f3", + "text": "The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?", + "answer": 320, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nThe points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?." + }, + { + "id": "739bc9", + "text": "For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?", + "answer": 199, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nFor how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?." + }, + { + "id": "430b63", + "text": "What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?", + "answer": 800, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nWhat is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?." + }, + { + "id": "229ee8", + "text": "Let $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?", + "answer": 52, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?." + }, + { + "id": "bedda4", + "text": "Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.", + "answer": 480, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.." + } + ], + "Is this a nice solution? 0.9811958281016008", + "0.8688809804290338" + ], + [ + "739bc9", + "For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?", + 199, + [ + { + "id": "739bc9", + "text": "For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?", + "answer": 199, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nFor how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?." + }, + { + "id": "d7e9c9", + "text": "A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.", + "answer": 199, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nA function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.." + }, + { + "id": "430b63", + "text": "What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?", + "answer": 800, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nWhat is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?." + }, + { + "id": "246d26", + "text": "Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?", + "answer": 250, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nEach of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?." + }, + { + "id": "2fc4ad", + "text": "Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?", + "answer": 702, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?." + }, + { + "id": "5277ed", + "text": "There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?", + "answer": 211, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nThere exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?." + }, + { + "id": "8ee6f3", + "text": "The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?", + "answer": 320, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nThe points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?." + }, + { + "id": "229ee8", + "text": "Let $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?", + "answer": 52, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?." + }, + { + "id": "bedda4", + "text": "Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.", + "answer": 480, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.." + }, + { + "id": "82e2a0", + "text": "Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.", + "answer": 185, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nSuppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.." + } + ], + "Is this a nice solution? 0.38108403438574845", + "0.09979627018489712" + ], + [ + "82e2a0", + "Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.", + 185, + [ + { + "id": "82e2a0", + "text": "Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.", + "answer": 185, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nSuppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.." + }, + { + "id": "5277ed", + "text": "There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?", + "answer": 211, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nThere exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?." + }, + { + "id": "2fc4ad", + "text": "Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?", + "answer": 702, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?." + }, + { + "id": "bedda4", + "text": "Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.", + "answer": 480, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.." + }, + { + "id": "246d26", + "text": "Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?", + "answer": 250, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nEach of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?." + }, + { + "id": "229ee8", + "text": "Let $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?", + "answer": 52, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?." + }, + { + "id": "430b63", + "text": "What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?", + "answer": 800, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nWhat is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?." + }, + { + "id": "8ee6f3", + "text": "The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?", + "answer": 320, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nThe points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?." + }, + { + "id": "739bc9", + "text": "For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?", + "answer": 199, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nFor how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?." + }, + { + "id": "d7e9c9", + "text": "A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.", + "answer": 199, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nA function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.." + } + ], + "Is this a nice solution? 0.42948749188004376", + "0.772154996120189" + ], + [ + "8ee6f3", + "The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?", + 320, + [ + { + "id": "8ee6f3", + "text": "The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?", + "answer": 320, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nThe points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?." + }, + { + "id": "bedda4", + "text": "Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.", + "answer": 480, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.." + }, + { + "id": "430b63", + "text": "What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?", + "answer": 800, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nWhat is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?." + }, + { + "id": "5277ed", + "text": "There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?", + "answer": 211, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nThere exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?." + }, + { + "id": "229ee8", + "text": "Let $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?", + "answer": 52, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?." + }, + { + "id": "246d26", + "text": "Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?", + "answer": 250, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nEach of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?." + }, + { + "id": "739bc9", + "text": "For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?", + "answer": 199, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nFor how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?." + }, + { + "id": "82e2a0", + "text": "Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.", + "answer": 185, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nSuppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.." + }, + { + "id": "d7e9c9", + "text": "A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.", + "answer": 199, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nA function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.." + }, + { + "id": "2fc4ad", + "text": "Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?", + "answer": 702, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?." + } + ], + "Is this a nice solution? 0.3487100303819337", + "0.5386589252803151" + ], + [ + "bedda4", + "Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.", + 480, + [ + { + "id": "bedda4", + "text": "Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.", + "answer": 480, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.." + }, + { + "id": "8ee6f3", + "text": "The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?", + "answer": 320, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nThe points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?." + }, + { + "id": "430b63", + "text": "What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?", + "answer": 800, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nWhat is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?." + }, + { + "id": "229ee8", + "text": "Let $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?", + "answer": 52, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?." + }, + { + "id": "82e2a0", + "text": "Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.", + "answer": 185, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nSuppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.." + }, + { + "id": "5277ed", + "text": "There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?", + "answer": 211, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nThere exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?." + }, + { + "id": "739bc9", + "text": "For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?", + "answer": 199, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nFor how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?." + }, + { + "id": "2fc4ad", + "text": "Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?", + "answer": 702, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?." + }, + { + "id": "246d26", + "text": "Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?", + "answer": 250, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nEach of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?." + }, + { + "id": "d7e9c9", + "text": "A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.", + "answer": 199, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nA function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.." + } + ], + "Is this a nice solution? 0.192928132428547", + "0.5589770560628611" + ], + [ + "d7e9c9", + "A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.", + 199, + [ + { + "id": "d7e9c9", + "text": "A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.", + "answer": 199, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nA function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.." + }, + { + "id": "739bc9", + "text": "For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?", + "answer": 199, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nFor how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?." + }, + { + "id": "2fc4ad", + "text": "Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?", + "answer": 702, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?." + }, + { + "id": "5277ed", + "text": "There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?", + "answer": 211, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nThere exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?." + }, + { + "id": "246d26", + "text": "Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?", + "answer": 250, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nEach of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?." + }, + { + "id": "430b63", + "text": "What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?", + "answer": 800, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nWhat is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?." + }, + { + "id": "8ee6f3", + "text": "The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?", + "answer": 320, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nThe points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?." + }, + { + "id": "229ee8", + "text": "Let $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?", + "answer": 52, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?." + }, + { + "id": "82e2a0", + "text": "Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.", + "answer": 185, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nSuppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.." + }, + { + "id": "bedda4", + "text": "Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.", + "answer": 480, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.." + } + ], + "Is this a nice solution? 0.20024247107489412", + "0.3107009777355463" + ], + [ + "246d26", + "Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?", + 250, + [ + { + "id": "246d26", + "text": "Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?", + "answer": 250, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nEach of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?." + }, + { + "id": "2fc4ad", + "text": "Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?", + "answer": 702, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?." + }, + { + "id": "5277ed", + "text": "There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?", + "answer": 211, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nThere exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?." + }, + { + "id": "739bc9", + "text": "For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?", + "answer": 199, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nFor how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?." + }, + { + "id": "d7e9c9", + "text": "A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.", + "answer": 199, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nA function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.." + }, + { + "id": "8ee6f3", + "text": "The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?", + "answer": 320, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nThe points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?." + }, + { + "id": "82e2a0", + "text": "Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.", + "answer": 185, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nSuppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.." + }, + { + "id": "229ee8", + "text": "Let $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?", + "answer": 52, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?." + }, + { + "id": "430b63", + "text": "What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?", + "answer": 800, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nWhat is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?." + }, + { + "id": "bedda4", + "text": "Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.", + "answer": 480, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.." + } + ], + "Is this a nice solution? 0.07328817086993833", + "0.7216846012621502" + ], + [ + "2fc4ad", + "Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?", + 702, + [ + { + "id": "2fc4ad", + "text": "Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?", + "answer": 702, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?." + }, + { + "id": "246d26", + "text": "Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?", + "answer": 250, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nEach of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?." + }, + { + "id": "5277ed", + "text": "There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?", + "answer": 211, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nThere exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?." + }, + { + "id": "d7e9c9", + "text": "A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.", + "answer": 199, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nA function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.." + }, + { + "id": "82e2a0", + "text": "Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.", + "answer": 185, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nSuppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.." + }, + { + "id": "739bc9", + "text": "For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?", + "answer": 199, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nFor how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?." + }, + { + "id": "229ee8", + "text": "Let $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?", + "answer": 52, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?." + }, + { + "id": "430b63", + "text": "What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?", + "answer": 800, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nWhat is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?." + }, + { + "id": "8ee6f3", + "text": "The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?", + "answer": 320, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nThe points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?." + }, + { + "id": "bedda4", + "text": "Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.", + "answer": 480, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.." + } + ], + "Is this a nice solution? 0.032316140702087215", + "0.17170311684440376" + ], + [ + "430b63", + "What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?", + 800, + [ + { + "id": "430b63", + "text": "What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?", + "answer": 800, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nWhat is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?." + }, + { + "id": "229ee8", + "text": "Let $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?", + "answer": 52, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?." + }, + { + "id": "bedda4", + "text": "Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.", + "answer": 480, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.." + }, + { + "id": "8ee6f3", + "text": "The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?", + "answer": 320, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nThe points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?." + }, + { + "id": "739bc9", + "text": "For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?", + "answer": 199, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nFor how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?." + }, + { + "id": "d7e9c9", + "text": "A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.", + "answer": 199, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nA function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.." + }, + { + "id": "5277ed", + "text": "There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?", + "answer": 211, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nThere exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?." + }, + { + "id": "82e2a0", + "text": "Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.", + "answer": 185, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nSuppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.." + }, + { + "id": "246d26", + "text": "Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?", + "answer": 250, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nEach of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?." + }, + { + "id": "2fc4ad", + "text": "Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?", + "answer": 702, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?." + } + ], + "Is this a nice solution? 0.31766897160862206", + "0.19256153092019734" + ], + [ + "5277ed", + "There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?", + 211, + [ + { + "id": "5277ed", + "text": "There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?", + "answer": 211, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nThere exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?." + }, + { + "id": "246d26", + "text": "Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?", + "answer": 250, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nEach of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?." + }, + { + "id": "2fc4ad", + "text": "Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?", + "answer": 702, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?." + }, + { + "id": "82e2a0", + "text": "Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.", + "answer": 185, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nSuppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.." + }, + { + "id": "d7e9c9", + "text": "A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.", + "answer": 199, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nA function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.." + }, + { + "id": "8ee6f3", + "text": "The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?", + "answer": 320, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nThe points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?." + }, + { + "id": "739bc9", + "text": "For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?", + "answer": 199, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nFor how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?." + }, + { + "id": "430b63", + "text": "What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?", + "answer": 800, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nWhat is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?." + }, + { + "id": "229ee8", + "text": "Let $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?", + "answer": 52, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?." + }, + { + "id": "bedda4", + "text": "Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.", + "answer": 480, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.." + } + ], + "Is this a nice solution? 0.9811958281016008", + "0.8688809804290338" + ], + [ + "739bc9", + "For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?", + 199, + [ + { + "id": "739bc9", + "text": "For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?", + "answer": 199, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nFor how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?." + }, + { + "id": "d7e9c9", + "text": "A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.", + "answer": 199, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nA function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.." + }, + { + "id": "430b63", + "text": "What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?", + "answer": 800, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nWhat is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?." + }, + { + "id": "246d26", + "text": "Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?", + "answer": 250, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nEach of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?." + }, + { + "id": "2fc4ad", + "text": "Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?", + "answer": 702, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?." + }, + { + "id": "5277ed", + "text": "There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?", + "answer": 211, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nThere exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?." + }, + { + "id": "8ee6f3", + "text": "The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?", + "answer": 320, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nThe points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?." + }, + { + "id": "229ee8", + "text": "Let $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?", + "answer": 52, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?." + }, + { + "id": "bedda4", + "text": "Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.", + "answer": 480, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.." + }, + { + "id": "82e2a0", + "text": "Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.", + "answer": 185, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nSuppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.." + } + ], + "Is this a nice solution? 0.38108403438574845", + "0.09979627018489712" + ], + [ + "82e2a0", + "Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.", + 185, + [ + { + "id": "82e2a0", + "text": "Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.", + "answer": 185, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nSuppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.." + }, + { + "id": "5277ed", + "text": "There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?", + "answer": 211, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nThere exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?." + }, + { + "id": "2fc4ad", + "text": "Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?", + "answer": 702, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?." + }, + { + "id": "bedda4", + "text": "Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.", + "answer": 480, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.." + }, + { + "id": "246d26", + "text": "Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?", + "answer": 250, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nEach of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?." + }, + { + "id": "229ee8", + "text": "Let $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?", + "answer": 52, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?." + }, + { + "id": "430b63", + "text": "What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?", + "answer": 800, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nWhat is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?." + }, + { + "id": "8ee6f3", + "text": "The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?", + "answer": 320, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nThe points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?." + }, + { + "id": "739bc9", + "text": "For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?", + "answer": 199, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nFor how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?." + }, + { + "id": "d7e9c9", + "text": "A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.", + "answer": 199, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nA function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.." + } + ], + "Is this a nice solution? 0.42948749188004376", + "0.772154996120189" + ], + [ + "8ee6f3", + "The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?", + 320, + [ + { + "id": "8ee6f3", + "text": "The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?", + "answer": 320, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nThe points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?." + }, + { + "id": "bedda4", + "text": "Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.", + "answer": 480, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.." + }, + { + "id": "430b63", + "text": "What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?", + "answer": 800, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nWhat is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?." + }, + { + "id": "5277ed", + "text": "There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?", + "answer": 211, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nThere exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?." + }, + { + "id": "229ee8", + "text": "Let $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?", + "answer": 52, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?." + }, + { + "id": "246d26", + "text": "Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?", + "answer": 250, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nEach of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?." + }, + { + "id": "739bc9", + "text": "For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?", + "answer": 199, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nFor how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?." + }, + { + "id": "82e2a0", + "text": "Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.", + "answer": 185, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nSuppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.." + }, + { + "id": "d7e9c9", + "text": "A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.", + "answer": 199, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nA function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.." + }, + { + "id": "2fc4ad", + "text": "Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?", + "answer": 702, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?." + } + ], + "Is this a nice solution? 0.3487100303819337", + "0.5386589252803151" + ], + [ + "bedda4", + "Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.", + 480, + [ + { + "id": "bedda4", + "text": "Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.", + "answer": 480, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.." + }, + { + "id": "8ee6f3", + "text": "The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?", + "answer": 320, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nThe points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?." + }, + { + "id": "430b63", + "text": "What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?", + "answer": 800, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nWhat is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?." + }, + { + "id": "229ee8", + "text": "Let $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?", + "answer": 52, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?." + }, + { + "id": "82e2a0", + "text": "Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.", + "answer": 185, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nSuppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.." + }, + { + "id": "5277ed", + "text": "There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?", + "answer": 211, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nThere exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?." + }, + { + "id": "739bc9", + "text": "For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?", + "answer": 199, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nFor how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?." + }, + { + "id": "2fc4ad", + "text": "Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?", + "answer": 702, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?." + }, + { + "id": "246d26", + "text": "Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?", + "answer": 250, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nEach of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?." + }, + { + "id": "d7e9c9", + "text": "A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.", + "answer": 199, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nA function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.." + } + ], + "Is this a nice solution? 0.192928132428547", + "0.5589770560628611" + ], + [ + "d7e9c9", + "A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.", + 199, + [ + { + "id": "d7e9c9", + "text": "A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.", + "answer": 199, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nA function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.." + }, + { + "id": "739bc9", + "text": "For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?", + "answer": 199, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nFor how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?." + }, + { + "id": "2fc4ad", + "text": "Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?", + "answer": 702, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?." + }, + { + "id": "5277ed", + "text": "There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?", + "answer": 211, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nThere exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?." + }, + { + "id": "246d26", + "text": "Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?", + "answer": 250, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nEach of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?." + }, + { + "id": "430b63", + "text": "What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?", + "answer": 800, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nWhat is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?." + }, + { + "id": "8ee6f3", + "text": "The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?", + "answer": 320, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nThe points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?." + }, + { + "id": "229ee8", + "text": "Let $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?", + "answer": 52, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?." + }, + { + "id": "82e2a0", + "text": "Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.", + "answer": 185, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nSuppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.." + }, + { + "id": "bedda4", + "text": "Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.", + "answer": 480, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.." + } + ], + "Is this a nice solution? 0.20024247107489412", + "0.3107009777355463" + ] + ] + } + } + }, + "error": null, + "meta": { + "name": "View", + "params": {}, + "inputs": { + "input": { + "name": "input", + "type": { + "type": "" + }, + "position": "left" + } + }, + "outputs": {}, + "type": "table_view", + "sub_nodes": null + }, + "view": { + "dataframes": { + "df": { + "columns": [ + "id", + "text", + "answer", + "prompt", + "response" + ], + "data": [ + [ + "229ee8", + "Let $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?", + 52, + "Is this a nice solution? To solve the given problem, the first step would", + "no" + ], + [ + "246d26", + "Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?", + 250, + "Is this a nice solution? To solve the given problem, the first step would", + "no" + ], + [ + "2fc4ad", + "Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?", + 702, + "Is this a nice solution? To solve the given problem, the first step would", + "no" + ], + [ + "430b63", + "What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?", + 800, + "Is this a nice solution? To solve the given problem, the first step would", + "no" + ], + [ + "5277ed", + "There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?", + 211, + "Is this a nice solution? To solve the given problem, the first step would", + "no" + ], + [ + "739bc9", + "For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?", + 199, + "Is this a nice solution? To solve the given problem, the first step would", + "no" + ], + [ + "82e2a0", + "Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.", + 185, + "Is this a nice solution? To solve the given problem, the first step would", + "no" + ], + [ + "8ee6f3", + "The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?", + 320, + "Is this a nice solution? To solve the given problem, the first step would", + "no" + ], + [ + "bedda4", + "Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.", + 480, + "Is this a nice solution? To solve the given problem, the first step would", + "no" + ], + [ + "d7e9c9", + "A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.", + 199, + "Is this a nice solution? To solve the given problem, the first step would", + "no" + ] + ] + } + } + }, + "beingResized": false + }, + "position": { + "x": 1611.9087959003862, + "y": 73.5764910384212 + }, + "parentId": null, + "width": 659, + "height": 346 + }, + { + "id": "View 2", + "type": "table_view", + "data": { + "title": "View", + "params": {}, + "display": { + "dataframes": { + "df": { + "columns": [ + "id", + "text", + "answer", + "rag", + "prompt" + ], + "data": [ + [ + "229ee8", + "Let $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?", + 52, + [ + { + "id": "229ee8", + "text": "Let $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?", + "answer": 52, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?." + }, + { + "id": "430b63", + "text": "What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?", + "answer": 800, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nWhat is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?." + }, + { + "id": "bedda4", + "text": "Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.", + "answer": 480, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.." + }, + { + "id": "8ee6f3", + "text": "The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?", + "answer": 320, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nThe points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?." + }, + { + "id": "739bc9", + "text": "For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?", + "answer": 199, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nFor how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?." + }, + { + "id": "5277ed", + "text": "There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?", + "answer": 211, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nThere exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?." + }, + { + "id": "82e2a0", + "text": "Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.", + "answer": 185, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nSuppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.." + }, + { + "id": "246d26", + "text": "Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?", + "answer": 250, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nEach of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?." + }, + { + "id": "2fc4ad", + "text": "Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?", + "answer": 702, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?." + }, + { + "id": "d7e9c9", + "text": "A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.", + "answer": 199, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nA function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.." + } + ], + "Similar problems:\n\n \nLet $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?\n\nWhat is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?\n\nLet $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.\n\nThe points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?\n\nFor how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?\n\nThere exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?\n\nSuppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.\n\nEach of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?\n\nLet the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?\n\nA function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.\n\n\nWhat would be the first step of solving the following problem? Let $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?" + ], + [ + "246d26", + "Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?", + 250, + [ + { + "id": "246d26", + "text": "Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?", + "answer": 250, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nEach of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?." + }, + { + "id": "2fc4ad", + "text": "Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?", + "answer": 702, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?." + }, + { + "id": "5277ed", + "text": "There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?", + "answer": 211, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nThere exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?." + }, + { + "id": "739bc9", + "text": "For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?", + "answer": 199, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nFor how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?." + }, + { + "id": "d7e9c9", + "text": "A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.", + "answer": 199, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nA function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.." + }, + { + "id": "8ee6f3", + "text": "The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?", + "answer": 320, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nThe points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?." + }, + { + "id": "82e2a0", + "text": "Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.", + "answer": 185, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nSuppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.." + }, + { + "id": "229ee8", + "text": "Let $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?", + "answer": 52, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?." + }, + { + "id": "430b63", + "text": "What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?", + "answer": 800, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nWhat is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?." + }, + { + "id": "bedda4", + "text": "Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.", + "answer": 480, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.." + } + ], + "Similar problems:\n\n \nEach of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?\n\nLet the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?\n\nThere exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?\n\nFor how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?\n\nA function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.\n\nThe points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?\n\nSuppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.\n\nLet $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?\n\nWhat is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?\n\nLet $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.\n\n\nWhat would be the first step of solving the following problem? Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?" + ], + [ + "2fc4ad", + "Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?", + 702, + [ + { + "id": "2fc4ad", + "text": "Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?", + "answer": 702, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?." + }, + { + "id": "246d26", + "text": "Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?", + "answer": 250, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nEach of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?." + }, + { + "id": "5277ed", + "text": "There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?", + "answer": 211, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nThere exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?." + }, + { + "id": "d7e9c9", + "text": "A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.", + "answer": 199, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nA function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.." + }, + { + "id": "82e2a0", + "text": "Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.", + "answer": 185, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nSuppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.." + }, + { + "id": "739bc9", + "text": "For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?", + "answer": 199, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nFor how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?." + }, + { + "id": "229ee8", + "text": "Let $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?", + "answer": 52, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?." + }, + { + "id": "430b63", + "text": "What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?", + "answer": 800, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nWhat is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?." + }, + { + "id": "8ee6f3", + "text": "The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?", + "answer": 320, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nThe points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?." + }, + { + "id": "bedda4", + "text": "Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.", + "answer": 480, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.." + } + ], + "Similar problems:\n\n \nLet the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?\n\nEach of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?\n\nThere exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?\n\nA function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.\n\nSuppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.\n\nFor how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?\n\nLet $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?\n\nWhat is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?\n\nThe points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?\n\nLet $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.\n\n\nWhat would be the first step of solving the following problem? Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?" + ], + [ + "430b63", + "What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?", + 800, + [ + { + "id": "430b63", + "text": "What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?", + "answer": 800, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nWhat is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?." + }, + { + "id": "229ee8", + "text": "Let $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?", + "answer": 52, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?." + }, + { + "id": "bedda4", + "text": "Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.", + "answer": 480, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.." + }, + { + "id": "8ee6f3", + "text": "The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?", + "answer": 320, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nThe points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?." + }, + { + "id": "739bc9", + "text": "For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?", + "answer": 199, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nFor how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?." + }, + { + "id": "d7e9c9", + "text": "A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.", + "answer": 199, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nA function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.." + }, + { + "id": "5277ed", + "text": "There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?", + "answer": 211, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nThere exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?." + }, + { + "id": "82e2a0", + "text": "Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.", + "answer": 185, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nSuppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.." + }, + { + "id": "246d26", + "text": "Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?", + "answer": 250, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nEach of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?." + }, + { + "id": "2fc4ad", + "text": "Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?", + "answer": 702, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?." + } + ], + "Similar problems:\n\n \nWhat is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?\n\nLet $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?\n\nLet $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.\n\nThe points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?\n\nFor how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?\n\nA function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.\n\nThere exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?\n\nSuppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.\n\nEach of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?\n\nLet the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?\n\n\nWhat would be the first step of solving the following problem? What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?" + ], + [ + "5277ed", + "There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?", + 211, + [ + { + "id": "5277ed", + "text": "There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?", + "answer": 211, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nThere exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?." + }, + { + "id": "246d26", + "text": "Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?", + "answer": 250, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nEach of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?." + }, + { + "id": "2fc4ad", + "text": "Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?", + "answer": 702, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?." + }, + { + "id": "82e2a0", + "text": "Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.", + "answer": 185, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nSuppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.." + }, + { + "id": "d7e9c9", + "text": "A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.", + "answer": 199, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nA function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.." + }, + { + "id": "8ee6f3", + "text": "The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?", + "answer": 320, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nThe points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?." + }, + { + "id": "739bc9", + "text": "For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?", + "answer": 199, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nFor how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?." + }, + { + "id": "430b63", + "text": "What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?", + "answer": 800, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nWhat is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?." + }, + { + "id": "229ee8", + "text": "Let $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?", + "answer": 52, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?." + }, + { + "id": "bedda4", + "text": "Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.", + "answer": 480, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.." + } + ], + "Similar problems:\n\n \nThere exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?\n\nEach of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?\n\nLet the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?\n\nSuppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.\n\nA function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.\n\nThe points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?\n\nFor how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?\n\nWhat is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?\n\nLet $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?\n\nLet $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.\n\n\nWhat would be the first step of solving the following problem? There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?" + ], + [ + "739bc9", + "For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?", + 199, + [ + { + "id": "739bc9", + "text": "For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?", + "answer": 199, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nFor how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?." + }, + { + "id": "d7e9c9", + "text": "A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.", + "answer": 199, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nA function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.." + }, + { + "id": "430b63", + "text": "What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?", + "answer": 800, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nWhat is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?." + }, + { + "id": "246d26", + "text": "Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?", + "answer": 250, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nEach of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?." + }, + { + "id": "2fc4ad", + "text": "Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?", + "answer": 702, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?." + }, + { + "id": "5277ed", + "text": "There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?", + "answer": 211, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nThere exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?." + }, + { + "id": "8ee6f3", + "text": "The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?", + "answer": 320, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nThe points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?." + }, + { + "id": "229ee8", + "text": "Let $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?", + "answer": 52, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?." + }, + { + "id": "bedda4", + "text": "Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.", + "answer": 480, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.." + }, + { + "id": "82e2a0", + "text": "Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.", + "answer": 185, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nSuppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.." + } + ], + "Similar problems:\n\n \nFor how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?\n\nA function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.\n\nWhat is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?\n\nEach of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?\n\nLet the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?\n\nThere exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?\n\nThe points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?\n\nLet $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?\n\nLet $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.\n\nSuppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.\n\n\nWhat would be the first step of solving the following problem? For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?" + ], + [ + "82e2a0", + "Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.", + 185, + [ + { + "id": "82e2a0", + "text": "Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.", + "answer": 185, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nSuppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.." + }, + { + "id": "5277ed", + "text": "There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?", + "answer": 211, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nThere exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?." + }, + { + "id": "2fc4ad", + "text": "Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?", + "answer": 702, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?." + }, + { + "id": "bedda4", + "text": "Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.", + "answer": 480, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.." + }, + { + "id": "246d26", + "text": "Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?", + "answer": 250, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nEach of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?." + }, + { + "id": "229ee8", + "text": "Let $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?", + "answer": 52, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?." + }, + { + "id": "430b63", + "text": "What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?", + "answer": 800, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nWhat is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?." + }, + { + "id": "8ee6f3", + "text": "The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?", + "answer": 320, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nThe points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?." + }, + { + "id": "739bc9", + "text": "For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?", + "answer": 199, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nFor how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?." + }, + { + "id": "d7e9c9", + "text": "A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.", + "answer": 199, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nA function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.." + } + ], + "Similar problems:\n\n \nSuppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.\n\nThere exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?\n\nLet the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?\n\nLet $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.\n\nEach of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?\n\nLet $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?\n\nWhat is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?\n\nThe points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?\n\nFor how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?\n\nA function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.\n\n\nWhat would be the first step of solving the following problem? Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$." + ], + [ + "8ee6f3", + "The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?", + 320, + [ + { + "id": "8ee6f3", + "text": "The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?", + "answer": 320, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nThe points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?." + }, + { + "id": "bedda4", + "text": "Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.", + "answer": 480, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.." + }, + { + "id": "430b63", + "text": "What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?", + "answer": 800, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nWhat is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?." + }, + { + "id": "5277ed", + "text": "There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?", + "answer": 211, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nThere exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?." + }, + { + "id": "229ee8", + "text": "Let $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?", + "answer": 52, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?." + }, + { + "id": "246d26", + "text": "Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?", + "answer": 250, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nEach of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?." + }, + { + "id": "739bc9", + "text": "For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?", + "answer": 199, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nFor how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?." + }, + { + "id": "82e2a0", + "text": "Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.", + "answer": 185, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nSuppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.." + }, + { + "id": "d7e9c9", + "text": "A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.", + "answer": 199, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nA function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.." + }, + { + "id": "2fc4ad", + "text": "Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?", + "answer": 702, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?." + } + ], + "Similar problems:\n\n \nThe points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?\n\nLet $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.\n\nWhat is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?\n\nThere exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?\n\nLet $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?\n\nEach of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?\n\nFor how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?\n\nSuppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.\n\nA function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.\n\nLet the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?\n\n\nWhat would be the first step of solving the following problem? The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?" + ], + [ + "bedda4", + "Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.", + 480, + [ + { + "id": "bedda4", + "text": "Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.", + "answer": 480, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.." + }, + { + "id": "8ee6f3", + "text": "The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?", + "answer": 320, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nThe points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?." + }, + { + "id": "430b63", + "text": "What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?", + "answer": 800, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nWhat is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?." + }, + { + "id": "229ee8", + "text": "Let $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?", + "answer": 52, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?." + }, + { + "id": "82e2a0", + "text": "Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.", + "answer": 185, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nSuppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.." + }, + { + "id": "5277ed", + "text": "There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?", + "answer": 211, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nThere exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?." + }, + { + "id": "739bc9", + "text": "For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?", + "answer": 199, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nFor how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?." + }, + { + "id": "2fc4ad", + "text": "Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?", + "answer": 702, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?." + }, + { + "id": "246d26", + "text": "Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?", + "answer": 250, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nEach of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?." + }, + { + "id": "d7e9c9", + "text": "A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.", + "answer": 199, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nA function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.." + } + ], + "Similar problems:\n\n \nLet $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.\n\nThe points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?\n\nWhat is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?\n\nLet $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?\n\nSuppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.\n\nThere exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?\n\nFor how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?\n\nLet the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?\n\nEach of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?\n\nA function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.\n\n\nWhat would be the first step of solving the following problem? Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region." + ], + [ + "d7e9c9", + "A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.", + 199, + [ + { + "id": "d7e9c9", + "text": "A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.", + "answer": 199, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nA function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.." + }, + { + "id": "739bc9", + "text": "For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?", + "answer": 199, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nFor how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?." + }, + { + "id": "2fc4ad", + "text": "Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?", + "answer": 702, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?." + }, + { + "id": "5277ed", + "text": "There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?", + "answer": 211, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nThere exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?." + }, + { + "id": "246d26", + "text": "Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?", + "answer": 250, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nEach of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?." + }, + { + "id": "430b63", + "text": "What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?", + "answer": 800, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nWhat is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?." + }, + { + "id": "8ee6f3", + "text": "The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?", + "answer": 320, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nThe points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?." + }, + { + "id": "229ee8", + "text": "Let $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?", + "answer": 52, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?." + }, + { + "id": "82e2a0", + "text": "Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.", + "answer": 185, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nSuppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.." + }, + { + "id": "bedda4", + "text": "Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.", + "answer": 480, + "prompt": "Here's some examples:\n...\nCreate a similar solution for the following problem:\nLet $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.." + } + ], + "Similar problems:\n\n \nA function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.\n\nFor how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?\n\nLet the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?\n\nThere exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?\n\nEach of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?\n\nWhat is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?\n\nThe points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?\n\nLet $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?\n\nSuppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.\n\nLet $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.\n\n\nWhat would be the first step of solving the following problem? A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$." + ] + ] + } + } + }, + "error": null, + "meta": { + "name": "View", + "params": {}, + "inputs": { + "input": { + "name": "input", + "type": { + "type": "" + }, + "position": "left" + } + }, + "outputs": {}, + "type": "table_view", + "sub_nodes": null + }, + "view": { + "dataframes": { + "df": { + "columns": [ + "id", + "text", + "answer" + ], + "data": [ + [ + "229ee8", + "Let $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?", + 52 + ], + [ + "246d26", + "Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?", + 250 + ], + [ + "2fc4ad", + "Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?", + 702 + ], + [ + "430b63", + "What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?", + 800 + ], + [ + "5277ed", + "There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?", + 211 + ], + [ + "739bc9", + "For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?", + 199 + ], + [ + "82e2a0", + "Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.", + 185 + ], + [ + "8ee6f3", + "The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?", + 320 + ], + [ + "bedda4", + "Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.", + 480 + ], + [ + "d7e9c9", + "A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.", + 199 + ] + ] + } + } + }, + "beingResized": false, + "collapsed": false + }, + "position": { + "x": 155.136149136555, + "y": -622.4495481939539 + }, + "parentId": null, + "width": 1310, + "height": 362 + }, + { + "id": "Ask LLM 3", + "type": "basic", + "data": { + "title": "Ask LLM", + "params": { + "model": "hanspeterlyngsoeraaschoujensen/deepseek-math-7b-instruct-awq-Q4", + "accepted_regex": null, + "max_tokens": 100 + }, + "display": null, + "error": "Connection error.", + "meta": { + "name": "Ask LLM", + "params": { + "model": { + "name": "model", + "default": null, + "type": { + "type": "" + } + }, + "accepted_regex": { + "name": "accepted_regex", + "default": null, + "type": { + "type": "" + } + }, + "max_tokens": { + "name": "max_tokens", + "default": 100, + "type": { + "type": "" + } + } + }, + "inputs": { + "input": { + "name": "input", + "type": { + "type": "" + }, + "position": "left" + } + }, + "outputs": { + "output": { + "name": "output", + "type": { + "type": "None" + }, + "position": "right" + } + }, + "type": "basic", + "sub_nodes": null + } + }, + "position": { + "x": 482.68145785443244, + "y": -10.49491028694952 + }, + "parentId": null + }, + { + "id": "Ask LLM 1", + "type": "basic", + "data": { + "title": "Ask LLM", + "params": { + "model": "hanspeterlyngsoeraaschoujensen/deepseek-math-7b-instruct-awq-Q4", + "accepted_regex": "yes|no", + "max_tokens": 100 + }, + "display": null, + "error": null, + "meta": { + "name": "Ask LLM", + "params": { + "model": { + "name": "model", + "default": null, + "type": { + "type": "" + } + }, + "accepted_regex": { + "name": "accepted_regex", + "default": null, + "type": { + "type": "" + } + }, + "max_tokens": { + "name": "max_tokens", + "default": 100, + "type": { + "type": "" + } + } + }, + "inputs": { + "input": { + "name": "input", + "type": { + "type": "" + }, + "position": "left" + } + }, + "outputs": { + "output": { + "name": "output", + "type": { + "type": "None" + }, + "position": "right" + } + }, + "type": "basic", + "sub_nodes": null + }, + "collapsed": false + }, + "position": { + "x": 1217.7468926179283, + "y": -102.80534565379153 + }, + "parentId": null + }, + { + "id": "RAG 1", + "type": "basic", + "data": { + "title": "RAG", + "params": { + "input_field": "text", + "db_field": "text", + "num_matches": 10 + }, + "display": null, + "error": null, + "meta": { + "name": "RAG", + "params": { + "input_field": { + "name": "input_field", + "default": "text", + "type": { + "type": "" + } + }, + "db_field": { + "name": "db_field", + "default": "text", + "type": { + "type": "" + } + }, + "num_matches": { + "name": "num_matches", + "default": 10, + "type": { + "type": "" + } + } + }, + "inputs": { + "input": { + "name": "input", + "type": { + "type": "" + }, + "position": "left" + }, + "db": { + "name": "db", + "type": { + "type": "" + }, + "position": "top" + } + }, + "outputs": { + "output": { + "name": "output", + "type": { + "type": "None" + }, + "position": "right" + } + }, + "type": "basic", + "sub_nodes": null + }, + "beingResized": false + }, + "position": { + "x": -301.53337439752374, + "y": 49.679493234000375 + }, + "parentId": null, + "width": 271, + "height": 278 + }, + { + "id": "Input 2", + "type": "basic", + "data": { + "title": "Input", + "params": { + "filename": "/Users/danieldarabos/Downloads/aimo-train.csv", + "key": "problem" + }, + "display": null, + "error": null, + "meta": { + "name": "Input", + "params": { + "filename": { + "name": "filename", + "default": null, + "type": { + "format": "path" + } + }, + "key": { + "name": "key", + "default": null, + "type": { + "type": "" + } + } + }, + "inputs": {}, + "outputs": { + "output": { + "name": "output", + "type": { + "type": "None" + }, + "position": "right" + } + }, + "type": "basic", + "sub_nodes": null + } + }, + "position": { + "x": -764.432042622817, + "y": -427.4732618618718 + }, + "parentId": null + }, + { + "id": "Create prompt 3", + "type": "basic", + "data": { + "title": "Create prompt", + "params": { + "save_as": "prompt", + "template": "Here's some examples:\n...\nCreate a similar solution for the following problem:\n{{text}}." + }, + "display": null, + "error": null, + "meta": { + "name": "Create prompt", + "params": { + "save_as": { + "name": "save_as", + "default": "prompt", + "type": { + "type": "" + } + }, + "template": { + "name": "template", + "default": null, + "type": { + "format": "textarea" + } + } + }, + "inputs": { + "input": { + "name": "input", + "type": { + "type": "" + }, + "position": "left" + } + }, + "outputs": { + "output": { + "name": "output", + "type": { + "type": "None" + }, + "position": "right" + } + }, + "type": "basic", + "sub_nodes": null + }, + "beingResized": false + }, + "position": { + "x": -462.7681392307442, + "y": -549.8750258210182 + }, + "parentId": null, + "width": 339, + "height": 328 + }, + { + "id": "Branch 1", + "type": "basic", + "data": { + "title": "Branch", + "params": { + "expression": "response == \"yes\"" + }, + "display": null, + "error": null, + "meta": { + "name": "Branch", + "params": { + "expression": { + "name": "expression", + "default": null, + "type": { + "type": "" + } + } + }, + "inputs": { + "input": { + "name": "input", + "type": { + "type": "" + }, + "position": "left" + } + }, + "outputs": { + "true": { + "name": "true", + "type": { + "type": "None" + }, + "position": "right" + }, + "false": { + "name": "false", + "type": { + "type": "None" + }, + "position": "right" + } + }, + "type": "basic", + "sub_nodes": null + } + }, + "position": { + "x": 1303.4527297069214, + "y": 323.66949928166156 + }, + "parentId": null + }, + { + "id": "Loop 1", + "type": "basic", + "data": { + "title": "Loop", + "params": { + "max_iterations": 3 + }, + "display": null, + "error": null, + "meta": { + "name": "Loop", + "params": { + "max_iterations": { + "name": "max_iterations", + "default": 3, + "type": { + "type": "" + } + } + }, + "inputs": { + "input": { + "name": "input", + "type": { + "type": "" + }, + "position": "right" + } + }, + "outputs": { + "output": { + "name": "output", + "type": { + "type": "None" + }, + "position": "left" + } + }, + "type": "basic", + "sub_nodes": null + } + }, + "position": { + "x": 780.9340327635556, + "y": 618.5515591190108 + }, + "parentId": null + } + ], + "edges": [ + { + "id": "xy-edge__Ask LLM 3output-Create prompt 2input", + "source": "Ask LLM 3", + "target": "Create prompt 2", + "sourceHandle": "output", + "targetHandle": "input" + }, + { + "id": "xy-edge__Create prompt 1output-Ask LLM 3input", + "source": "Create prompt 1", + "target": "Ask LLM 3", + "sourceHandle": "output", + "targetHandle": "input" + }, + { + "id": "xy-edge__Create prompt 2output-Ask LLM 1input", + "source": "Create prompt 2", + "target": "Ask LLM 1", + "sourceHandle": "output", + "targetHandle": "input" + }, + { + "id": "xy-edge__Ask LLM 1output-View 3input", + "source": "Ask LLM 1", + "target": "View 3", + "sourceHandle": "output", + "targetHandle": "input" + }, + { + "id": "xy-edge__Input 1output-RAG 1input", + "source": "Input 1", + "target": "RAG 1", + "sourceHandle": "output", + "targetHandle": "input" + }, + { + "id": "xy-edge__RAG 1output-Create prompt 1input", + "source": "RAG 1", + "target": "Create prompt 1", + "sourceHandle": "output", + "targetHandle": "input" + }, + { + "id": "xy-edge__Input 2output-Create prompt 3input", + "source": "Input 2", + "target": "Create prompt 3", + "sourceHandle": "output", + "targetHandle": "input" + }, + { + "id": "xy-edge__Create prompt 3output-RAG 1db", + "source": "Create prompt 3", + "target": "RAG 1", + "sourceHandle": "output", + "targetHandle": "db" + }, + { + "id": "xy-edge__Create prompt 1output-View 2input", + "source": "Create prompt 1", + "target": "View 2", + "sourceHandle": "output", + "targetHandle": "input" + }, + { + "id": "xy-edge__Ask LLM 1output-Branch 1input", + "source": "Ask LLM 1", + "target": "Branch 1", + "sourceHandle": "output", + "targetHandle": "input" + }, + { + "id": "xy-edge__Branch 1false-Loop 1input", + "source": "Branch 1", + "target": "Loop 1", + "sourceHandle": "false", + "targetHandle": "input" + }, + { + "id": "xy-edge__Loop 1output-Ask LLM 3input", + "source": "Loop 1", + "target": "Ask LLM 3", + "sourceHandle": "output", + "targetHandle": "input" + } + ] +} \ No newline at end of file diff --git a/data/Image processing b/data/Image processing new file mode 100644 index 0000000000000000000000000000000000000000..70017d5161fed2a1982277fdec3818cb26047f25 --- /dev/null +++ b/data/Image processing @@ -0,0 +1,272 @@ +{ + "env": "Pillow", + "nodes": [ + { + "id": "Open image 1", + "type": "basic", + "data": { + "title": "Open image", + "params": { + "filename": "/Users/danieldarabos/Downloads/mimic-a-fraction.png" + }, + "display": null, + "error": null, + "meta": { + "name": "Open image", + "params": { + "filename": { + "name": "filename", + "default": null, + "type": { + "type": "" + } + } + }, + "inputs": {}, + "outputs": { + "output": { + "name": "output", + "type": { + "type": "None" + }, + "position": "right" + } + }, + "type": "basic", + "sub_nodes": null + } + }, + "position": { + "x": 19.215964588549014, + "y": 205.21642829186527 + }, + "parentId": null + }, + { + "id": "View image 1", + "type": "image", + "data": { + "title": "View image", + "params": {}, + "display": "", + "error": null, + "meta": { + "name": "View image", + "params": {}, + "inputs": { + "image": { + "name": "image", + "type": { + "type": "" + }, + "position": "left" + } + }, + "outputs": {}, + "type": "image", + "sub_nodes": null + } + }, + "position": { + "x": 371.2152385614552, + "y": -243.68185336918702 + }, + "parentId": null + }, + { + "id": "Flip verically 1", + "type": "basic", + "data": { + "title": "Flip verically", + "params": {}, + "display": null, + "error": null, + "meta": { + "name": "Flip verically", + "params": {}, + "inputs": { + "image": { + "name": "image", + "type": { + "type": "" + }, + "position": "left" + } + }, + "outputs": { + "output": { + "name": "output", + "type": { + "type": "None" + }, + "position": "right" + } + }, + "type": "basic", + "sub_nodes": null + } + }, + "position": { + "x": 258.90660520478934, + "y": 582.9425419285425 + }, + "parentId": null + }, + { + "id": "View image 2", + "type": "image", + "data": { + "title": "View image", + "params": {}, + "display": "", + "error": null, + "meta": { + "name": "View image", + "params": {}, + "inputs": { + "image": { + "name": "image", + "type": { + "type": "" + }, + "position": "left" + } + }, + "outputs": {}, + "type": "image", + "sub_nodes": null + } + }, + "position": { + "x": 1027.1387925400982, + "y": 251.36630333493974 + }, + "parentId": null + }, + { + "id": "To grayscale 1", + "type": "basic", + "data": { + "title": "To grayscale", + "params": {}, + "display": null, + "error": null, + "meta": { + "name": "To grayscale", + "params": {}, + "inputs": { + "image": { + "name": "image", + "type": { + "type": "" + }, + "position": "left" + } + }, + "outputs": { + "output": { + "name": "output", + "type": { + "type": "None" + }, + "position": "right" + } + }, + "type": "basic", + "sub_nodes": null + } + }, + "position": { + "x": 826.1911193192234, + "y": 579.1542134884979 + }, + "parentId": null + }, + { + "id": "Blur 1", + "type": "basic", + "data": { + "title": "Blur", + "params": { + "radius": "5" + }, + "display": null, + "error": null, + "meta": { + "name": "Blur", + "params": { + "radius": { + "name": "radius", + "default": null, + "type": { + "type": "" + } + } + }, + "inputs": { + "image": { + "name": "image", + "type": { + "type": "" + }, + "position": "left" + } + }, + "outputs": { + "output": { + "name": "output", + "type": { + "type": "None" + }, + "position": "right" + } + }, + "type": "basic", + "sub_nodes": null + } + }, + "position": { + "x": 505.15961556359304, + "y": 539.8477981917164 + }, + "parentId": null + } + ], + "edges": [ + { + "id": "xy-edge__Open image 1output-View image 1image", + "source": "Open image 1", + "target": "View image 1", + "sourceHandle": "output", + "targetHandle": "image" + }, + { + "id": "xy-edge__Open image 1output-Flip verically 1image", + "source": "Open image 1", + "target": "Flip verically 1", + "sourceHandle": "output", + "targetHandle": "image" + }, + { + "id": "xy-edge__To grayscale 1output-View image 2image", + "source": "To grayscale 1", + "target": "View image 2", + "sourceHandle": "output", + "targetHandle": "image" + }, + { + "id": "xy-edge__Flip verically 1output-Blur 1image", + "source": "Flip verically 1", + "target": "Blur 1", + "sourceHandle": "output", + "targetHandle": "image" + }, + { + "id": "xy-edge__Blur 1output-To grayscale 1image", + "source": "Blur 1", + "target": "To grayscale 1", + "sourceHandle": "output", + "targetHandle": "image" + } + ] +} \ No newline at end of file diff --git a/data/NetworkX demo b/data/NetworkX demo new file mode 100644 index 0000000000000000000000000000000000000000..6429ceb9c7bf48457c1b24381df6a32ea73ee3b1 --- /dev/null +++ b/data/NetworkX demo @@ -0,0 +1,9738 @@ +{ + "env": "LynxKite", + "nodes": [ + { + "id": "Create scale-free graph 1", + "type": "basic", + "data": { + "title": "Create scale-free graph", + "params": { + "nodes": "10000" + }, + "display": null, + "error": null, + "meta": { + "name": "Create scale-free graph", + "params": { + "nodes": { + "name": "nodes", + "default": 10, + "type": { + "type": "" + } + } + }, + "inputs": {}, + "outputs": { + "output": { + "name": "output", + "type": { + "type": "None" + }, + "position": "right" + } + }, + "type": "basic", + "sub_nodes": null + }, + "collapsed": false + }, + "position": { + "x": 89.2349156901193, + "y": -26.207915719155103 + }, + "parentId": null + }, + { + "id": "Compute PageRank 1", + "type": "basic", + "data": { + "title": "Compute PageRank", + "params": { + "damping": 0.85, + "iterations": 100 + }, + "display": null, + "error": null, + "meta": { + "name": "Compute PageRank", + "params": { + "damping": { + "name": "damping", + "default": 0.85, + "type": { + "type": "" + } + }, + "iterations": { + "name": "iterations", + "default": 100, + "type": { + "type": "" + } + } + }, + "inputs": { + "graph": { + "name": "graph", + "type": { + "type": "" + }, + "position": "left" + } + }, + "outputs": { + "output": { + "name": "output", + "type": { + "type": "None" + }, + "position": "right" + } + }, + "type": "basic", + "sub_nodes": null + }, + "collapsed": false, + "beingResized": false + }, + "position": { + "x": 344.59279861588806, + "y": -88.57266512111485 + }, + "parentId": null, + "width": 238, + "height": 180 + }, + { + "id": "Visualize graph 1", + "type": "visualization", + "data": { + "title": "Visualize graph", + "params": { + "color_nodes_by": "pagerank" + }, + "display": { + "animationDuration": 500, + "animationEasingUpdate": "quinticInOut", + "series": [ + { + "type": "graph", + "roam": true, + "lineStyle": { + "color": "gray", + "curveness": 0.3 + }, + "emphasis": { + "focus": "adjacency", + "lineStyle": { + "width": 10 + } + }, + "data": [ + { + "id": "0", + "x": 0.07562972103448592, + "y": 0.12046706633111094, + "symbolSize": 5.0, + "itemStyle": { + "color": "#38568b" + } + }, + { + "id": "1", + "x": -0.10923251968967097, + "y": -0.012013294354658512, + "symbolSize": 5.0, + "itemStyle": { + "color": "#267f8e" + } + }, + { + "id": "2", + "x": -0.07573661096080032, + "y": -0.04218814386686468, + "symbolSize": 5.0, + "itemStyle": { + "color": "#fde724" + } + }, + { + "id": "4", + "x": -0.05337864923571794, + "y": -0.07403914964411537, + "symbolSize": 5.0, + "itemStyle": { + "color": "#471265" + } + }, + { + "id": "6", + "x": -0.3884819242438957, + "y": -0.2549779192843263, + "symbolSize": 5.0, + "itemStyle": { + "color": "#46095c" + } + }, + { + "id": "7", + "x": 0.00003666801178678908, + "y": 0.03567262492767318, + "symbolSize": 5.0, + "itemStyle": { + "color": "#3b508a" + } + }, + { + "id": "9", + "x": -0.037138285608944444, + "y": 0.27930941856425634, + "symbolSize": 5.0, + "itemStyle": { + "color": "#45085b" + } + }, + { + "id": "1548", + "x": 0.487897974077929, + "y": 0.24733677486121908, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "14", + "x": -0.17141533570689893, + "y": -0.02706986348950055, + "symbolSize": 5.0, + "itemStyle": { + "color": "#433b83" + } + }, + { + "id": "1557", + "x": -0.6199054823586942, + "y": 0.23785526014640077, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "1564", + "x": 0.2735141027848327, + "y": -0.5001097804516843, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "30", + "x": -0.22316524265951962, + "y": -0.014383329419963372, + "symbolSize": 5.0, + "itemStyle": { + "color": "#471567" + } + }, + { + "id": "34", + "x": -0.09782861224688107, + "y": 0.034871066428543096, + "symbolSize": 5.0, + "itemStyle": { + "color": "#481c6e" + } + }, + { + "id": "1059", + "x": 0.01633071893859474, + "y": -0.23039443213909186, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "1060", + "x": 0.5025847891070017, + "y": 0.08816252901232235, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "548", + "x": -0.3475273105295457, + "y": 0.040009031041537274, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440357" + } + }, + { + "id": "39", + "x": -0.013847216839204252, + "y": -0.13504223637802418, + "symbolSize": 5.0, + "itemStyle": { + "color": "#471567" + } + }, + { + "id": "43", + "x": 0.0797294426529798, + "y": -0.0828960109793406, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "2604", + "x": -0.16221391337248284, + "y": 0.4781701327326257, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "3115", + "x": -0.09401062514658333, + "y": -0.6181079454429087, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "2094", + "x": 0.39247771627169653, + "y": -0.2487107171036422, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "3631", + "x": -0.1957070304532734, + "y": 0.2863835434540368, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "54", + "x": -0.14467284191083835, + "y": 0.13679427101378902, + "symbolSize": 5.0, + "itemStyle": { + "color": "#46095c" + } + }, + { + "id": "567", + "x": -0.15752032355376122, + "y": -0.41863035010890626, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "63", + "x": -0.004295057141415512, + "y": -0.6033056900540047, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440255" + } + }, + { + "id": "6720", + "x": -0.6488802680092068, + "y": -0.06853942335748138, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "580", + "x": -0.18809247682825952, + "y": 0.2080592021391948, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "69", + "x": -0.03627327774554916, + "y": 0.08619430093901326, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440357" + } + }, + { + "id": "4685", + "x": 0.06385862872137144, + "y": 0.560785499034385, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "79", + "x": -0.3024566260629822, + "y": 0.21734875603976495, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440255" + } + }, + { + "id": "1106", + "x": -0.6991030713895621, + "y": -0.32083419740944646, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "84", + "x": -0.26213365971998076, + "y": 0.08802198625007292, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440255" + } + }, + { + "id": "2135", + "x": 0.03647553904330182, + "y": 0.42768643340863394, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "102", + "x": 0.422767540315996, + "y": -0.8481334120125046, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440255" + } + }, + { + "id": "117", + "x": -0.18214827727751623, + "y": 0.05954327478051359, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440357" + } + }, + { + "id": "3189", + "x": 0.38240050097867384, + "y": 0.26676604665332765, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "119", + "x": 0.17559405107367976, + "y": -0.2573133745507263, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "637", + "x": -0.09610880873629898, + "y": 0.21297856896142586, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "126", + "x": -0.12638201586079548, + "y": -0.09215057386383346, + "symbolSize": 5.0, + "itemStyle": { + "color": "#460c5f" + } + }, + { + "id": "131", + "x": 0.4765642747515647, + "y": -0.01124853958268681, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440255" + } + }, + { + "id": "1155", + "x": 0.41773778608032, + "y": 0.19745936719927973, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "644", + "x": -0.22932193306800233, + "y": -0.19221531770208844, + "symbolSize": 5.0, + "itemStyle": { + "color": "#460b5e" + } + }, + { + "id": "651", + "x": -0.10021421135318448, + "y": 0.5095109975224535, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "655", + "x": -0.04521498868040844, + "y": -0.249132082663665, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "144", + "x": -0.28238011457609447, + "y": -0.34767151984872, + "symbolSize": 5.0, + "itemStyle": { + "color": "#450558" + } + }, + { + "id": "146", + "x": -0.1708914516580458, + "y": -0.27232056183977366, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "1177", + "x": -0.18161159402098082, + "y": 0.3771852442046203, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "154", + "x": 0.1465350655859005, + "y": -0.11970742940929185, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440255" + } + }, + { + "id": "160", + "x": 0.4187382368665876, + "y": 0.12027201311635485, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440357" + } + }, + { + "id": "673", + "x": 0.11435102465398667, + "y": 0.004446104263447976, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440255" + } + }, + { + "id": "172", + "x": -0.11617772514920116, + "y": -0.19726644054242626, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "9388", + "x": 0.19245384776449728, + "y": 0.5267104757179638, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "7857", + "x": -1.0, + "y": -0.4511231818460691, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "1218", + "x": -0.24004820183922304, + "y": 0.16554507969355345, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "4810", + "x": 0.43203569445515205, + "y": 0.043222902581180465, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "2255", + "x": 0.02672237322965134, + "y": 0.5072978299626362, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "217", + "x": -0.2564731559795801, + "y": 0.03527067572498814, + "symbolSize": 5.0, + "itemStyle": { + "color": "#45065a" + } + }, + { + "id": "227", + "x": 0.057742359123065086, + "y": 0.3294534180150196, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440255" + } + }, + { + "id": "230", + "x": -0.16883923399806444, + "y": -0.12006369670793003, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "742", + "x": 0.2460507581781295, + "y": -0.07037155061382898, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "1256", + "x": 0.07798666622975636, + "y": -0.1771361350850896, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "2281", + "x": -0.10230185587471705, + "y": 0.28053879595772707, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "747", + "x": -0.08090647989042597, + "y": 0.13926218521896566, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440255" + } + }, + { + "id": "1774", + "x": 0.3348001192420228, + "y": 0.33019005803014173, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "1270", + "x": -0.3573523282349013, + "y": -0.5959752115654583, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "4346", + "x": 0.2718741070940539, + "y": 0.38697612286219446, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "774", + "x": 0.05753261648876964, + "y": -0.31027237840444283, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440255" + } + }, + { + "id": "2312", + "x": 0.3106307764073143, + "y": 0.7296625410132968, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "8969", + "x": -0.3069638732136787, + "y": -0.7574153048976261, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "266", + "x": 0.21298223758777798, + "y": -0.5754715750477328, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "275", + "x": -0.47612154114972177, + "y": -0.32151751383071314, + "symbolSize": 5.0, + "itemStyle": { + "color": "#45085b" + } + }, + { + "id": "289", + "x": -0.25341262260043906, + "y": 0.252188605944037, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "1325", + "x": 0.2191809335060688, + "y": 0.19793650365399804, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "1840", + "x": 0.18690625006054518, + "y": -0.07366175920029665, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "1348", + "x": -0.03922249032853955, + "y": 0.5254767535621517, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "1873", + "x": 0.21078650973773339, + "y": 0.7831977547844796, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "339", + "x": -0.16475455212621123, + "y": 0.10059934772981015, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440255" + } + }, + { + "id": "363", + "x": 0.33154746688172393, + "y": -0.8985479026088616, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440255" + } + }, + { + "id": "9070", + "x": 0.12500541998045164, + "y": 0.5084143096182316, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "881", + "x": 0.4246429332740617, + "y": 0.3750213644693083, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440255" + } + }, + { + "id": "5004", + "x": 0.19109907423535247, + "y": 0.10087522530867864, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "909", + "x": -0.4686995856461244, + "y": -0.4533358683656031, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "915", + "x": -0.552665800196676, + "y": -0.4146320982917701, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440255" + } + }, + { + "id": "1949", + "x": 0.687452489748874, + "y": -0.4399122690968083, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "5541", + "x": 0.32586968859330123, + "y": 0.46502819233464937, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "431", + "x": 0.4179765608720439, + "y": -0.06397693327135069, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "1460", + "x": -0.21055363813484132, + "y": -0.7822710274375893, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "1463", + "x": 0.4555955130575433, + "y": 0.312684243926266, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "5565", + "x": 0.5016171105930488, + "y": 0.16956978571873993, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "7102", + "x": 0.19485401540920394, + "y": 0.4341944350188759, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "1474", + "x": -0.4807369721221183, + "y": -0.16144679091202324, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "453", + "x": -0.29765239782957, + "y": -0.049443255800377374, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "2512", + "x": 0.2395990862355947, + "y": -0.6749352181586784, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "2008", + "x": 0.25934193825920016, + "y": 0.48957869944799887, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "488", + "x": 0.03558785043627791, + "y": 0.20988077765990062, + "symbolSize": 5.0, + "itemStyle": { + "color": "#450558" + } + }, + { + "id": "495", + "x": -0.25508288735434875, + "y": -0.1766958974498127, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "2545", + "x": 0.22873836150206708, + "y": 0.010741962526006038, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "2040", + "x": 0.042347089553446834, + "y": -0.016687812689644473, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "505", + "x": 0.36893381177203927, + "y": 0.41246339276626837, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440255" + } + }, + { + "id": "3579", + "x": 0.12413765785390049, + "y": -0.31997583549169656, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + } + ], + "links": [ + { + "source": "0", + "target": "1" + }, + { + "source": "0", + "target": "14" + }, + { + "source": "0", + "target": "0" + }, + { + "source": "0", + "target": "2" + }, + { + "source": "0", + "target": "160" + }, + { + "source": "0", + "target": "4" + }, + { + "source": "0", + "target": "230" + }, + { + "source": "0", + "target": "43" + }, + { + "source": "0", + "target": "79" + }, + { + "source": "0", + "target": "69" + }, + { + "source": "0", + "target": "488" + }, + { + "source": "0", + "target": "7" + }, + { + "source": "0", + "target": "117" + }, + { + "source": "0", + "target": "774" + }, + { + "source": "0", + "target": "1060" + }, + { + "source": "0", + "target": "54" + }, + { + "source": "0", + "target": "1348" + }, + { + "source": "0", + "target": "1463" + }, + { + "source": "0", + "target": "742" + }, + { + "source": "0", + "target": "1325" + }, + { + "source": "0", + "target": "126" + }, + { + "source": "0", + "target": "1774" + }, + { + "source": "0", + "target": "30" + }, + { + "source": "0", + "target": "2008" + }, + { + "source": "0", + "target": "548" + }, + { + "source": "0", + "target": "339" + }, + { + "source": "0", + "target": "217" + }, + { + "source": "0", + "target": "431" + }, + { + "source": "0", + "target": "505" + }, + { + "source": "0", + "target": "1548" + }, + { + "source": "0", + "target": "881" + }, + { + "source": "0", + "target": "172" + }, + { + "source": "0", + "target": "651" + }, + { + "source": "0", + "target": "9" + }, + { + "source": "0", + "target": "131" + }, + { + "source": "0", + "target": "2545" + }, + { + "source": "0", + "target": "3189" + }, + { + "source": "0", + "target": "39" + }, + { + "source": "0", + "target": "227" + }, + { + "source": "0", + "target": "747" + }, + { + "source": "0", + "target": "1840" + }, + { + "source": "0", + "target": "4346" + }, + { + "source": "0", + "target": "2604" + }, + { + "source": "0", + "target": "34" + }, + { + "source": "0", + "target": "4810" + }, + { + "source": "0", + "target": "289" + }, + { + "source": "0", + "target": "3631" + }, + { + "source": "0", + "target": "154" + }, + { + "source": "0", + "target": "5541" + }, + { + "source": "0", + "target": "1256" + }, + { + "source": "0", + "target": "4685" + }, + { + "source": "0", + "target": "453" + }, + { + "source": "0", + "target": "2040" + }, + { + "source": "0", + "target": "119" + }, + { + "source": "0", + "target": "5565" + }, + { + "source": "0", + "target": "673" + }, + { + "source": "0", + "target": "5004" + }, + { + "source": "0", + "target": "7102" + }, + { + "source": "0", + "target": "1155" + }, + { + "source": "0", + "target": "1177" + }, + { + "source": "0", + "target": "1218" + }, + { + "source": "0", + "target": "2094" + }, + { + "source": "0", + "target": "2255" + }, + { + "source": "0", + "target": "9070" + }, + { + "source": "0", + "target": "2281" + }, + { + "source": "0", + "target": "9388" + }, + { + "source": "0", + "target": "567" + }, + { + "source": "0", + "target": "580" + }, + { + "source": "0", + "target": "637" + }, + { + "source": "0", + "target": "644" + }, + { + "source": "0", + "target": "655" + }, + { + "source": "0", + "target": "146" + }, + { + "source": "0", + "target": "3579" + }, + { + "source": "1", + "target": "2" + }, + { + "source": "1", + "target": "6" + }, + { + "source": "1", + "target": "1" + }, + { + "source": "1", + "target": "14" + }, + { + "source": "1", + "target": "34" + }, + { + "source": "1", + "target": "126" + }, + { + "source": "1", + "target": "144" + }, + { + "source": "1", + "target": "9" + }, + { + "source": "1", + "target": "117" + }, + { + "source": "1", + "target": "7" + }, + { + "source": "1", + "target": "488" + }, + { + "source": "1", + "target": "39" + }, + { + "source": "1", + "target": "217" + }, + { + "source": "1", + "target": "30" + }, + { + "source": "1", + "target": "673" + }, + { + "source": "1", + "target": "4" + }, + { + "source": "1", + "target": "43" + }, + { + "source": "1", + "target": "3631" + }, + { + "source": "1", + "target": "54" + }, + { + "source": "1", + "target": "69" + }, + { + "source": "1", + "target": "84" + }, + { + "source": "1", + "target": "644" + }, + { + "source": "1", + "target": "655" + }, + { + "source": "1", + "target": "154" + }, + { + "source": "1", + "target": "230" + }, + { + "source": "1", + "target": "289" + }, + { + "source": "1", + "target": "1840" + }, + { + "source": "1", + "target": "339" + }, + { + "source": "2", + "target": "7" + }, + { + "source": "2", + "target": "2" + }, + { + "source": "2", + "target": "30" + }, + { + "source": "2", + "target": "39" + }, + { + "source": "2", + "target": "34" + }, + { + "source": "2", + "target": "644" + }, + { + "source": "2", + "target": "4" + }, + { + "source": "2", + "target": "1059" + }, + { + "source": "2", + "target": "43" + }, + { + "source": "2", + "target": "54" + }, + { + "source": "2", + "target": "567" + }, + { + "source": "2", + "target": "580" + }, + { + "source": "2", + "target": "69" + }, + { + "source": "2", + "target": "84" + }, + { + "source": "2", + "target": "2135" + }, + { + "source": "2", + "target": "117" + }, + { + "source": "2", + "target": "119" + }, + { + "source": "2", + "target": "655" + }, + { + "source": "2", + "target": "146" + }, + { + "source": "2", + "target": "673" + }, + { + "source": "2", + "target": "172" + }, + { + "source": "2", + "target": "1218" + }, + { + "source": "2", + "target": "230" + }, + { + "source": "2", + "target": "742" + }, + { + "source": "2", + "target": "1256" + }, + { + "source": "2", + "target": "2281" + }, + { + "source": "2", + "target": "747" + }, + { + "source": "2", + "target": "774" + }, + { + "source": "2", + "target": "339" + }, + { + "source": "2", + "target": "1474" + }, + { + "source": "2", + "target": "453" + }, + { + "source": "2", + "target": "495" + }, + { + "source": "2", + "target": "2545" + }, + { + "source": "2", + "target": "2040" + }, + { + "source": "4", + "target": "7" + }, + { + "source": "4", + "target": "84" + }, + { + "source": "4", + "target": "644" + }, + { + "source": "4", + "target": "774" + }, + { + "source": "4", + "target": "339" + }, + { + "source": "4", + "target": "5004" + }, + { + "source": "4", + "target": "495" + }, + { + "source": "6", + "target": "1106" + }, + { + "source": "6", + "target": "172" + }, + { + "source": "6", + "target": "230" + }, + { + "source": "6", + "target": "909" + }, + { + "source": "7", + "target": "1059" + }, + { + "source": "7", + "target": "54" + }, + { + "source": "7", + "target": "69" + }, + { + "source": "7", + "target": "637" + }, + { + "source": "7", + "target": "230" + }, + { + "source": "7", + "target": "747" + }, + { + "source": "7", + "target": "1325" + }, + { + "source": "7", + "target": "2040" + }, + { + "source": "9", + "target": "637" + }, + { + "source": "14", + "target": "54" + }, + { + "source": "14", + "target": "117" + }, + { + "source": "14", + "target": "644" + }, + { + "source": "14", + "target": "230" + }, + { + "source": "14", + "target": "453" + }, + { + "source": "14", + "target": "2040" + }, + { + "source": "1557", + "target": "84" + }, + { + "source": "1564", + "target": "1059" + }, + { + "source": "30", + "target": "54" + }, + { + "source": "30", + "target": "84" + }, + { + "source": "30", + "target": "230" + }, + { + "source": "30", + "target": "495" + }, + { + "source": "34", + "target": "69" + }, + { + "source": "34", + "target": "84" + }, + { + "source": "34", + "target": "117" + }, + { + "source": "34", + "target": "637" + }, + { + "source": "34", + "target": "655" + }, + { + "source": "1059", + "target": "84" + }, + { + "source": "1059", + "target": "655" + }, + { + "source": "1059", + "target": "3579" + }, + { + "source": "548", + "target": "495" + }, + { + "source": "39", + "target": "230" + }, + { + "source": "3115", + "target": "655" + }, + { + "source": "2094", + "target": "1949" + }, + { + "source": "2094", + "target": "3579" + }, + { + "source": "54", + "target": "69" + }, + { + "source": "54", + "target": "54" + }, + { + "source": "54", + "target": "1177" + }, + { + "source": "54", + "target": "84" + }, + { + "source": "567", + "target": "63" + }, + { + "source": "567", + "target": "1460" + }, + { + "source": "567", + "target": "8969" + }, + { + "source": "567", + "target": "909" + }, + { + "source": "63", + "target": "774" + }, + { + "source": "6720", + "target": "1106" + }, + { + "source": "6720", + "target": "84" + }, + { + "source": "580", + "target": "84" + }, + { + "source": "69", + "target": "339" + }, + { + "source": "69", + "target": "488" + }, + { + "source": "69", + "target": "227" + }, + { + "source": "69", + "target": "747" + }, + { + "source": "69", + "target": "117" + }, + { + "source": "69", + "target": "655" + }, + { + "source": "79", + "target": "117" + }, + { + "source": "79", + "target": "339" + }, + { + "source": "1106", + "target": "909" + }, + { + "source": "1106", + "target": "1474" + }, + { + "source": "1106", + "target": "7857" + }, + { + "source": "84", + "target": "637" + }, + { + "source": "84", + "target": "2135" + }, + { + "source": "2135", + "target": "2312" + }, + { + "source": "2135", + "target": "1873" + }, + { + "source": "102", + "target": "266" + }, + { + "source": "117", + "target": "126" + }, + { + "source": "119", + "target": "266" + }, + { + "source": "126", + "target": "230" + }, + { + "source": "644", + "target": "915" + }, + { + "source": "644", + "target": "275" + }, + { + "source": "644", + "target": "146" + }, + { + "source": "644", + "target": "655" + }, + { + "source": "655", + "target": "144" + }, + { + "source": "655", + "target": "266" + }, + { + "source": "144", + "target": "909" + }, + { + "source": "146", + "target": "1270" + }, + { + "source": "146", + "target": "230" + }, + { + "source": "172", + "target": "1256" + }, + { + "source": "1218", + "target": "339" + }, + { + "source": "217", + "target": "747" + }, + { + "source": "217", + "target": "495" + }, + { + "source": "774", + "target": "266" + }, + { + "source": "266", + "target": "363" + }, + { + "source": "275", + "target": "495" + }, + { + "source": "1474", + "target": "453" + }, + { + "source": "2512", + "target": "3579" + }, + { + "source": "495", + "target": "495" + }, + { + "source": "495", + "target": "3579" + } + ] + } + ] + }, + "error": null, + "meta": { + "name": "Visualize graph", + "params": { + "color_nodes_by": { + "name": "color_nodes_by", + "default": null, + "type": { + "type": "node_attribute" + } + } + }, + "inputs": { + "graph": { + "name": "graph", + "type": { + "type": "" + }, + "position": "left" + } + }, + "outputs": {}, + "type": "visualization", + "sub_nodes": null + }, + "view": { + "animationDuration": 500, + "animationEasingUpdate": "quinticInOut", + "series": [ + { + "type": "graph", + "roam": true, + "lineStyle": { + "color": "gray", + "curveness": 0.3 + }, + "emphasis": { + "focus": "adjacency", + "lineStyle": { + "width": 10 + } + }, + "data": [ + { + "id": "0", + "x": -0.34872043336008135, + "y": 0.0016601226354718188, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#3d4b89" + } + }, + { + "id": "1", + "x": -0.1513321753815621, + "y": 0.1930087319263785, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#fde724" + } + }, + { + "id": "2", + "x": -0.17154973266057838, + "y": -0.18274431781551836, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#1e978a" + } + }, + { + "id": "3", + "x": 0.2674888150535251, + "y": -0.1470876636247623, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#26ac81" + } + }, + { + "id": "4", + "x": -0.34556096974925204, + "y": -0.05866245247413772, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#45085b" + } + }, + { + "id": "5", + "x": 0.012082334772143702, + "y": -0.21627886453069936, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#23a883" + } + }, + { + "id": "6", + "x": -0.04633203684048507, + "y": -0.02327698040995416, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#46095c" + } + }, + { + "id": "7", + "x": -0.4295488262356878, + "y": 0.18092596627549437, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "8", + "x": 0.08117172750951997, + "y": 0.17826045129554952, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#46317e" + } + }, + { + "id": "9", + "x": 0.06422023179743636, + "y": 0.10588645457430383, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#471163" + } + }, + { + "id": "10", + "x": -0.4456371167318133, + "y": -0.174374802453211, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "11", + "x": 0.10480299552655954, + "y": 0.14931101378311987, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#453681" + } + }, + { + "id": "12", + "x": 0.15913779748265655, + "y": -0.06648396935069516, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#48196b" + } + }, + { + "id": "13", + "x": -0.018426128681613564, + "y": -0.06907797948988752, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "14", + "x": 0.023296905557122355, + "y": 0.14137175570787983, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#471466" + } + }, + { + "id": "15", + "x": -0.08886763549459438, + "y": 0.14732395930053413, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#345e8d" + } + }, + { + "id": "16", + "x": -0.08637410535194981, + "y": -0.00955013154074279, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "17", + "x": 0.08644464093654358, + "y": 0.23275556185948462, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#450558" + } + }, + { + "id": "18", + "x": -0.02223300921022498, + "y": 0.02691787552292339, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "19", + "x": -0.164417783816309, + "y": 0.5592517922345739, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "20", + "x": 0.0033182340738299463, + "y": -0.0007667895820446442, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "21", + "x": 0.20470379786017603, + "y": 0.056974736296930825, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#46095c" + } + }, + { + "id": "22", + "x": 0.5046653172445914, + "y": -0.4258442303938695, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "23", + "x": 0.12020180803667774, + "y": 0.35044210090953337, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "24", + "x": 0.04100014607512704, + "y": -0.04696376398027579, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "25", + "x": 0.062301723823639764, + "y": -0.1469148954920294, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "26", + "x": -0.4691833883579273, + "y": 0.3967831502554601, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "27", + "x": -0.20918751448398856, + "y": 0.08089408693250172, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440255" + } + }, + { + "id": "28", + "x": -0.15797992352342724, + "y": 0.11396613641507376, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "29", + "x": 0.059398301750496575, + "y": 0.05738974237760047, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#48196b" + } + }, + { + "id": "30", + "x": 0.3279486277463994, + "y": 0.20439005240834943, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#471466" + } + }, + { + "id": "31", + "x": 0.18800557454864625, + "y": -0.2182962184957651, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#45085b" + } + }, + { + "id": "32", + "x": -0.4344138050249209, + "y": -0.4099759096512366, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "33", + "x": 0.13295227631984224, + "y": 0.03285213665008422, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#471163" + } + }, + { + "id": "34", + "x": -0.01207649845697327, + "y": 0.1877384247710771, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440255" + } + }, + { + "id": "35", + "x": -0.12487753820960053, + "y": -0.015064124882886236, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "36", + "x": 0.4806523402509384, + "y": 0.03030915712544497, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "37", + "x": -0.15741587859279702, + "y": 0.046184217114210356, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440357" + } + }, + { + "id": "38", + "x": 0.29019210904758885, + "y": 0.17877241153898882, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "39", + "x": 0.1270573146967792, + "y": 0.04692521735913637, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "40", + "x": 0.22998646606613507, + "y": 0.350867715445292, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#460c5f" + } + }, + { + "id": "41", + "x": -0.3084084668453266, + "y": 0.007625273541174162, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440255" + } + }, + { + "id": "42", + "x": 0.22803091170369763, + "y": 0.03376314759398198, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "43", + "x": -0.10565378441255215, + "y": 0.353152222346924, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#460b5e" + } + }, + { + "id": "44", + "x": 0.2662337219008625, + "y": 0.1188939898149502, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "45", + "x": -0.47538189848521206, + "y": 0.3225639184980829, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "46", + "x": 0.35701067986136187, + "y": 0.41931851954947247, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "47", + "x": -0.11369433271535816, + "y": 0.5148666084641986, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#471163" + } + }, + { + "id": "48", + "x": 0.16502971846073183, + "y": 0.45556022579987543, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "49", + "x": 0.33713137726789516, + "y": 0.008826643213716451, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "50", + "x": 0.01777341807415824, + "y": 0.027707706121587395, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "51", + "x": -0.29905207936103545, + "y": -0.15208629481929553, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440255" + } + }, + { + "id": "52", + "x": -0.3831089269454462, + "y": -0.49002572500321606, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "53", + "x": 0.304248199685862, + "y": 0.23517670193890952, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440357" + } + }, + { + "id": "54", + "x": 0.05367914982421096, + "y": 0.1454345960925736, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "55", + "x": 0.6070429876936169, + "y": -0.28578856521210966, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "56", + "x": -0.041064708671123745, + "y": -0.3540357304026712, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440357" + } + }, + { + "id": "57", + "x": 0.1293781913575497, + "y": 0.10099616662546784, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "58", + "x": 0.049093794999641456, + "y": 0.2748289628129722, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "59", + "x": -0.7163860994482936, + "y": -0.020662108480324456, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "60", + "x": 0.17008725856476686, + "y": 0.08288928790785238, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#460b5e" + } + }, + { + "id": "61", + "x": -0.21671122327754352, + "y": -0.26284347297442423, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "62", + "x": 0.36471525370478997, + "y": 0.15309598797456642, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440255" + } + }, + { + "id": "63", + "x": 0.5493181612532969, + "y": -0.36526245073273816, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "64", + "x": -0.6895826545341012, + "y": 0.05891067791851273, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "65", + "x": -0.04746440264518993, + "y": 0.3215939909129357, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "66", + "x": 0.08119913583703493, + "y": 0.38308445438875005, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440357" + } + }, + { + "id": "67", + "x": 0.23403968797913302, + "y": -0.25508315734692383, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "68", + "x": -0.0761068304402974, + "y": -0.04829030975654874, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "69", + "x": 0.4227655280215121, + "y": -0.44220341663316826, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "70", + "x": -0.7040688853310462, + "y": -0.06607348410433442, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "71", + "x": 0.42167613500076817, + "y": -0.002169610473694188, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440357" + } + }, + { + "id": "72", + "x": 0.5405527498324444, + "y": 0.03396467460539683, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#460e61" + } + }, + { + "id": "73", + "x": -0.41047138015853657, + "y": -0.18599084015077583, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440255" + } + }, + { + "id": "74", + "x": 0.4337292179613621, + "y": 0.2431864606413698, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#460c5f" + } + }, + { + "id": "75", + "x": 0.09545561853774787, + "y": 0.04669259825157519, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "76", + "x": -0.09399006486498056, + "y": 0.05962130967706914, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "77", + "x": 0.4925106744260841, + "y": -0.34925882190633933, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "78", + "x": 0.08377202698765245, + "y": -0.5426585047641674, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "79", + "x": 0.21617800802161524, + "y": 0.40691166967654663, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#46095c" + } + }, + { + "id": "80", + "x": 0.20935105799162945, + "y": 0.2871320297095957, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "81", + "x": -0.01188591121607262, + "y": -0.022991300995935497, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "82", + "x": 0.07579249737770022, + "y": -0.3207188214936187, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "83", + "x": 0.1801334156706976, + "y": 0.5385016633355012, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "84", + "x": 0.20138140842211202, + "y": 0.2470908222187182, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440357" + } + }, + { + "id": "85", + "x": -0.6423913524015397, + "y": 0.14745235782194008, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "86", + "x": 0.5849232978105304, + "y": -0.08155834117503763, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#45065a" + } + }, + { + "id": "87", + "x": -0.20275675124025364, + "y": -0.0627301096356098, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "88", + "x": 0.3170697913953514, + "y": 0.6965391274853473, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "89", + "x": -0.3661781618683184, + "y": 0.46241312782920085, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "90", + "x": -0.023342727826499165, + "y": 0.07356692851976449, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "91", + "x": -0.15393442239435212, + "y": -0.1821365430923384, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "92", + "x": -0.04969031714673493, + "y": -0.21794283473551315, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "93", + "x": -0.25326490383057537, + "y": -0.048033927491436805, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "94", + "x": 0.4656858080296918, + "y": -0.44431380786387137, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "95", + "x": 0.26749110615014865, + "y": 0.43382906304631264, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "96", + "x": 0.03543515927909371, + "y": 0.2514771753382546, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "97", + "x": 0.16308045964631185, + "y": -0.2901412621960842, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#450558" + } + }, + { + "id": "98", + "x": -0.4538044430901971, + "y": -0.2633634346502798, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440255" + } + }, + { + "id": "99", + "x": -0.04861324737116385, + "y": 0.1928258792397029, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "100", + "x": -0.36140932119293034, + "y": 0.30402924351698885, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "101", + "x": 0.328410307743568, + "y": 0.5010388520676388, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "102", + "x": -0.2254760638441965, + "y": 0.8325727863033633, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "103", + "x": -0.4147796839758289, + "y": -0.0925395002140996, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "104", + "x": 0.004710216028767286, + "y": -0.5707288129642364, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "105", + "x": 0.46494816664114913, + "y": 0.11068479946914263, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "106", + "x": -0.32488419809685687, + "y": -0.5206253808373554, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "107", + "x": 0.3935327958972784, + "y": 0.7086100854798562, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "108", + "x": -0.31226585708602456, + "y": 0.09106333406876992, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "109", + "x": -0.1152303466948036, + "y": -0.04758432360714283, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "110", + "x": -0.27377195324368514, + "y": -0.3538359606119637, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "111", + "x": -0.4254752173467425, + "y": -0.4455259219668649, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "112", + "x": -0.378671761471595, + "y": -0.3898397787596498, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "113", + "x": -0.3070449463054737, + "y": 0.4917759388600533, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "114", + "x": -0.3287648362082879, + "y": -0.4226590537259917, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "115", + "x": -0.35033070785307663, + "y": -0.48210615283231806, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "116", + "x": -0.6449534017618453, + "y": 0.043028449852491844, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "117", + "x": -0.4186504572425201, + "y": 0.0966792551877143, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "118", + "x": -0.17262107309856106, + "y": -0.033800837338840185, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "119", + "x": 0.2923003952434006, + "y": -0.0623736230994795, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "120", + "x": 0.5321556419174058, + "y": -0.399909905969895, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "121", + "x": 0.38668829094352025, + "y": 0.10996808058924087, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "122", + "x": 0.5627546324659712, + "y": -0.29292237505719004, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "123", + "x": 0.1475581109456959, + "y": 0.29072604268946933, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "124", + "x": -0.025738505046268224, + "y": -0.4187224093977949, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "125", + "x": -0.6939365934239156, + "y": -0.10900682636765976, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "126", + "x": -0.35722722054929623, + "y": 0.11575318391395979, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#460c5f" + } + }, + { + "id": "127", + "x": -0.35052792343987216, + "y": 0.2005573133727346, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440255" + } + }, + { + "id": "128", + "x": 0.48208283396103896, + "y": -0.5527692972593822, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440255" + } + }, + { + "id": "129", + "x": 0.526419502720007, + "y": 0.21155952324527508, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "130", + "x": -0.2790367900656551, + "y": 0.527226255398031, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#46095c" + } + }, + { + "id": "131", + "x": -0.6388931689680185, + "y": -0.2414952131099212, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440255" + } + }, + { + "id": "132", + "x": 0.27738241911179384, + "y": 0.48509715223615096, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "133", + "x": -0.24207540009169368, + "y": -0.17137202432334492, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "134", + "x": 0.4076136425314752, + "y": 0.17757261622340162, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "135", + "x": -0.5338447661119892, + "y": -0.08428531072777834, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440255" + } + }, + { + "id": "136", + "x": -0.03859201836121426, + "y": 0.044307551509608, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "137", + "x": -0.6287769712280862, + "y": 0.08597950760725148, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "138", + "x": 0.19970111580776845, + "y": -0.3182101270063969, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "139", + "x": -0.31620996998665224, + "y": 0.3040112685000537, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "140", + "x": 0.350699270444237, + "y": 0.3084110930897862, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "141", + "x": -0.04628369263485492, + "y": 0.38483917653261235, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "142", + "x": 0.23538327329615163, + "y": 0.5159454582935944, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "143", + "x": -0.45894941545707496, + "y": -0.3815820753111428, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "144", + "x": -0.047847238061110436, + "y": -0.09994402263457243, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "145", + "x": -0.4282440609658787, + "y": 0.3981533231770086, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "146", + "x": 0.31762333033933166, + "y": 0.4028227507399958, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "147", + "x": -0.21687957174347489, + "y": 0.18006329945880156, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "148", + "x": -0.37943116416241196, + "y": -0.43304523824595986, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "149", + "x": -0.40847759234167524, + "y": -0.24362619683416292, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440255" + } + }, + { + "id": "150", + "x": 0.6168820297930762, + "y": -0.8352009502247875, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "151", + "x": 0.4123723601417052, + "y": -0.048249419128005185, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440357" + } + }, + { + "id": "152", + "x": 0.2831091216007838, + "y": -0.6909529250317368, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440357" + } + }, + { + "id": "153", + "x": -0.523271855380766, + "y": 0.17249192463000607, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "154", + "x": 0.008916429596973953, + "y": -0.254001216231578, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#460b5e" + } + }, + { + "id": "155", + "x": -0.7401929104059926, + "y": -0.44072765161111066, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "156", + "x": 0.6063248933505443, + "y": -0.32862325408139487, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "157", + "x": 0.5836433041824548, + "y": -0.19228305040515722, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#45065a" + } + }, + { + "id": "158", + "x": 0.0398994054793956, + "y": -0.21308428438213523, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "159", + "x": 0.1286882986597694, + "y": 0.5873273649324173, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "160", + "x": -0.4535981304690835, + "y": -0.0344085529198795, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440255" + } + }, + { + "id": "161", + "x": 0.3308391554647688, + "y": 0.10654099311491419, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "162", + "x": 0.269655390337604, + "y": -0.4470710783537011, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440255" + } + }, + { + "id": "163", + "x": -0.06972960795885137, + "y": -0.16617703071702283, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "164", + "x": 0.7143733742406542, + "y": 0.4337008424936045, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "165", + "x": 0.38681511824291015, + "y": -0.42470460891788375, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "166", + "x": -0.23584148695263282, + "y": -0.5151004812942939, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "167", + "x": 0.09034272350902776, + "y": 0.00144528176109814, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "168", + "x": -0.3150960377039431, + "y": 0.36927210009053535, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#46095c" + } + }, + { + "id": "169", + "x": 0.25332354492797954, + "y": -1, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "170", + "x": 0.42740999750734554, + "y": 0.6865686610680687, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "171", + "x": 0.13556814441528522, + "y": 0.486650928429205, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "172", + "x": -0.5425058536798987, + "y": -0.48847053294395315, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440255" + } + }, + { + "id": "173", + "x": -0.19627207589648957, + "y": -0.6582467124387555, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440255" + } + }, + { + "id": "174", + "x": 0.5776066549359552, + "y": -0.24016051636705385, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#45065a" + } + }, + { + "id": "175", + "x": -0.175753988980118, + "y": 0.21526936207616357, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "176", + "x": -0.6311594417880017, + "y": -0.013848165349986749, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "177", + "x": 0.04306435814531667, + "y": -0.11294827132645459, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "178", + "x": 0.06570383004524188, + "y": -0.06843143170112757, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "179", + "x": 0.4094324974880689, + "y": 0.14522822129211008, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "180", + "x": -0.04836142194182118, + "y": -0.5496232971173358, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "181", + "x": -0.11801828251853465, + "y": -0.3955203106868492, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "182", + "x": -0.2705553101656264, + "y": 0.3669045121641852, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "183", + "x": -0.43233899242329843, + "y": 0.43967848326780473, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "184", + "x": 0.14189977055250624, + "y": -0.040784627657264504, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "185", + "x": 0.45981841343486013, + "y": 0.6544952323402959, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "186", + "x": -0.1784814478263679, + "y": 0.42411867120790947, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "187", + "x": -0.051400194213195166, + "y": 0.5475026359322138, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "188", + "x": 0.49144969999484445, + "y": -0.29053629277805587, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "189", + "x": -0.15395047777483833, + "y": -0.3818978226917316, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "190", + "x": 0.1762584440713201, + "y": -0.4910001549089839, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#450558" + } + }, + { + "id": "191", + "x": 0.46558000321348814, + "y": 0.06213099976623735, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "192", + "x": 0.8598544033003448, + "y": 0.13578310517707848, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "193", + "x": -0.6686385141057518, + "y": 0.1193767842071987, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "194", + "x": -0.8610604460564353, + "y": -0.19346374898217375, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "195", + "x": 0.7730470931722606, + "y": -0.022478447236701653, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440255" + } + }, + { + "id": "196", + "x": 0.41762088626898153, + "y": -0.38378777542871423, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "197", + "x": 0.12540727993423434, + "y": -0.5468029744108304, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "198", + "x": 0.6705476882975926, + "y": 0.4789554275685813, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "199", + "x": -0.22459277643011666, + "y": 0.325674479683138, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "200", + "x": -0.7265455324337421, + "y": 0.25746331664265215, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "201", + "x": 0.3922268948941092, + "y": -0.038754676873169344, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "202", + "x": 0.012912088607934094, + "y": -0.5197223028552869, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "203", + "x": -0.46828030940498094, + "y": -0.34109973627285717, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "204", + "x": 0.10375215282179584, + "y": -0.24346935692438826, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "205", + "x": 0.19098427531221895, + "y": 0.10809970140623355, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "206", + "x": 0.10670634252502739, + "y": 0.44707285657833923, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "207", + "x": -0.662986487740047, + "y": -0.04580464794767976, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "208", + "x": -0.12898621943325236, + "y": -0.23340357936750042, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "209", + "x": 0.3084837871302644, + "y": -0.9973517182514187, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "210", + "x": -0.6848951527842964, + "y": 0.26423469957228424, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "211", + "x": 0.44825728415220606, + "y": -0.3385698241580599, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "212", + "x": -0.7156223822473275, + "y": 0.02859983974276955, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "213", + "x": -0.16507450425493123, + "y": -0.11322587344964466, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "214", + "x": -0.3061303632485974, + "y": 0.1803657113528969, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440255" + } + }, + { + "id": "215", + "x": 0.5321769833996902, + "y": -0.25304276199503106, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "216", + "x": 0.6378059393901865, + "y": -0.22375148018134086, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "217", + "x": 0.11770383381799457, + "y": -0.17328763702440456, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "218", + "x": -0.3716371022644814, + "y": 0.5073688755380752, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "219", + "x": 0.05132662746568459, + "y": -0.5671999219053712, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "220", + "x": 0.24724477552114457, + "y": 0.587337082550158, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "221", + "x": -0.5588627385543314, + "y": 0.5795236058604996, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#460c5f" + } + }, + { + "id": "222", + "x": 0.3026735212818937, + "y": 0.2713208566674226, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "223", + "x": 0.3622413337751218, + "y": 0.678407063656288, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "224", + "x": 0.05810262850655637, + "y": -0.3721100697434203, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "225", + "x": -0.03374978921101705, + "y": -0.5042495280885383, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "226", + "x": -0.7599374248543216, + "y": 0.80939440566442, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "227", + "x": -0.7929267921153055, + "y": -0.6788942889141422, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "228", + "x": 0.4675284542230675, + "y": -0.3924277077406163, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "229", + "x": -0.06832960085667208, + "y": 0.47799904574394575, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "230", + "x": -0.18070628681985126, + "y": 0.5248102365281877, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "231", + "x": -0.49992250701891333, + "y": 0.5167592702062035, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "232", + "x": -0.663304621895805, + "y": -0.1435556807427136, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "233", + "x": 0.5989276605887347, + "y": 0.4150643221583224, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "234", + "x": 0.43196346451141276, + "y": 0.5406292271303742, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "235", + "x": 0.06135296343832188, + "y": 0.48727077187508616, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "236", + "x": 0.22305858820085003, + "y": -0.13620774888786524, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "237", + "x": -0.4435482259612916, + "y": -0.5869177734747674, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#450558" + } + }, + { + "id": "238", + "x": 0.6204374739769909, + "y": 0.14808214422511926, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "239", + "x": 0.2199496510687603, + "y": 0.451347875249162, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "240", + "x": 0.10154351405985142, + "y": 0.5058715659378965, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "241", + "x": 0.45871553625543, + "y": -0.12443186113334573, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "242", + "x": 0.35416635951190767, + "y": 0.36739745506703486, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "243", + "x": -0.09570074344495864, + "y": -0.515317343058241, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "244", + "x": -0.622743530919903, + "y": -0.12823360765473618, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "245", + "x": -0.40288780329807833, + "y": 0.4629892510999778, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "246", + "x": 0.42059180828467424, + "y": -0.7461128756502459, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "247", + "x": 0.5872551641010995, + "y": -0.3688416368182072, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "248", + "x": 0.058351147520903354, + "y": -0.505821315631541, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "249", + "x": 0.6383033906430003, + "y": -0.2666418256239617, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "250", + "x": -0.6598571788783723, + "y": -0.2052102435932871, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "251", + "x": 0.3357506022936871, + "y": -0.512247698389334, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "252", + "x": -0.4139603375535861, + "y": -0.3534771666735801, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "253", + "x": -0.3856644230017411, + "y": 0.4019095454227086, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "254", + "x": -0.1497997723844665, + "y": 0.28108456489032124, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "255", + "x": -0.2207479088201306, + "y": 0.5767716993378457, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "256", + "x": -0.09741759790129907, + "y": -0.5594597262521186, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "257", + "x": 0.07223790608349691, + "y": 0.09229456080325037, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "258", + "x": 0.62717166717928, + "y": -0.18229057691296094, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "259", + "x": 0.8720180416496197, + "y": 0.0868339136591019, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "260", + "x": -0.30431259042290204, + "y": -0.9555764493486046, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "261", + "x": 0.5495399526802001, + "y": 0.11570527152187148, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "262", + "x": 0.5047808838917655, + "y": -0.6307893312528939, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "263", + "x": 0.2914027037152388, + "y": -0.5296527171918805, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "264", + "x": 0.12136093037075733, + "y": -0.5032461867338092, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "265", + "x": -0.21389935839887417, + "y": 0.5071395717200565, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "266", + "x": 0.021225125241119962, + "y": -0.6316545126724247, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "267", + "x": -0.043237409236441066, + "y": -0.5863849396543379, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "268", + "x": 0.0827129569403819, + "y": 0.4533988204028394, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "269", + "x": -0.6188566992492565, + "y": -0.8428945066140199, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "270", + "x": -0.3026450290431455, + "y": 0.5621647118113706, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "271", + "x": 0.7606248987368761, + "y": 0.024802098698750667, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "272", + "x": -0.6436504056380787, + "y": -0.08762560008233164, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "273", + "x": 0.5464479369115117, + "y": -0.17688067577393124, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "274", + "x": 0.8406459227503038, + "y": 0.18337171109925632, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "275", + "x": -0.22955365118976737, + "y": 0.40186550881679073, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "276", + "x": 0.7361901422896843, + "y": 0.38945309463827554, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "277", + "x": -0.38664632850776187, + "y": 0.2649513444647449, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "278", + "x": 0.5343900747756036, + "y": -0.32463717694185096, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "279", + "x": 0.6152544020191995, + "y": -0.1395373171025682, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "280", + "x": -0.6971837752458679, + "y": 0.09436191417134238, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "281", + "x": -0.8169623075287884, + "y": -0.06649069321878132, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "282", + "x": -0.4483960411475304, + "y": 0.3517377069466074, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "283", + "x": -0.5228585596411175, + "y": 0.22034540684723955, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "284", + "x": -0.26086457883241415, + "y": 0.4823872375155526, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "285", + "x": -0.796283393250976, + "y": 0.768663027358776, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "286", + "x": -0.24284594554953545, + "y": 0.5385615322874402, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "287", + "x": -0.25680443409063963, + "y": -0.4732306634558978, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "288", + "x": 0.7597204972700713, + "y": -0.09249167724514479, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "289", + "x": -0.3369814515168167, + "y": 0.5171225376863323, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "290", + "x": -0.6789869810190825, + "y": 0.005898265169329804, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "291", + "x": -0.30495806642960865, + "y": -0.46401539041060363, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "292", + "x": -0.3285795125866958, + "y": 0.4462862486899935, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "293", + "x": 0.2828646829694012, + "y": -0.6166534609717533, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "294", + "x": -0.5926575290164674, + "y": -0.33644290728372744, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "295", + "x": 0.6902578961115473, + "y": 0.2813090395979617, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "296", + "x": 0.5508413571977905, + "y": 0.16254767474542584, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "297", + "x": 0.4305597197039484, + "y": -0.17936837835100403, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "298", + "x": 0.4881223624735309, + "y": 0.441561186555843, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "299", + "x": -0.2816546612307871, + "y": -0.5286599672448269, + "symbolSize": 2.8867513459481287, + "itemStyle": { + "color": "#440154" + } + } + ], + "links": [ + { + "source": "0", + "target": "1" + }, + { + "source": "1", + "target": "2" + }, + { + "source": "1", + "target": "5" + }, + { + "source": "1", + "target": "8" + }, + { + "source": "1", + "target": "1" + }, + { + "source": "1", + "target": "12" + }, + { + "source": "1", + "target": "3" + }, + { + "source": "1", + "target": "43" + }, + { + "source": "1", + "target": "15" + }, + { + "source": "1", + "target": "0" + }, + { + "source": "1", + "target": "11" + }, + { + "source": "1", + "target": "126" + }, + { + "source": "1", + "target": "130" + }, + { + "source": "1", + "target": "168" + }, + { + "source": "1", + "target": "154" + }, + { + "source": "1", + "target": "60" + }, + { + "source": "1", + "target": "221" + }, + { + "source": "2", + "target": "0" + }, + { + "source": "2", + "target": "1" + }, + { + "source": "2", + "target": "8" + }, + { + "source": "2", + "target": "2" + }, + { + "source": "2", + "target": "3" + }, + { + "source": "2", + "target": "14" + }, + { + "source": "2", + "target": "5" + }, + { + "source": "2", + "target": "9" + }, + { + "source": "2", + "target": "15" + }, + { + "source": "2", + "target": "6" + }, + { + "source": "2", + "target": "33" + }, + { + "source": "2", + "target": "56" + }, + { + "source": "2", + "target": "41" + }, + { + "source": "2", + "target": "12" + }, + { + "source": "2", + "target": "190" + }, + { + "source": "2", + "target": "37" + }, + { + "source": "2", + "target": "149" + }, + { + "source": "2", + "target": "237" + }, + { + "source": "2", + "target": "73" + }, + { + "source": "2", + "target": "11" + }, + { + "source": "3", + "target": "1" + }, + { + "source": "3", + "target": "6" + }, + { + "source": "3", + "target": "2" + }, + { + "source": "3", + "target": "9" + }, + { + "source": "3", + "target": "5" + }, + { + "source": "3", + "target": "33" + }, + { + "source": "3", + "target": "12" + }, + { + "source": "3", + "target": "3" + }, + { + "source": "3", + "target": "74" + }, + { + "source": "3", + "target": "8" + }, + { + "source": "3", + "target": "15" + }, + { + "source": "3", + "target": "157" + }, + { + "source": "3", + "target": "174" + }, + { + "source": "3", + "target": "86" + }, + { + "source": "3", + "target": "11" + }, + { + "source": "3", + "target": "29" + }, + { + "source": "4", + "target": "2" + }, + { + "source": "4", + "target": "131" + }, + { + "source": "4", + "target": "1" + }, + { + "source": "5", + "target": "5" + }, + { + "source": "5", + "target": "1" + }, + { + "source": "6", + "target": "1" + }, + { + "source": "6", + "target": "3" + }, + { + "source": "6", + "target": "2" + }, + { + "source": "6", + "target": "5" + }, + { + "source": "6", + "target": "11" + }, + { + "source": "6", + "target": "34" + }, + { + "source": "6", + "target": "98" + }, + { + "source": "6", + "target": "0" + }, + { + "source": "6", + "target": "151" + }, + { + "source": "6", + "target": "21" + }, + { + "source": "6", + "target": "175" + }, + { + "source": "6", + "target": "15" + }, + { + "source": "7", + "target": "0" + }, + { + "source": "7", + "target": "1" + }, + { + "source": "9", + "target": "1" + }, + { + "source": "9", + "target": "5" + }, + { + "source": "9", + "target": "11" + }, + { + "source": "9", + "target": "3" + }, + { + "source": "9", + "target": "4" + }, + { + "source": "9", + "target": "2" + }, + { + "source": "9", + "target": "66" + }, + { + "source": "9", + "target": "79" + }, + { + "source": "9", + "target": "71" + }, + { + "source": "10", + "target": "2" + }, + { + "source": "10", + "target": "0" + }, + { + "source": "12", + "target": "2" + }, + { + "source": "12", + "target": "14" + }, + { + "source": "12", + "target": "1" + }, + { + "source": "13", + "target": "12" + }, + { + "source": "13", + "target": "0" + }, + { + "source": "13", + "target": "11" + }, + { + "source": "13", + "target": "2" + }, + { + "source": "13", + "target": "1" + }, + { + "source": "13", + "target": "224" + }, + { + "source": "13", + "target": "3" + }, + { + "source": "13", + "target": "14" + }, + { + "source": "14", + "target": "0" + }, + { + "source": "14", + "target": "3" + }, + { + "source": "14", + "target": "1" + }, + { + "source": "14", + "target": "43" + }, + { + "source": "14", + "target": "33" + }, + { + "source": "14", + "target": "2" + }, + { + "source": "14", + "target": "40" + }, + { + "source": "14", + "target": "84" + }, + { + "source": "14", + "target": "79" + }, + { + "source": "15", + "target": "3" + }, + { + "source": "15", + "target": "15" + }, + { + "source": "15", + "target": "2" + }, + { + "source": "15", + "target": "47" + }, + { + "source": "15", + "target": "29" + }, + { + "source": "16", + "target": "1" + }, + { + "source": "16", + "target": "2" + }, + { + "source": "16", + "target": "8" + }, + { + "source": "16", + "target": "31" + }, + { + "source": "16", + "target": "5" + }, + { + "source": "16", + "target": "15" + }, + { + "source": "16", + "target": "126" + }, + { + "source": "17", + "target": "1" + }, + { + "source": "17", + "target": "37" + }, + { + "source": "17", + "target": "11" + }, + { + "source": "17", + "target": "53" + }, + { + "source": "18", + "target": "1" + }, + { + "source": "18", + "target": "8" + }, + { + "source": "18", + "target": "0" + }, + { + "source": "18", + "target": "3" + }, + { + "source": "18", + "target": "5" + }, + { + "source": "18", + "target": "17" + }, + { + "source": "19", + "target": "1" + }, + { + "source": "20", + "target": "8" + }, + { + "source": "20", + "target": "1" + }, + { + "source": "20", + "target": "2" + }, + { + "source": "20", + "target": "91" + }, + { + "source": "20", + "target": "9" + }, + { + "source": "20", + "target": "15" + }, + { + "source": "20", + "target": "37" + }, + { + "source": "20", + "target": "21" + }, + { + "source": "20", + "target": "17" + }, + { + "source": "20", + "target": "97" + }, + { + "source": "20", + "target": "11" + }, + { + "source": "21", + "target": "15" + }, + { + "source": "21", + "target": "97" + }, + { + "source": "21", + "target": "0" + }, + { + "source": "21", + "target": "3" + }, + { + "source": "22", + "target": "3" + }, + { + "source": "23", + "target": "1" + }, + { + "source": "23", + "target": "30" + }, + { + "source": "23", + "target": "79" + }, + { + "source": "24", + "target": "1" + }, + { + "source": "24", + "target": "2" + }, + { + "source": "24", + "target": "8" + }, + { + "source": "24", + "target": "3" + }, + { + "source": "24", + "target": "31" + }, + { + "source": "25", + "target": "11" + }, + { + "source": "25", + "target": "5" + }, + { + "source": "25", + "target": "31" + }, + { + "source": "25", + "target": "2" + }, + { + "source": "26", + "target": "1" + }, + { + "source": "27", + "target": "0" + }, + { + "source": "27", + "target": "8" + }, + { + "source": "27", + "target": "14" + }, + { + "source": "27", + "target": "15" + }, + { + "source": "27", + "target": "5" + }, + { + "source": "27", + "target": "4" + }, + { + "source": "27", + "target": "1" + }, + { + "source": "27", + "target": "153" + }, + { + "source": "27", + "target": "11" + }, + { + "source": "27", + "target": "2" + }, + { + "source": "27", + "target": "283" + }, + { + "source": "28", + "target": "9" + }, + { + "source": "28", + "target": "29" + }, + { + "source": "28", + "target": "1" + }, + { + "source": "28", + "target": "0" + }, + { + "source": "29", + "target": "2" + }, + { + "source": "29", + "target": "8" + }, + { + "source": "29", + "target": "11" + }, + { + "source": "30", + "target": "3" + }, + { + "source": "32", + "target": "2" + }, + { + "source": "33", + "target": "15" + }, + { + "source": "33", + "target": "1" + }, + { + "source": "34", + "target": "30" + }, + { + "source": "35", + "target": "11" + }, + { + "source": "35", + "target": "1" + }, + { + "source": "35", + "target": "5" + }, + { + "source": "36", + "target": "3" + }, + { + "source": "36", + "target": "53" + }, + { + "source": "37", + "target": "0" + }, + { + "source": "38", + "target": "11" + }, + { + "source": "38", + "target": "33" + }, + { + "source": "39", + "target": "3" + }, + { + "source": "39", + "target": "9" + }, + { + "source": "39", + "target": "5" + }, + { + "source": "39", + "target": "53" + }, + { + "source": "39", + "target": "1" + }, + { + "source": "39", + "target": "11" + }, + { + "source": "40", + "target": "30" + }, + { + "source": "41", + "target": "1" + }, + { + "source": "42", + "target": "3" + }, + { + "source": "42", + "target": "60" + }, + { + "source": "42", + "target": "40" + }, + { + "source": "42", + "target": "11" + }, + { + "source": "42", + "target": "5" + }, + { + "source": "44", + "target": "8" + }, + { + "source": "44", + "target": "15" + }, + { + "source": "44", + "target": "17" + }, + { + "source": "44", + "target": "21" + }, + { + "source": "44", + "target": "238" + }, + { + "source": "44", + "target": "3" + }, + { + "source": "45", + "target": "1" + }, + { + "source": "46", + "target": "8" + }, + { + "source": "48", + "target": "14" + }, + { + "source": "48", + "target": "40" + }, + { + "source": "49", + "target": "11" + }, + { + "source": "49", + "target": "3" + }, + { + "source": "50", + "target": "2" + }, + { + "source": "50", + "target": "8" + }, + { + "source": "50", + "target": "0" + }, + { + "source": "50", + "target": "40" + }, + { + "source": "50", + "target": "3" + }, + { + "source": "50", + "target": "29" + }, + { + "source": "50", + "target": "5" + }, + { + "source": "51", + "target": "5" + }, + { + "source": "51", + "target": "1" + }, + { + "source": "51", + "target": "2" + }, + { + "source": "52", + "target": "2" + }, + { + "source": "53", + "target": "40" + }, + { + "source": "54", + "target": "3" + }, + { + "source": "54", + "target": "74" + }, + { + "source": "54", + "target": "127" + }, + { + "source": "54", + "target": "1" + }, + { + "source": "55", + "target": "3" + }, + { + "source": "57", + "target": "3" + }, + { + "source": "57", + "target": "1" + }, + { + "source": "57", + "target": "9" + }, + { + "source": "58", + "target": "29" + }, + { + "source": "58", + "target": "5" + }, + { + "source": "58", + "target": "220" + }, + { + "source": "58", + "target": "47" + }, + { + "source": "59", + "target": "0" + }, + { + "source": "60", + "target": "1" + }, + { + "source": "60", + "target": "3" + }, + { + "source": "61", + "target": "5" + }, + { + "source": "61", + "target": "2" + }, + { + "source": "62", + "target": "30" + }, + { + "source": "62", + "target": "3" + }, + { + "source": "62", + "target": "29" + }, + { + "source": "63", + "target": "3" + }, + { + "source": "64", + "target": "0" + }, + { + "source": "65", + "target": "1" + }, + { + "source": "65", + "target": "9" + }, + { + "source": "67", + "target": "12" + }, + { + "source": "67", + "target": "3" + }, + { + "source": "67", + "target": "5" + }, + { + "source": "68", + "target": "3" + }, + { + "source": "68", + "target": "0" + }, + { + "source": "68", + "target": "1" + }, + { + "source": "69", + "target": "3" + }, + { + "source": "70", + "target": "0" + }, + { + "source": "71", + "target": "31" + }, + { + "source": "71", + "target": "195" + }, + { + "source": "71", + "target": "21" + }, + { + "source": "72", + "target": "5" + }, + { + "source": "73", + "target": "0" + }, + { + "source": "75", + "target": "53" + }, + { + "source": "75", + "target": "0" + }, + { + "source": "75", + "target": "71" + }, + { + "source": "76", + "target": "1" + }, + { + "source": "76", + "target": "3" + }, + { + "source": "76", + "target": "135" + }, + { + "source": "76", + "target": "79" + }, + { + "source": "76", + "target": "91" + }, + { + "source": "76", + "target": "8" + }, + { + "source": "76", + "target": "0" + }, + { + "source": "77", + "target": "3" + }, + { + "source": "78", + "target": "5" + }, + { + "source": "80", + "target": "9" + }, + { + "source": "80", + "target": "11" + }, + { + "source": "81", + "target": "17" + }, + { + "source": "81", + "target": "60" + }, + { + "source": "81", + "target": "3" + }, + { + "source": "81", + "target": "2" + }, + { + "source": "81", + "target": "0" + }, + { + "source": "82", + "target": "3" + }, + { + "source": "82", + "target": "2" + }, + { + "source": "83", + "target": "8" + }, + { + "source": "84", + "target": "15" + }, + { + "source": "84", + "target": "66" + }, + { + "source": "84", + "target": "12" + }, + { + "source": "85", + "target": "0" + }, + { + "source": "86", + "target": "72" + }, + { + "source": "87", + "target": "1" + }, + { + "source": "87", + "target": "5" + }, + { + "source": "88", + "target": "40" + }, + { + "source": "89", + "target": "1" + }, + { + "source": "90", + "target": "3" + }, + { + "source": "90", + "target": "214" + }, + { + "source": "92", + "target": "3" + }, + { + "source": "92", + "target": "1" + }, + { + "source": "92", + "target": "173" + }, + { + "source": "92", + "target": "29" + }, + { + "source": "93", + "target": "1" + }, + { + "source": "93", + "target": "6" + }, + { + "source": "93", + "target": "61" + }, + { + "source": "94", + "target": "3" + }, + { + "source": "95", + "target": "11" + }, + { + "source": "96", + "target": "33" + }, + { + "source": "96", + "target": "1" + }, + { + "source": "99", + "target": "5" + }, + { + "source": "99", + "target": "1" + }, + { + "source": "99", + "target": "187" + }, + { + "source": "99", + "target": "11" + }, + { + "source": "100", + "target": "15" + }, + { + "source": "101", + "target": "17" + }, + { + "source": "102", + "target": "47" + }, + { + "source": "103", + "target": "2" + }, + { + "source": "103", + "target": "108" + }, + { + "source": "104", + "target": "5" + }, + { + "source": "105", + "target": "33" + }, + { + "source": "106", + "target": "2" + }, + { + "source": "107", + "target": "79" + }, + { + "source": "108", + "target": "0" + }, + { + "source": "108", + "target": "34" + }, + { + "source": "109", + "target": "11" + }, + { + "source": "109", + "target": "204" + }, + { + "source": "109", + "target": "126" + }, + { + "source": "110", + "target": "2" + }, + { + "source": "110", + "target": "91" + }, + { + "source": "111", + "target": "2" + }, + { + "source": "112", + "target": "2" + }, + { + "source": "113", + "target": "1" + }, + { + "source": "114", + "target": "2" + }, + { + "source": "115", + "target": "2" + }, + { + "source": "116", + "target": "0" + }, + { + "source": "117", + "target": "1" + }, + { + "source": "117", + "target": "4" + }, + { + "source": "117", + "target": "0" + }, + { + "source": "118", + "target": "2" + }, + { + "source": "118", + "target": "15" + }, + { + "source": "118", + "target": "5" + }, + { + "source": "118", + "target": "1" + }, + { + "source": "119", + "target": "11" + }, + { + "source": "119", + "target": "31" + }, + { + "source": "120", + "target": "3" + }, + { + "source": "121", + "target": "11" + }, + { + "source": "122", + "target": "3" + }, + { + "source": "123", + "target": "1" + }, + { + "source": "123", + "target": "62" + }, + { + "source": "124", + "target": "2" + }, + { + "source": "124", + "target": "97" + }, + { + "source": "125", + "target": "0" + }, + { + "source": "127", + "target": "27" + }, + { + "source": "127", + "target": "1" + }, + { + "source": "128", + "target": "3" + }, + { + "source": "129", + "target": "21" + }, + { + "source": "132", + "target": "8" + }, + { + "source": "133", + "target": "35" + }, + { + "source": "133", + "target": "5" + }, + { + "source": "133", + "target": "0" + }, + { + "source": "134", + "target": "60" + }, + { + "source": "134", + "target": "21" + }, + { + "source": "136", + "target": "1" + }, + { + "source": "136", + "target": "2" + }, + { + "source": "136", + "target": "21" + }, + { + "source": "136", + "target": "15" + }, + { + "source": "136", + "target": "33" + }, + { + "source": "137", + "target": "0" + }, + { + "source": "138", + "target": "5" + }, + { + "source": "138", + "target": "12" + }, + { + "source": "139", + "target": "15" + }, + { + "source": "140", + "target": "9" + }, + { + "source": "141", + "target": "8" + }, + { + "source": "141", + "target": "1" + }, + { + "source": "142", + "target": "8" + }, + { + "source": "143", + "target": "2" + }, + { + "source": "144", + "target": "2" + }, + { + "source": "144", + "target": "11" + }, + { + "source": "145", + "target": "1" + }, + { + "source": "146", + "target": "11" + }, + { + "source": "147", + "target": "8" + }, + { + "source": "147", + "target": "0" + }, + { + "source": "148", + "target": "2" + }, + { + "source": "149", + "target": "4" + }, + { + "source": "150", + "target": "128" + }, + { + "source": "152", + "target": "3" + }, + { + "source": "154", + "target": "3" + }, + { + "source": "155", + "target": "98" + }, + { + "source": "156", + "target": "3" + }, + { + "source": "158", + "target": "2" + }, + { + "source": "158", + "target": "5" + }, + { + "source": "158", + "target": "33" + }, + { + "source": "159", + "target": "17" + }, + { + "source": "160", + "target": "2" + }, + { + "source": "160", + "target": "15" + }, + { + "source": "161", + "target": "29" + }, + { + "source": "162", + "target": "5" + }, + { + "source": "162", + "target": "3" + }, + { + "source": "163", + "target": "0" + }, + { + "source": "163", + "target": "3" + }, + { + "source": "164", + "target": "74" + }, + { + "source": "165", + "target": "3" + }, + { + "source": "166", + "target": "2" + }, + { + "source": "167", + "target": "3" + }, + { + "source": "167", + "target": "1" + }, + { + "source": "169", + "target": "152" + }, + { + "source": "170", + "target": "79" + }, + { + "source": "171", + "target": "11" + }, + { + "source": "172", + "target": "2" + }, + { + "source": "175", + "target": "1" + }, + { + "source": "176", + "target": "0" + }, + { + "source": "177", + "target": "5" + }, + { + "source": "177", + "target": "14" + }, + { + "source": "178", + "target": "1" + }, + { + "source": "178", + "target": "5" + }, + { + "source": "178", + "target": "3" + }, + { + "source": "179", + "target": "151" + }, + { + "source": "179", + "target": "8" + }, + { + "source": "180", + "target": "5" + }, + { + "source": "181", + "target": "2" + }, + { + "source": "181", + "target": "5" + }, + { + "source": "182", + "target": "15" + }, + { + "source": "183", + "target": "1" + }, + { + "source": "184", + "target": "3" + }, + { + "source": "184", + "target": "15" + }, + { + "source": "185", + "target": "79" + }, + { + "source": "186", + "target": "15" + }, + { + "source": "188", + "target": "3" + }, + { + "source": "189", + "target": "2" + }, + { + "source": "189", + "target": "5" + }, + { + "source": "191", + "target": "33" + }, + { + "source": "192", + "target": "72" + }, + { + "source": "193", + "target": "0" + }, + { + "source": "194", + "target": "135" + }, + { + "source": "196", + "target": "3" + }, + { + "source": "197", + "target": "5" + }, + { + "source": "198", + "target": "74" + }, + { + "source": "199", + "target": "15" + }, + { + "source": "199", + "target": "1" + }, + { + "source": "200", + "target": "127" + }, + { + "source": "201", + "target": "31" + }, + { + "source": "201", + "target": "30" + }, + { + "source": "202", + "target": "5" + }, + { + "source": "203", + "target": "2" + }, + { + "source": "204", + "target": "3" + }, + { + "source": "205", + "target": "15" + }, + { + "source": "205", + "target": "72" + }, + { + "source": "205", + "target": "1" + }, + { + "source": "206", + "target": "14" + }, + { + "source": "207", + "target": "0" + }, + { + "source": "208", + "target": "0" + }, + { + "source": "208", + "target": "31" + }, + { + "source": "209", + "target": "152" + }, + { + "source": "210", + "target": "126" + }, + { + "source": "211", + "target": "3" + }, + { + "source": "212", + "target": "0" + }, + { + "source": "213", + "target": "5" + }, + { + "source": "213", + "target": "15" + }, + { + "source": "214", + "target": "2" + }, + { + "source": "215", + "target": "3" + }, + { + "source": "216", + "target": "3" + }, + { + "source": "217", + "target": "11" + }, + { + "source": "217", + "target": "56" + }, + { + "source": "218", + "target": "1" + }, + { + "source": "219", + "target": "5" + }, + { + "source": "222", + "target": "8" + }, + { + "source": "222", + "target": "21" + }, + { + "source": "223", + "target": "40" + }, + { + "source": "225", + "target": "5" + }, + { + "source": "226", + "target": "221" + }, + { + "source": "227", + "target": "172" + }, + { + "source": "228", + "target": "3" + }, + { + "source": "229", + "target": "66" + }, + { + "source": "229", + "target": "1" + }, + { + "source": "230", + "target": "1" + }, + { + "source": "231", + "target": "214" + }, + { + "source": "232", + "target": "0" + }, + { + "source": "233", + "target": "30" + }, + { + "source": "234", + "target": "220" + }, + { + "source": "234", + "target": "53" + }, + { + "source": "235", + "target": "11" + }, + { + "source": "236", + "target": "205" + }, + { + "source": "236", + "target": "5" + }, + { + "source": "239", + "target": "11" + }, + { + "source": "240", + "target": "11" + }, + { + "source": "241", + "target": "12" + }, + { + "source": "242", + "target": "11" + }, + { + "source": "243", + "target": "5" + }, + { + "source": "244", + "target": "0" + }, + { + "source": "245", + "target": "1" + }, + { + "source": "246", + "target": "162" + }, + { + "source": "247", + "target": "3" + }, + { + "source": "248", + "target": "5" + }, + { + "source": "249", + "target": "3" + }, + { + "source": "250", + "target": "4" + }, + { + "source": "251", + "target": "31" + }, + { + "source": "252", + "target": "2" + }, + { + "source": "253", + "target": "1" + }, + { + "source": "254", + "target": "168" + }, + { + "source": "254", + "target": "29" + }, + { + "source": "254", + "target": "15" + }, + { + "source": "255", + "target": "1" + }, + { + "source": "256", + "target": "5" + }, + { + "source": "257", + "target": "1" + }, + { + "source": "257", + "target": "2" + }, + { + "source": "257", + "target": "74" + }, + { + "source": "258", + "target": "3" + }, + { + "source": "259", + "target": "72" + }, + { + "source": "260", + "target": "173" + }, + { + "source": "261", + "target": "21" + }, + { + "source": "262", + "target": "190" + }, + { + "source": "263", + "target": "31" + }, + { + "source": "264", + "target": "5" + }, + { + "source": "265", + "target": "1" + }, + { + "source": "266", + "target": "154" + }, + { + "source": "267", + "target": "5" + }, + { + "source": "268", + "target": "11" + }, + { + "source": "269", + "target": "237" + }, + { + "source": "270", + "target": "1" + }, + { + "source": "271", + "target": "71" + }, + { + "source": "272", + "target": "0" + }, + { + "source": "273", + "target": "3" + }, + { + "source": "274", + "target": "72" + }, + { + "source": "275", + "target": "15" + }, + { + "source": "276", + "target": "74" + }, + { + "source": "277", + "target": "15" + }, + { + "source": "278", + "target": "3" + }, + { + "source": "279", + "target": "3" + }, + { + "source": "280", + "target": "0" + }, + { + "source": "281", + "target": "160" + }, + { + "source": "282", + "target": "1" + }, + { + "source": "284", + "target": "1" + }, + { + "source": "285", + "target": "221" + }, + { + "source": "286", + "target": "1" + }, + { + "source": "287", + "target": "2" + }, + { + "source": "288", + "target": "151" + }, + { + "source": "289", + "target": "1" + }, + { + "source": "290", + "target": "0" + }, + { + "source": "291", + "target": "2" + }, + { + "source": "292", + "target": "1" + }, + { + "source": "293", + "target": "97" + }, + { + "source": "294", + "target": "51" + }, + { + "source": "295", + "target": "62" + }, + { + "source": "296", + "target": "21" + }, + { + "source": "297", + "target": "12" + }, + { + "source": "298", + "target": "84" + }, + { + "source": "299", + "target": "2" + } + ] + } + ] + }, + "collapsed": false + }, + "position": { + "x": 932.167102104151, + "y": 10.638897240584981 + }, + "parentId": null + }, + { + "id": "Visualize graph 2", + "type": "visualization", + "data": { + "title": "Visualize graph", + "params": { + "color_nodes_by": null + }, + "display": { + "animationDuration": 500, + "animationEasingUpdate": "quinticInOut", + "series": [ + { + "type": "graph", + "roam": true, + "lineStyle": { + "color": "gray", + "curveness": 0.3 + }, + "emphasis": { + "focus": "adjacency", + "lineStyle": { + "width": 10 + } + }, + "data": [ + { + "id": "0", + "x": 0.3785037121280751, + "y": -0.9053045653105315, + "symbolSize": 7.071067811865475, + "itemStyle": {} + }, + { + "id": "1", + "x": 0.3519266055608247, + "y": -0.8549223242995607, + "symbolSize": 7.071067811865475, + "itemStyle": {} + }, + { + "id": "2", + "x": 0.31900767546954134, + "y": -0.7925211644765621, + "symbolSize": 7.071067811865475, + "itemStyle": {} + }, + { + "id": "3", + "x": 0.2812868480152654, + "y": -0.7238606733557749, + "symbolSize": 7.071067811865475, + "itemStyle": {} + }, + { + "id": "4", + "x": 0.2393493898386457, + "y": -0.6517447168303052, + "symbolSize": 7.071067811865475, + "itemStyle": {} + }, + { + "id": "5", + "x": 0.19346595364925068, + "y": -0.5780217366194825, + "symbolSize": 7.071067811865475, + "itemStyle": {} + }, + { + "id": "6", + "x": 0.14382098544425498, + "y": -0.504078080541693, + "symbolSize": 7.071067811865475, + "itemStyle": {} + }, + { + "id": "7", + "x": 0.09077462552522263, + "y": -0.43083986176895706, + "symbolSize": 7.071067811865475, + "itemStyle": {} + }, + { + "id": "8", + "x": 0.03532735858272933, + "y": -0.3584481755750971, + "symbolSize": 7.071067811865475, + "itemStyle": {} + }, + { + "id": "9", + "x": -0.02037183318969074, + "y": -0.28565628377253205, + "symbolSize": 7.071067811865475, + "itemStyle": {} + }, + { + "id": "10", + "x": -0.07334771728804355, + "y": -0.20996618794657765, + "symbolSize": 7.071067811865475, + "itemStyle": {} + }, + { + "id": "11", + "x": -0.12131711976482483, + "y": -0.1311913269351431, + "symbolSize": 7.071067811865475, + "itemStyle": {} + }, + { + "id": "12", + "x": -0.16122281873822192, + "y": -0.04900503198680721, + "symbolSize": 7.071067811865475, + "itemStyle": {} + }, + { + "id": "13", + "x": -0.1886790876246103, + "y": 0.03756799609785677, + "symbolSize": 7.071067811865475, + "itemStyle": {} + }, + { + "id": "14", + "x": -0.20056231277912656, + "y": 0.12995742983402392, + "symbolSize": 7.071067811865475, + "itemStyle": {} + }, + { + "id": "15", + "x": -0.20765003669654622, + "y": 0.22445862302777855, + "symbolSize": 7.071067811865475, + "itemStyle": {} + }, + { + "id": "16", + "x": -0.20821470140484635, + "y": 0.3180636892065971, + "symbolSize": 7.071067811865475, + "itemStyle": {} + }, + { + "id": "17", + "x": -0.2007007734778442, + "y": 0.40994160770671495, + "symbolSize": 7.071067811865475, + "itemStyle": {} + }, + { + "id": "18", + "x": -0.1851604650403117, + "y": 0.4992656459386094, + "symbolSize": 7.071067811865475, + "itemStyle": {} + }, + { + "id": "19", + "x": -0.1624815120544115, + "y": 0.5852803990301663, + "symbolSize": 7.071067811865475, + "itemStyle": {} + }, + { + "id": "20", + "x": -0.13414457535959887, + "y": 0.6674984466608183, + "symbolSize": 7.071067811865475, + "itemStyle": {} + }, + { + "id": "21", + "x": -0.10206100117927783, + "y": 0.7455129796235592, + "symbolSize": 7.071067811865475, + "itemStyle": {} + }, + { + "id": "22", + "x": -0.06883734076174662, + "y": 0.8193438698521605, + "symbolSize": 7.071067811865475, + "itemStyle": {} + }, + { + "id": "23", + "x": -0.03774099720402968, + "y": 0.8891827579683895, + "symbolSize": 7.071067811865475, + "itemStyle": {} + }, + { + "id": "24", + "x": -0.0017534701769603678, + "y": 0.9511956744547059, + "symbolSize": 7.071067811865475, + "itemStyle": {} + }, + { + "id": "25", + "x": 0.022870379978958723, + "y": 1.0, + "symbolSize": 7.071067811865475, + "itemStyle": {} + }, + { + "id": "100", + "x": 0.41231193755463813, + "y": -0.8892132052653234, + "symbolSize": 7.071067811865475, + "itemStyle": {} + }, + { + "id": "101", + "x": 0.3865590388577527, + "y": -0.8379531244648646, + "symbolSize": 7.071067811865475, + "itemStyle": {} + }, + { + "id": "102", + "x": 0.35306485993908693, + "y": -0.7750328430278205, + "symbolSize": 7.071067811865475, + "itemStyle": {} + }, + { + "id": "103", + "x": 0.3145042651153972, + "y": -0.705740784721155, + "symbolSize": 7.071067811865475, + "itemStyle": {} + }, + { + "id": "104", + "x": 0.27172427893481793, + "y": -0.6328057563689105, + "symbolSize": 7.071067811865475, + "itemStyle": {} + }, + { + "id": "105", + "x": 0.22505317768010075, + "y": -0.5581211955502988, + "symbolSize": 7.071067811865475, + "itemStyle": {} + }, + { + "id": "106", + "x": 0.17470580256604262, + "y": -0.4831710000102844, + "symbolSize": 7.071067811865475, + "itemStyle": {} + }, + { + "id": "107", + "x": 0.12106644006310595, + "y": -0.4090408065730284, + "symbolSize": 7.071067811865475, + "itemStyle": {} + }, + { + "id": "108", + "x": 0.06510044416826469, + "y": -0.3360624152335056, + "symbolSize": 7.071067811865475, + "itemStyle": {} + }, + { + "id": "109", + "x": 0.008897547334097672, + "y": -0.2629421950061211, + "symbolSize": 7.071067811865475, + "itemStyle": {} + }, + { + "id": "110", + "x": -0.044883465745946705, + "y": -0.187031754062616, + "symbolSize": 7.071067811865475, + "itemStyle": {} + }, + { + "id": "111", + "x": -0.09483360246704822, + "y": -0.10729737303107835, + "symbolSize": 7.071067811865475, + "itemStyle": {} + }, + { + "id": "112", + "x": -0.14023942229084269, + "y": -0.02390728990792475, + "symbolSize": 7.071067811865475, + "itemStyle": {} + }, + { + "id": "113", + "x": -0.18131769403529163, + "y": 0.06247067965688205, + "symbolSize": 7.071067811865475, + "itemStyle": {} + }, + { + "id": "114", + "x": -0.21778123903169938, + "y": 0.1488435140774713, + "symbolSize": 7.071067811865475, + "itemStyle": {} + }, + { + "id": "115", + "x": -0.23737946564601106, + "y": 0.23739243194494747, + "symbolSize": 7.071067811865475, + "itemStyle": {} + }, + { + "id": "116", + "x": -0.24241019068384093, + "y": 0.32791294338294996, + "symbolSize": 7.071067811865475, + "itemStyle": {} + }, + { + "id": "117", + "x": -0.2363761795982395, + "y": 0.41844734083716995, + "symbolSize": 7.071067811865475, + "itemStyle": {} + }, + { + "id": "118", + "x": -0.22136799774359794, + "y": 0.5073370636865219, + "symbolSize": 7.071067811865475, + "itemStyle": {} + }, + { + "id": "119", + "x": -0.1990525973550963, + "y": 0.5930873952282999, + "symbolSize": 7.071067811865475, + "itemStyle": {} + }, + { + "id": "120", + "x": -0.17121995043491758, + "y": 0.6742894590946176, + "symbolSize": 7.071067811865475, + "itemStyle": {} + }, + { + "id": "121", + "x": -0.13997652206400682, + "y": 0.7494361983995916, + "symbolSize": 7.071067811865475, + "itemStyle": {} + }, + { + "id": "122", + "x": -0.10810103393783999, + "y": 0.816477933190458, + "symbolSize": 7.071067811865475, + "itemStyle": {} + }, + { + "id": "123", + "x": -0.08013620263159851, + "y": 0.8709157937416633, + "symbolSize": 7.071067811865475, + "itemStyle": {} + } + ], + "links": [ + { + "source": "0", + "target": "1" + }, + { + "source": "0", + "target": "100" + }, + { + "source": "1", + "target": "2" + }, + { + "source": "1", + "target": "101" + }, + { + "source": "2", + "target": "3" + }, + { + "source": "2", + "target": "102" + }, + { + "source": "3", + "target": "4" + }, + { + "source": "3", + "target": "103" + }, + { + "source": "4", + "target": "5" + }, + { + "source": "4", + "target": "104" + }, + { + "source": "5", + "target": "6" + }, + { + "source": "5", + "target": "105" + }, + { + "source": "6", + "target": "7" + }, + { + "source": "6", + "target": "106" + }, + { + "source": "7", + "target": "8" + }, + { + "source": "7", + "target": "107" + }, + { + "source": "8", + "target": "9" + }, + { + "source": "8", + "target": "108" + }, + { + "source": "9", + "target": "10" + }, + { + "source": "9", + "target": "109" + }, + { + "source": "10", + "target": "11" + }, + { + "source": "10", + "target": "110" + }, + { + "source": "11", + "target": "12" + }, + { + "source": "11", + "target": "111" + }, + { + "source": "12", + "target": "13" + }, + { + "source": "12", + "target": "112" + }, + { + "source": "13", + "target": "14" + }, + { + "source": "13", + "target": "113" + }, + { + "source": "14", + "target": "15" + }, + { + "source": "14", + "target": "114" + }, + { + "source": "15", + "target": "16" + }, + { + "source": "15", + "target": "115" + }, + { + "source": "16", + "target": "17" + }, + { + "source": "16", + "target": "116" + }, + { + "source": "17", + "target": "18" + }, + { + "source": "17", + "target": "117" + }, + { + "source": "18", + "target": "19" + }, + { + "source": "18", + "target": "118" + }, + { + "source": "19", + "target": "20" + }, + { + "source": "19", + "target": "119" + }, + { + "source": "20", + "target": "21" + }, + { + "source": "20", + "target": "120" + }, + { + "source": "21", + "target": "22" + }, + { + "source": "21", + "target": "121" + }, + { + "source": "22", + "target": "23" + }, + { + "source": "22", + "target": "122" + }, + { + "source": "23", + "target": "24" + }, + { + "source": "23", + "target": "123" + }, + { + "source": "24", + "target": "25" + }, + { + "source": "100", + "target": "101" + }, + { + "source": "101", + "target": "102" + }, + { + "source": "102", + "target": "103" + }, + { + "source": "103", + "target": "104" + }, + { + "source": "104", + "target": "105" + }, + { + "source": "105", + "target": "106" + }, + { + "source": "106", + "target": "107" + }, + { + "source": "107", + "target": "108" + }, + { + "source": "108", + "target": "109" + }, + { + "source": "109", + "target": "110" + }, + { + "source": "110", + "target": "111" + }, + { + "source": "111", + "target": "112" + }, + { + "source": "112", + "target": "113" + }, + { + "source": "113", + "target": "114" + }, + { + "source": "114", + "target": "115" + }, + { + "source": "115", + "target": "116" + }, + { + "source": "116", + "target": "117" + }, + { + "source": "117", + "target": "118" + }, + { + "source": "118", + "target": "119" + }, + { + "source": "119", + "target": "120" + }, + { + "source": "120", + "target": "121" + }, + { + "source": "121", + "target": "122" + }, + { + "source": "122", + "target": "123" + } + ] + } + ] + }, + "error": null, + "meta": { + "name": "Visualize graph", + "params": { + "color_nodes_by": { + "name": "color_nodes_by", + "default": null, + "type": { + "type": "node_attribute" + } + } + }, + "inputs": { + "graph": { + "name": "graph", + "type": { + "type": "" + }, + "position": "left" + } + }, + "outputs": {}, + "type": "visualization", + "sub_nodes": null + }, + "collapsed": false + }, + "position": { + "x": -223.99338485338708, + "y": 284.2732575256202 + }, + "parentId": null + }, + { + "id": "NX › Ladder Graph 1", + "type": "basic", + "data": { + "title": "NX › Ladder Graph", + "params": { + "n": "100" + }, + "display": null, + "error": null, + "meta": { + "name": "NX › Ladder Graph", + "params": { + "n": { + "name": "n", + "default": null, + "type": { + "type": "" + } + } + }, + "inputs": {}, + "outputs": { + "output": { + "name": "output", + "type": { + "type": "" + }, + "position": "right" + } + }, + "type": "basic", + "sub_nodes": null + } + }, + "position": { + "x": -259.5475314168784, + "y": -22.421391228821562 + }, + "parentId": null + }, + { + "id": "Sample graph 1", + "type": "basic", + "data": { + "title": "Sample graph", + "params": { + "nodes": "50" + }, + "display": null, + "error": null, + "meta": { + "name": "Sample graph", + "params": { + "nodes": { + "name": "nodes", + "default": 100, + "type": { + "type": "" + } + } + }, + "inputs": { + "graph": { + "name": "graph", + "type": { + "type": "" + }, + "position": "left" + } + }, + "outputs": { + "output": { + "name": "output", + "type": { + "type": "None" + }, + "position": "right" + } + }, + "type": "basic", + "sub_nodes": null + } + }, + "position": { + "x": -258.4540319915059, + "y": 137.2295248755649 + }, + "parentId": null + }, + { + "id": "Sample graph 2", + "type": "basic", + "data": { + "title": "Sample graph", + "params": { + "nodes": 100 + }, + "display": null, + "error": null, + "meta": { + "name": "Sample graph", + "params": { + "nodes": { + "name": "nodes", + "default": 100, + "type": { + "type": "" + } + } + }, + "inputs": { + "graph": { + "name": "graph", + "type": { + "type": "" + }, + "position": "left" + } + }, + "outputs": { + "output": { + "name": "output", + "type": { + "type": "None" + }, + "position": "right" + } + }, + "type": "basic", + "sub_nodes": null + } + }, + "position": { + "x": 611.9715106050119, + "y": -2.7384015721163735 + }, + "parentId": null + }, + { + "id": "Visualize graph 3", + "type": "visualization", + "data": { + "title": "Visualize graph", + "params": { + "color_nodes_by": "NX › Core Number" + }, + "display": { + "animationDuration": 500, + "animationEasingUpdate": "quinticInOut", + "series": [ + { + "type": "graph", + "roam": true, + "lineStyle": { + "color": "gray", + "curveness": 0.3 + }, + "emphasis": { + "focus": "adjacency", + "lineStyle": { + "width": 10 + } + }, + "data": [ + { + "id": "0", + "x": -0.061971288680514956, + "y": -0.16169607095285754, + "symbolSize": 5.0, + "itemStyle": { + "color": "#fde724" + } + }, + { + "id": "1", + "x": -0.004567410687539732, + "y": 0.004031465186279208, + "symbolSize": 5.0, + "itemStyle": { + "color": "#fde724" + } + }, + { + "id": "2", + "x": -0.01213790902786241, + "y": 0.1261660799185721, + "symbolSize": 5.0, + "itemStyle": { + "color": "#fde724" + } + }, + { + "id": "4", + "x": 0.0981030200122476, + "y": 0.0586259099411343, + "symbolSize": 5.0, + "itemStyle": { + "color": "#fde724" + } + }, + { + "id": "6", + "x": -0.04623722727089278, + "y": 0.38083739753084983, + "symbolSize": 5.0, + "itemStyle": { + "color": "#29788e" + } + }, + { + "id": "7", + "x": 0.06419976787199762, + "y": -0.018476753032321956, + "symbolSize": 5.0, + "itemStyle": { + "color": "#fde724" + } + }, + { + "id": "9", + "x": -0.1362224504640851, + "y": -0.1713099921535672, + "symbolSize": 5.0, + "itemStyle": { + "color": "#29788e" + } + }, + { + "id": "1548", + "x": -0.30460384425989384, + "y": -0.4734262185320862, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "14", + "x": 0.013688815006798024, + "y": 0.056940739093166534, + "symbolSize": 5.0, + "itemStyle": { + "color": "#fde724" + } + }, + { + "id": "1557", + "x": -0.27589097125611084, + "y": 0.5290142291167919, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "1564", + "x": 0.6165096711417035, + "y": 0.173995240331319, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "30", + "x": 0.05584972938141491, + "y": 0.09763805952314202, + "symbolSize": 5.0, + "itemStyle": { + "color": "#fde724" + } + }, + { + "id": "34", + "x": -0.04135304909375401, + "y": 0.08629249391577734, + "symbolSize": 5.0, + "itemStyle": { + "color": "#fde724" + } + }, + { + "id": "1059", + "x": 0.2747958782107231, + "y": 0.11756975629143755, + "symbolSize": 5.0, + "itemStyle": { + "color": "#22a784" + } + }, + { + "id": "1060", + "x": -0.44370610991458875, + "y": -0.1335428141354987, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "548", + "x": 0.2801369177419314, + "y": -0.22245189024756262, + "symbolSize": 5.0, + "itemStyle": { + "color": "#404387" + } + }, + { + "id": "39", + "x": -0.16069826771689488, + "y": 0.07994798342980378, + "symbolSize": 5.0, + "itemStyle": { + "color": "#22a784" + } + }, + { + "id": "43", + "x": 0.07570687719229723, + "y": -0.0898367281257905, + "symbolSize": 5.0, + "itemStyle": { + "color": "#29788e" + } + }, + { + "id": "2604", + "x": 0.20792549533900356, + "y": -0.4064227746338497, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "3115", + "x": 0.44358726109933605, + "y": 0.33169447546422676, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "2094", + "x": 0.34066532791335935, + "y": -0.39228200239418953, + "symbolSize": 5.0, + "itemStyle": { + "color": "#404387" + } + }, + { + "id": "3631", + "x": -0.0011196307401212704, + "y": -0.26792254972100044, + "symbolSize": 5.0, + "itemStyle": { + "color": "#404387" + } + }, + { + "id": "54", + "x": -0.07899449709702118, + "y": 0.04175338055495619, + "symbolSize": 5.0, + "itemStyle": { + "color": "#fde724" + } + }, + { + "id": "567", + "x": 0.21687490802402473, + "y": 0.32255055818851097, + "symbolSize": 5.0, + "itemStyle": { + "color": "#29788e" + } + }, + { + "id": "63", + "x": 0.3796670598884088, + "y": 0.4151270220165456, + "symbolSize": 5.0, + "itemStyle": { + "color": "#404387" + } + }, + { + "id": "6720", + "x": -0.0913724120611251, + "y": 0.6117159030745485, + "symbolSize": 5.0, + "itemStyle": { + "color": "#404387" + } + }, + { + "id": "580", + "x": -0.18564550678185615, + "y": 0.15119841826892882, + "symbolSize": 5.0, + "itemStyle": { + "color": "#29788e" + } + }, + { + "id": "69", + "x": -0.06414895302440692, + "y": -0.035650935062530635, + "symbolSize": 5.0, + "itemStyle": { + "color": "#fde724" + } + }, + { + "id": "4685", + "x": -0.24035882902687292, + "y": -0.38818536487639155, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "79", + "x": -0.32382788064618223, + "y": -0.06528057112328459, + "symbolSize": 5.0, + "itemStyle": { + "color": "#29788e" + } + }, + { + "id": "1106", + "x": -0.019618586979319577, + "y": 0.7011068339211437, + "symbolSize": 5.0, + "itemStyle": { + "color": "#29788e" + } + }, + { + "id": "84", + "x": -0.05326532021679129, + "y": 0.26998782192327575, + "symbolSize": 5.0, + "itemStyle": { + "color": "#fde724" + } + }, + { + "id": "2135", + "x": -0.21342235276834906, + "y": 0.5319377679933885, + "symbolSize": 5.0, + "itemStyle": { + "color": "#404387" + } + }, + { + "id": "102", + "x": 0.5333169462276598, + "y": 0.7267335351106783, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "117", + "x": -0.14454138596575447, + "y": -0.025503995532742667, + "symbolSize": 5.0, + "itemStyle": { + "color": "#fde724" + } + }, + { + "id": "3189", + "x": -0.34802853416754853, + "y": -0.31467260392626323, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "119", + "x": 0.12787927880207103, + "y": 0.230389343484782, + "symbolSize": 5.0, + "itemStyle": { + "color": "#29788e" + } + }, + { + "id": "637", + "x": -0.09160558824958802, + "y": 0.006690450262545999, + "symbolSize": 5.0, + "itemStyle": { + "color": "#22a784" + } + }, + { + "id": "126", + "x": -0.21140524152689033, + "y": -0.03602273578549955, + "symbolSize": 5.0, + "itemStyle": { + "color": "#22a784" + } + }, + { + "id": "131", + "x": 0.06668047105224309, + "y": -0.5378103488539787, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "1155", + "x": -0.3953499936526893, + "y": -0.24780675113308534, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "644", + "x": 0.17816665933944106, + "y": 0.09806639385979235, + "symbolSize": 5.0, + "itemStyle": { + "color": "#fde724" + } + }, + { + "id": "651", + "x": -0.1707855629651472, + "y": -0.5349494508678062, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "655", + "x": 0.14644486134836762, + "y": 0.17063133878677633, + "symbolSize": 5.0, + "itemStyle": { + "color": "#fde724" + } + }, + { + "id": "144", + "x": 0.10355693596475897, + "y": 0.34644996059749644, + "symbolSize": 5.0, + "itemStyle": { + "color": "#29788e" + } + }, + { + "id": "146", + "x": -0.12625483739010002, + "y": 0.21014269312086278, + "symbolSize": 5.0, + "itemStyle": { + "color": "#22a784" + } + }, + { + "id": "1177", + "x": -0.2566066637946983, + "y": -0.15352451220950322, + "symbolSize": 5.0, + "itemStyle": { + "color": "#404387" + } + }, + { + "id": "154", + "x": -0.08335462978755084, + "y": -0.2633463254532536, + "symbolSize": 5.0, + "itemStyle": { + "color": "#404387" + } + }, + { + "id": "160", + "x": -0.0561706272044608, + "y": -0.5337189973032724, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "673", + "x": 0.12191536284194651, + "y": -0.05876007509031283, + "symbolSize": 5.0, + "itemStyle": { + "color": "#29788e" + } + }, + { + "id": "172", + "x": -0.1780675044401789, + "y": 0.2032930699388786, + "symbolSize": 5.0, + "itemStyle": { + "color": "#29788e" + } + }, + { + "id": "9388", + "x": 0.06967635688524484, + "y": -0.46097236463244495, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "7857", + "x": -0.029839600695089223, + "y": 1.0, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "1218", + "x": -0.23844224285580362, + "y": 0.04509843210666613, + "symbolSize": 5.0, + "itemStyle": { + "color": "#29788e" + } + }, + { + "id": "4810", + "x": -0.40048796549700594, + "y": -0.36664281496845297, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "2255", + "x": 0.0025303749616521157, + "y": -0.5389534292343322, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "217", + "x": 0.16637892610821692, + "y": -0.14256720982805343, + "symbolSize": 5.0, + "itemStyle": { + "color": "#22a784" + } + }, + { + "id": "227", + "x": -0.3047890109439665, + "y": -0.15291912951227848, + "symbolSize": 5.0, + "itemStyle": { + "color": "#404387" + } + }, + { + "id": "230", + "x": -0.07672234321784333, + "y": 0.12239406221685128, + "symbolSize": 5.0, + "itemStyle": { + "color": "#fde724" + } + }, + { + "id": "742", + "x": -0.29276123782797325, + "y": 0.07224560218451156, + "symbolSize": 5.0, + "itemStyle": { + "color": "#404387" + } + }, + { + "id": "1256", + "x": -0.2525263194692764, + "y": 0.12513934261792425, + "symbolSize": 5.0, + "itemStyle": { + "color": "#29788e" + } + }, + { + "id": "2281", + "x": -0.286953385430257, + "y": 0.011533639091456679, + "symbolSize": 5.0, + "itemStyle": { + "color": "#404387" + } + }, + { + "id": "747", + "x": 0.03440648844547103, + "y": -0.11022939132407741, + "symbolSize": 5.0, + "itemStyle": { + "color": "#22a784" + } + }, + { + "id": "1774", + "x": -0.31147631106887147, + "y": -0.37726852918800613, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "1270", + "x": -0.39380982705064405, + "y": 0.42601059571727246, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "4346", + "x": -0.23126627064435365, + "y": -0.4583065198054684, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "774", + "x": 0.19903204846198216, + "y": 0.21437258084379412, + "symbolSize": 5.0, + "itemStyle": { + "color": "#29788e" + } + }, + { + "id": "2312", + "x": -0.32889317345690433, + "y": 0.8246542621507983, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "8969", + "x": 0.48370805116338655, + "y": 0.5266974318470657, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "266", + "x": 0.32108677699641164, + "y": 0.4819109562568584, + "symbolSize": 5.0, + "itemStyle": { + "color": "#29788e" + } + }, + { + "id": "275", + "x": 0.46273207934347094, + "y": 0.06580579261749439, + "symbolSize": 5.0, + "itemStyle": { + "color": "#404387" + } + }, + { + "id": "289", + "x": 0.06497695688407895, + "y": -0.2646090058511457, + "symbolSize": 5.0, + "itemStyle": { + "color": "#404387" + } + }, + { + "id": "1325", + "x": 0.18159318117336876, + "y": -0.2513744571813082, + "symbolSize": 5.0, + "itemStyle": { + "color": "#404387" + } + }, + { + "id": "1840", + "x": 0.11166186952864929, + "y": -0.2247916077371751, + "symbolSize": 5.0, + "itemStyle": { + "color": "#404387" + } + }, + { + "id": "1348", + "x": -0.4494223611791889, + "y": -0.2056685805031738, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "1873", + "x": -0.41078915014048945, + "y": 0.7799566397884174, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "339", + "x": -0.14512614076866312, + "y": 0.01668307887710255, + "symbolSize": 5.0, + "itemStyle": { + "color": "#79d151" + } + }, + { + "id": "363", + "x": 0.4505052532341781, + "y": 0.7756612753700983, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "9070", + "x": -0.006972904526050533, + "y": -0.4548256725864566, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "881", + "x": -0.10934444501104038, + "y": -0.5626686073860299, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "5004", + "x": 0.2411365753595896, + "y": -0.13279737470746122, + "symbolSize": 5.0, + "itemStyle": { + "color": "#404387" + } + }, + { + "id": "909", + "x": 0.0980603283389372, + "y": 0.5504863121988909, + "symbolSize": 5.0, + "itemStyle": { + "color": "#29788e" + } + }, + { + "id": "915", + "x": 0.4990216779443619, + "y": 0.20208144905945802, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "1949", + "x": 0.5719569215671345, + "y": -0.6156135417658403, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "5541", + "x": -0.43655629727626244, + "y": -0.2987482413249569, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "431", + "x": -0.09141809148458525, + "y": -0.465728504283755, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "1460", + "x": 0.39500849876090666, + "y": 0.5973604164238028, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "1463", + "x": -0.24033920631537448, + "y": -0.5237371995237842, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "5565", + "x": -0.36056898255981695, + "y": -0.42982559157573746, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "7102", + "x": 0.14821473970314442, + "y": -0.4327547088625176, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "1474", + "x": -0.03236625764016626, + "y": 0.46046093146366623, + "symbolSize": 5.0, + "itemStyle": { + "color": "#29788e" + } + }, + { + "id": "453", + "x": -0.03296479815283245, + "y": 0.21165484293591594, + "symbolSize": 5.0, + "itemStyle": { + "color": "#29788e" + } + }, + { + "id": "2512", + "x": 0.6741449450339485, + "y": -0.2843413076484787, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "2008", + "x": -0.15956943713186203, + "y": -0.4518895291355049, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "488", + "x": -0.1788319922620925, + "y": -0.1390858344017521, + "symbolSize": 5.0, + "itemStyle": { + "color": "#29788e" + } + }, + { + "id": "495", + "x": 0.2736489688934361, + "y": -0.009837847497081833, + "symbolSize": 5.0, + "itemStyle": { + "color": "#22a784" + } + }, + { + "id": "2545", + "x": 0.19096669656708867, + "y": -0.03783062746569903, + "symbolSize": 5.0, + "itemStyle": { + "color": "#404387" + } + }, + { + "id": "2040", + "x": 0.13259422406808458, + "y": 0.007163086338838442, + "symbolSize": 5.0, + "itemStyle": { + "color": "#22a784" + } + }, + { + "id": "505", + "x": 0.13758981756377642, + "y": -0.4981429810453831, + "symbolSize": 5.0, + "itemStyle": { + "color": "#440154" + } + }, + { + "id": "3579", + "x": 0.3672678180789546, + "y": -0.1731679808295097, + "symbolSize": 5.0, + "itemStyle": { + "color": "#29788e" + } + } + ], + "links": [ + { + "source": "0", + "target": "1" + }, + { + "source": "0", + "target": "14" + }, + { + "source": "0", + "target": "2" + }, + { + "source": "0", + "target": "160" + }, + { + "source": "0", + "target": "4" + }, + { + "source": "0", + "target": "230" + }, + { + "source": "0", + "target": "43" + }, + { + "source": "0", + "target": "79" + }, + { + "source": "0", + "target": "69" + }, + { + "source": "0", + "target": "488" + }, + { + "source": "0", + "target": "7" + }, + { + "source": "0", + "target": "117" + }, + { + "source": "0", + "target": "774" + }, + { + "source": "0", + "target": "1060" + }, + { + "source": "0", + "target": "54" + }, + { + "source": "0", + "target": "1348" + }, + { + "source": "0", + "target": "1463" + }, + { + "source": "0", + "target": "742" + }, + { + "source": "0", + "target": "1325" + }, + { + "source": "0", + "target": "126" + }, + { + "source": "0", + "target": "1774" + }, + { + "source": "0", + "target": "30" + }, + { + "source": "0", + "target": "2008" + }, + { + "source": "0", + "target": "548" + }, + { + "source": "0", + "target": "339" + }, + { + "source": "0", + "target": "217" + }, + { + "source": "0", + "target": "431" + }, + { + "source": "0", + "target": "505" + }, + { + "source": "0", + "target": "1548" + }, + { + "source": "0", + "target": "881" + }, + { + "source": "0", + "target": "172" + }, + { + "source": "0", + "target": "651" + }, + { + "source": "0", + "target": "9" + }, + { + "source": "0", + "target": "131" + }, + { + "source": "0", + "target": "2545" + }, + { + "source": "0", + "target": "3189" + }, + { + "source": "0", + "target": "39" + }, + { + "source": "0", + "target": "227" + }, + { + "source": "0", + "target": "747" + }, + { + "source": "0", + "target": "1840" + }, + { + "source": "0", + "target": "4346" + }, + { + "source": "0", + "target": "2604" + }, + { + "source": "0", + "target": "34" + }, + { + "source": "0", + "target": "4810" + }, + { + "source": "0", + "target": "289" + }, + { + "source": "0", + "target": "3631" + }, + { + "source": "0", + "target": "154" + }, + { + "source": "0", + "target": "5541" + }, + { + "source": "0", + "target": "1256" + }, + { + "source": "0", + "target": "4685" + }, + { + "source": "0", + "target": "453" + }, + { + "source": "0", + "target": "2040" + }, + { + "source": "0", + "target": "119" + }, + { + "source": "0", + "target": "5565" + }, + { + "source": "0", + "target": "673" + }, + { + "source": "0", + "target": "5004" + }, + { + "source": "0", + "target": "7102" + }, + { + "source": "0", + "target": "1155" + }, + { + "source": "0", + "target": "1177" + }, + { + "source": "0", + "target": "1218" + }, + { + "source": "0", + "target": "2094" + }, + { + "source": "0", + "target": "2255" + }, + { + "source": "0", + "target": "9070" + }, + { + "source": "0", + "target": "2281" + }, + { + "source": "0", + "target": "9388" + }, + { + "source": "0", + "target": "567" + }, + { + "source": "0", + "target": "580" + }, + { + "source": "0", + "target": "637" + }, + { + "source": "0", + "target": "644" + }, + { + "source": "0", + "target": "655" + }, + { + "source": "0", + "target": "146" + }, + { + "source": "0", + "target": "3579" + }, + { + "source": "1", + "target": "2" + }, + { + "source": "1", + "target": "6" + }, + { + "source": "1", + "target": "14" + }, + { + "source": "1", + "target": "34" + }, + { + "source": "1", + "target": "126" + }, + { + "source": "1", + "target": "144" + }, + { + "source": "1", + "target": "9" + }, + { + "source": "1", + "target": "117" + }, + { + "source": "1", + "target": "7" + }, + { + "source": "1", + "target": "488" + }, + { + "source": "1", + "target": "39" + }, + { + "source": "1", + "target": "217" + }, + { + "source": "1", + "target": "30" + }, + { + "source": "1", + "target": "673" + }, + { + "source": "1", + "target": "4" + }, + { + "source": "1", + "target": "43" + }, + { + "source": "1", + "target": "3631" + }, + { + "source": "1", + "target": "54" + }, + { + "source": "1", + "target": "69" + }, + { + "source": "1", + "target": "84" + }, + { + "source": "1", + "target": "644" + }, + { + "source": "1", + "target": "655" + }, + { + "source": "1", + "target": "154" + }, + { + "source": "1", + "target": "230" + }, + { + "source": "1", + "target": "289" + }, + { + "source": "1", + "target": "1840" + }, + { + "source": "1", + "target": "339" + }, + { + "source": "2", + "target": "7" + }, + { + "source": "2", + "target": "30" + }, + { + "source": "2", + "target": "39" + }, + { + "source": "2", + "target": "34" + }, + { + "source": "2", + "target": "644" + }, + { + "source": "2", + "target": "4" + }, + { + "source": "2", + "target": "1059" + }, + { + "source": "2", + "target": "43" + }, + { + "source": "2", + "target": "54" + }, + { + "source": "2", + "target": "567" + }, + { + "source": "2", + "target": "580" + }, + { + "source": "2", + "target": "69" + }, + { + "source": "2", + "target": "84" + }, + { + "source": "2", + "target": "2135" + }, + { + "source": "2", + "target": "117" + }, + { + "source": "2", + "target": "119" + }, + { + "source": "2", + "target": "655" + }, + { + "source": "2", + "target": "146" + }, + { + "source": "2", + "target": "673" + }, + { + "source": "2", + "target": "172" + }, + { + "source": "2", + "target": "1218" + }, + { + "source": "2", + "target": "230" + }, + { + "source": "2", + "target": "742" + }, + { + "source": "2", + "target": "1256" + }, + { + "source": "2", + "target": "2281" + }, + { + "source": "2", + "target": "747" + }, + { + "source": "2", + "target": "774" + }, + { + "source": "2", + "target": "339" + }, + { + "source": "2", + "target": "1474" + }, + { + "source": "2", + "target": "453" + }, + { + "source": "2", + "target": "495" + }, + { + "source": "2", + "target": "2545" + }, + { + "source": "2", + "target": "2040" + }, + { + "source": "4", + "target": "7" + }, + { + "source": "4", + "target": "84" + }, + { + "source": "4", + "target": "644" + }, + { + "source": "4", + "target": "774" + }, + { + "source": "4", + "target": "339" + }, + { + "source": "4", + "target": "5004" + }, + { + "source": "4", + "target": "495" + }, + { + "source": "6", + "target": "1106" + }, + { + "source": "6", + "target": "172" + }, + { + "source": "6", + "target": "230" + }, + { + "source": "6", + "target": "909" + }, + { + "source": "7", + "target": "1059" + }, + { + "source": "7", + "target": "54" + }, + { + "source": "7", + "target": "69" + }, + { + "source": "7", + "target": "637" + }, + { + "source": "7", + "target": "230" + }, + { + "source": "7", + "target": "747" + }, + { + "source": "7", + "target": "1325" + }, + { + "source": "7", + "target": "2040" + }, + { + "source": "9", + "target": "637" + }, + { + "source": "14", + "target": "54" + }, + { + "source": "14", + "target": "117" + }, + { + "source": "14", + "target": "644" + }, + { + "source": "14", + "target": "230" + }, + { + "source": "14", + "target": "453" + }, + { + "source": "14", + "target": "2040" + }, + { + "source": "1557", + "target": "84" + }, + { + "source": "1564", + "target": "1059" + }, + { + "source": "30", + "target": "54" + }, + { + "source": "30", + "target": "84" + }, + { + "source": "30", + "target": "230" + }, + { + "source": "30", + "target": "495" + }, + { + "source": "34", + "target": "69" + }, + { + "source": "34", + "target": "84" + }, + { + "source": "34", + "target": "117" + }, + { + "source": "34", + "target": "637" + }, + { + "source": "34", + "target": "655" + }, + { + "source": "1059", + "target": "84" + }, + { + "source": "1059", + "target": "655" + }, + { + "source": "1059", + "target": "3579" + }, + { + "source": "548", + "target": "495" + }, + { + "source": "39", + "target": "230" + }, + { + "source": "3115", + "target": "655" + }, + { + "source": "2094", + "target": "1949" + }, + { + "source": "2094", + "target": "3579" + }, + { + "source": "54", + "target": "69" + }, + { + "source": "54", + "target": "1177" + }, + { + "source": "54", + "target": "84" + }, + { + "source": "567", + "target": "63" + }, + { + "source": "567", + "target": "1460" + }, + { + "source": "567", + "target": "8969" + }, + { + "source": "567", + "target": "909" + }, + { + "source": "63", + "target": "774" + }, + { + "source": "6720", + "target": "1106" + }, + { + "source": "6720", + "target": "84" + }, + { + "source": "580", + "target": "84" + }, + { + "source": "69", + "target": "339" + }, + { + "source": "69", + "target": "488" + }, + { + "source": "69", + "target": "227" + }, + { + "source": "69", + "target": "747" + }, + { + "source": "69", + "target": "117" + }, + { + "source": "69", + "target": "655" + }, + { + "source": "79", + "target": "117" + }, + { + "source": "79", + "target": "339" + }, + { + "source": "1106", + "target": "909" + }, + { + "source": "1106", + "target": "1474" + }, + { + "source": "1106", + "target": "7857" + }, + { + "source": "84", + "target": "637" + }, + { + "source": "84", + "target": "2135" + }, + { + "source": "2135", + "target": "2312" + }, + { + "source": "2135", + "target": "1873" + }, + { + "source": "102", + "target": "266" + }, + { + "source": "117", + "target": "126" + }, + { + "source": "119", + "target": "266" + }, + { + "source": "126", + "target": "230" + }, + { + "source": "644", + "target": "915" + }, + { + "source": "644", + "target": "275" + }, + { + "source": "644", + "target": "146" + }, + { + "source": "644", + "target": "655" + }, + { + "source": "655", + "target": "144" + }, + { + "source": "655", + "target": "266" + }, + { + "source": "144", + "target": "909" + }, + { + "source": "146", + "target": "1270" + }, + { + "source": "146", + "target": "230" + }, + { + "source": "172", + "target": "1256" + }, + { + "source": "1218", + "target": "339" + }, + { + "source": "217", + "target": "747" + }, + { + "source": "217", + "target": "495" + }, + { + "source": "774", + "target": "266" + }, + { + "source": "266", + "target": "363" + }, + { + "source": "275", + "target": "495" + }, + { + "source": "1474", + "target": "453" + }, + { + "source": "2512", + "target": "3579" + }, + { + "source": "495", + "target": "3579" + } + ] + } + ] + }, + "error": null, + "meta": { + "name": "Visualize graph", + "params": { + "color_nodes_by": { + "name": "color_nodes_by", + "default": null, + "type": { + "type": "node_attribute" + } + } + }, + "inputs": { + "graph": { + "name": "graph", + "type": { + "type": "" + }, + "position": "left" + } + }, + "outputs": {}, + "type": "visualization", + "sub_nodes": null + }, + "beingResized": false + }, + "position": { + "x": 516.8539381943784, + "y": 245.3958650176946 + }, + "parentId": null, + "width": 369, + "height": 423 + }, + { + "id": "NX › Core Number 1", + "type": "basic", + "data": { + "title": "NX › Core Number", + "params": {}, + "display": null, + "error": null, + "meta": { + "name": "NX › Core Number", + "params": {}, + "inputs": { + "G": { + "name": "G", + "type": { + "type": "" + }, + "position": "left" + } + }, + "outputs": { + "output": { + "name": "output", + "type": { + "type": "" + }, + "position": "right" + } + }, + "type": "basic", + "sub_nodes": null + } + }, + "position": { + "x": 170.66480592849854, + "y": 344.51743882311496 + }, + "parentId": null + }, + { + "id": "Discard loop edges 1", + "type": "basic", + "data": { + "title": "Discard loop edges", + "params": {}, + "display": null, + "error": null, + "meta": { + "name": "Discard loop edges", + "params": {}, + "inputs": { + "graph": { + "name": "graph", + "type": { + "type": "" + }, + "position": "left" + } + }, + "outputs": { + "output": { + "name": "output", + "type": { + "type": "None" + }, + "position": "right" + } + }, + "type": "basic", + "sub_nodes": null + } + }, + "position": { + "x": 222.31133709108275, + "y": 212.07360334157568 + }, + "parentId": null + } + ], + "edges": [ + { + "id": "xy-edge__Create scale-free graph 1output-Compute PageRank 1graph", + "source": "Create scale-free graph 1", + "target": "Compute PageRank 1", + "sourceHandle": "output", + "targetHandle": "graph" + }, + { + "id": "xy-edge__NX › Ladder Graph 1output-Sample graph 1graph", + "source": "NX › Ladder Graph 1", + "target": "Sample graph 1", + "sourceHandle": "output", + "targetHandle": "graph" + }, + { + "id": "xy-edge__Sample graph 1output-Visualize graph 2graph", + "source": "Sample graph 1", + "target": "Visualize graph 2", + "sourceHandle": "output", + "targetHandle": "graph" + }, + { + "id": "xy-edge__Compute PageRank 1output-Sample graph 2graph", + "source": "Compute PageRank 1", + "target": "Sample graph 2", + "sourceHandle": "output", + "targetHandle": "graph" + }, + { + "id": "xy-edge__Sample graph 2output-Visualize graph 1graph", + "source": "Sample graph 2", + "target": "Visualize graph 1", + "sourceHandle": "output", + "targetHandle": "graph" + }, + { + "id": "xy-edge__NX › Core Number 1output-Visualize graph 3graph", + "source": "NX › Core Number 1", + "target": "Visualize graph 3", + "sourceHandle": "output", + "targetHandle": "graph" + }, + { + "id": "xy-edge__Sample graph 2output-Discard loop edges 1graph", + "source": "Sample graph 2", + "target": "Discard loop edges 1", + "sourceHandle": "output", + "targetHandle": "graph" + }, + { + "id": "xy-edge__Discard loop edges 1output-NX › Core Number 1G", + "source": "Discard loop edges 1", + "target": "NX › Core Number 1", + "sourceHandle": "output", + "targetHandle": "G" + } + ] +} \ No newline at end of file diff --git a/data/PyTorch demo b/data/PyTorch demo new file mode 100644 index 0000000000000000000000000000000000000000..9c4d4b7d8bdbc354635edbe79e144c80d087acd3 --- /dev/null +++ b/data/PyTorch demo @@ -0,0 +1,542 @@ +{ + "env": "PyTorch model", + "nodes": [ + { + "id": "Input: features 1", + "type": "basic", + "data": { + "title": "Input: features", + "params": {}, + "display": null, + "error": null, + "meta": { + "name": "Input: features", + "params": {}, + "inputs": {}, + "outputs": { + "x": { + "name": "x", + "type": { + "type": "tensor" + }, + "position": "top" + } + }, + "type": "basic", + "sub_nodes": null + } + }, + "position": { + "x": -108.60604658638658, + "y": 63.96065124378427 + }, + "parentId": null + }, + { + "id": "Input: graph edges 1", + "type": "basic", + "data": { + "title": "Input: graph edges", + "params": {}, + "display": null, + "error": null, + "meta": { + "name": "Input: graph edges", + "params": {}, + "inputs": {}, + "outputs": { + "edges": { + "name": "edges", + "type": { + "type": "tensor" + }, + "position": "top" + } + }, + "type": "basic", + "sub_nodes": null + } + }, + "position": { + "x": 180.7373888617958, + "y": 58.54904654355781 + }, + "parentId": null + }, + { + "id": "Linear 1", + "type": "basic", + "data": { + "title": "Linear", + "params": { + "output_dim": "same" + }, + "display": null, + "error": null, + "meta": { + "name": "Linear", + "params": { + "output_dim": { + "name": "output_dim", + "default": "same", + "type": { + "type": "" + } + } + }, + "inputs": { + "x": { + "name": "x", + "type": { + "type": "tensor" + }, + "position": "bottom" + } + }, + "outputs": { + "x": { + "name": "x", + "type": { + "type": "tensor" + }, + "position": "top" + } + }, + "type": "basic", + "sub_nodes": null + } + }, + "position": { + "x": 56.938816909128036, + "y": -573.5634543506885 + }, + "parentId": null + }, + { + "id": "Activation 1", + "type": "basic", + "data": { + "title": "Activation", + "params": { + "type": "ReLU" + }, + "display": null, + "error": null, + "meta": { + "name": "Activation", + "params": { + "type": { + "name": "type", + "default": 1, + "type": { + "enum": [ + "ReLU", + "LeakyReLU", + "Tanh", + "Mish" + ] + } + } + }, + "inputs": { + "x": { + "name": "x", + "type": { + "type": "tensor" + }, + "position": "bottom" + } + }, + "outputs": { + "x": { + "name": "x", + "type": { + "type": "tensor" + }, + "position": "top" + } + }, + "type": "basic", + "sub_nodes": null + } + }, + "position": { + "x": 84.15324804216073, + "y": -729.2300004316357 + }, + "parentId": null + }, + { + "id": "Dropout 1", + "type": "basic", + "data": { + "title": "Dropout", + "params": { + "p": 0.5 + }, + "display": null, + "error": null, + "meta": { + "name": "Dropout", + "params": { + "p": { + "name": "p", + "default": 0.5, + "type": { + "type": "" + } + } + }, + "inputs": { + "x": { + "name": "x", + "type": { + "type": "tensor" + }, + "position": "bottom" + } + }, + "outputs": { + "x": { + "name": "x", + "type": { + "type": "tensor" + }, + "position": "top" + } + }, + "type": "basic", + "sub_nodes": null + } + }, + "position": { + "x": 56.938816909128036, + "y": -889.4846386414522 + }, + "parentId": null + }, + { + "id": "Repeat 1", + "type": "area", + "data": { + "title": "Repeat", + "params": { + "times": "3" + }, + "display": null, + "error": null, + "meta": { + "name": "Repeat", + "params": { + "times": { + "name": "times", + "default": 1, + "type": { + "type": "" + } + } + }, + "inputs": {}, + "outputs": {}, + "type": "area", + "sub_nodes": null + } + }, + "position": { + "x": -48.6249442834993, + "y": -970.0583599108166 + }, + "parentId": null, + "width": 400, + "height": 600 + }, + { + "id": "Graph conv 1", + "type": "basic", + "data": { + "title": "Graph conv", + "params": { + "type": "SAGEConv" + }, + "display": null, + "error": null, + "meta": { + "name": "Graph conv", + "params": { + "type": { + "name": "type", + "default": 1, + "type": { + "enum": [ + "GCNConv", + "GATConv", + "GATv2Conv", + "SAGEConv" + ] + } + } + }, + "inputs": { + "x": { + "name": "x", + "type": { + "type": "tensor" + }, + "position": "bottom" + }, + "edges": { + "name": "edges", + "type": { + "type": "tensor" + }, + "position": "bottom" + } + }, + "outputs": { + "x": { + "name": "x", + "type": { + "type": "tensor" + }, + "position": "top" + } + }, + "type": "basic", + "sub_nodes": null + } + }, + "position": { + "x": 64.08886242755246, + "y": -269.43023573181557 + }, + "parentId": null + }, + { + "id": "Repeat 2", + "type": "area", + "data": { + "title": "Repeat", + "params": { + "times": "5" + }, + "display": null, + "error": null, + "meta": { + "name": "Repeat", + "params": { + "times": { + "name": "times", + "default": 1, + "type": { + "type": "" + } + } + }, + "inputs": {}, + "outputs": {}, + "type": "area", + "sub_nodes": null + } + }, + "position": { + "x": -46.21033706832179, + "y": -326.2712248181098 + }, + "parentId": null, + "width": 400, + "height": 200 + }, + { + "id": "Supervised loss 1", + "type": "basic", + "data": { + "title": "Supervised loss", + "params": {}, + "display": null, + "error": null, + "meta": { + "name": "Supervised loss", + "params": {}, + "inputs": { + "x": { + "name": "x", + "type": { + "type": "tensor" + }, + "position": "bottom" + }, + "y": { + "name": "y", + "type": { + "type": "tensor" + }, + "position": "bottom" + } + }, + "outputs": { + "loss": { + "name": "loss", + "type": { + "type": "tensor" + }, + "position": "top" + } + }, + "type": "basic", + "sub_nodes": null + } + }, + "position": { + "x": 110.53693593362718, + "y": -1123.9976567905628 + }, + "parentId": null + }, + { + "id": "Input: label 1", + "type": "basic", + "data": { + "title": "Input: label", + "params": {}, + "display": null, + "error": null, + "meta": { + "name": "Input: label", + "params": {}, + "inputs": {}, + "outputs": { + "y": { + "name": "y", + "type": { + "type": "tensor" + }, + "position": "top" + } + }, + "type": "basic", + "sub_nodes": null + } + }, + "position": { + "x": 666.110498676668, + "y": -898.6721561114967 + }, + "parentId": null + }, + { + "id": "Optimizer 1", + "type": "basic", + "data": { + "title": "Optimizer", + "params": { + "type": "AdamW", + "lr": 0.001 + }, + "display": null, + "error": null, + "meta": { + "name": "Optimizer", + "params": { + "type": { + "name": "type", + "default": 1, + "type": { + "enum": [ + "AdamW", + "Adafactor", + "Adagrad", + "SGD", + "Lion", + "Paged AdamW", + "Galore AdamW" + ] + } + }, + "lr": { + "name": "lr", + "default": 0.001, + "type": { + "type": "" + } + } + }, + "inputs": { + "loss": { + "name": "loss", + "type": { + "type": "tensor" + }, + "position": "bottom" + } + }, + "outputs": {}, + "type": "basic", + "sub_nodes": null + } + }, + "position": { + "x": 165.28398260528976, + "y": -1338.6254108128633 + }, + "parentId": null + } + ], + "edges": [ + { + "id": "xy-edge__Linear 1x-Activation 1x", + "source": "Linear 1", + "target": "Activation 1", + "sourceHandle": "x", + "targetHandle": "x" + }, + { + "id": "xy-edge__Activation 1x-Dropout 1x", + "source": "Activation 1", + "target": "Dropout 1", + "sourceHandle": "x", + "targetHandle": "x" + }, + { + "id": "xy-edge__Input: features 1x-Graph conv 1x", + "source": "Input: features 1", + "target": "Graph conv 1", + "sourceHandle": "x", + "targetHandle": "x" + }, + { + "id": "xy-edge__Input: graph edges 1edges-Graph conv 1edges", + "source": "Input: graph edges 1", + "target": "Graph conv 1", + "sourceHandle": "edges", + "targetHandle": "edges" + }, + { + "id": "xy-edge__Graph conv 1x-Linear 1x", + "source": "Graph conv 1", + "target": "Linear 1", + "sourceHandle": "x", + "targetHandle": "x" + }, + { + "id": "xy-edge__Input: label 1y-Supervised loss 1y", + "source": "Input: label 1", + "target": "Supervised loss 1", + "sourceHandle": "y", + "targetHandle": "y" + }, + { + "id": "xy-edge__Dropout 1x-Supervised loss 1x", + "source": "Dropout 1", + "target": "Supervised loss 1", + "sourceHandle": "x", + "targetHandle": "x" + }, + { + "id": "xy-edge__Supervised loss 1loss-Optimizer 1loss", + "source": "Supervised loss 1", + "target": "Optimizer 1", + "sourceHandle": "loss", + "targetHandle": "loss" + } + ] +} \ No newline at end of file diff --git a/data/RAG chatbot app b/data/RAG chatbot app new file mode 100644 index 0000000000000000000000000000000000000000..38a38f2f99c84f896fab3f81f2e4928658203e66 --- /dev/null +++ b/data/RAG chatbot app @@ -0,0 +1,608 @@ +{ + "env": "LynxScribe", + "nodes": [ + { + "id": "Chat Input 1", + "type": "basic", + "data": { + "title": "Chat Input", + "params": { + "load_mode": "augmented", + "model": "Yi-34B (triton)", + "embedder": "GritLM-7b (triton)" + }, + "display": null, + "error": null, + "inputs": {}, + "outputs": { + "output": "" + }, + "meta": { + "name": "Chat Input", + "params": { + "load_mode": { + "name": "load_mode", + "default": 1, + "type": { + "enum": [ + "augmented" + ] + } + }, + "model": { + "name": "model", + "default": 1, + "type": { + "enum": [ + "Yi-34B (triton)" + ] + } + }, + "embedder": { + "name": "embedder", + "default": 1, + "type": { + "enum": [ + "GritLM-7b (triton)" + ] + } + } + }, + "inputs": {}, + "outputs": { + "output": { + "name": "output", + "type": { + "type": "None" + }, + "position": "right" + } + }, + "type": "basic", + "sub_nodes": null + } + }, + "position": { + "x": 195.66666666666669, + "y": 163.66666666666666 + }, + "parentId": null, + "parentNode": null + }, + { + "id": "Chroma Graph RAG Loader 1", + "type": "basic", + "data": { + "title": "Chroma Graph RAG Loader", + "params": { + "location": "GCP", + "bucket": "", + "folder": "", + "embedder": "GritLM-7b (triton)" + }, + "display": null, + "error": null, + "inputs": {}, + "outputs": { + "output": "" + }, + "meta": { + "name": "Chroma Graph RAG Loader", + "params": { + "location": { + "name": "location", + "default": 1, + "type": { + "enum": [ + "GCP" + ] + } + }, + "bucket": { + "name": "bucket", + "default": "", + "type": { + "format": "collapsed" + } + }, + "folder": { + "name": "folder", + "default": "", + "type": { + "format": "collapsed" + } + }, + "embedder": { + "name": "embedder", + "default": 1, + "type": { + "enum": [ + "GritLM-7b (triton)" + ] + } + } + }, + "inputs": {}, + "outputs": { + "output": { + "name": "output", + "type": { + "type": "None" + }, + "position": "right" + } + }, + "type": "basic", + "sub_nodes": null + } + }, + "position": { + "x": 195.60875221397816, + "y": 395.94296449008243 + }, + "parentId": null, + "parentNode": null + }, + { + "id": "k-NN Intent Classifier 1", + "type": "basic", + "data": { + "title": "k-NN Intent Classifier", + "params": { + "distance": "cosine", + "max_dist": 0.3, + "k": "10", + "voting": "weighted" + }, + "display": null, + "error": null, + "inputs": { + "qa_embs": "None", + "rag_graph": "None" + }, + "outputs": { + "output": "" + }, + "meta": { + "name": "k-NN Intent Classifier", + "params": { + "distance": { + "name": "distance", + "default": 1, + "type": { + "enum": [ + "cosine", + "euclidean" + ] + } + }, + "max_dist": { + "name": "max_dist", + "default": 0.3, + "type": { + "type": "" + } + }, + "k": { + "name": "k", + "default": 3, + "type": { + "type": "" + } + }, + "voting": { + "name": "voting", + "default": 1, + "type": { + "enum": [ + "most common", + "weighted" + ] + } + } + }, + "inputs": { + "qa_embs": { + "name": "qa_embs", + "type": { + "type": "None" + }, + "position": "left" + }, + "rag_graph": { + "name": "rag_graph", + "type": { + "type": "None" + }, + "position": "left" + } + }, + "outputs": { + "output": { + "name": "output", + "type": { + "type": "None" + }, + "position": "right" + } + }, + "type": "basic", + "sub_nodes": null + }, + "collapsed": false + }, + "position": { + "x": 563.2980104689954, + "y": 133.15405056058248 + }, + "parentId": null, + "parentNode": null + }, + { + "id": "Graph RAG Answer 1", + "type": "basic", + "data": { + "title": "Graph RAG Answer", + "params": { + "answer_llm": "Yi-34B (triton)", + "faq_dist": 0.12, + "max_dist": 0.25, + "ctx_tokens": 2800, + "distance": "cosine", + "graph_rag_params": "" + }, + "display": null, + "error": null, + "inputs": { + "qa_embs": "None", + "intent": "None", + "rag_graph": "None", + "prompt_dict": "None" + }, + "outputs": { + "output": "" + }, + "meta": { + "name": "Graph RAG Answer", + "params": { + "answer_llm": { + "name": "answer_llm", + "default": 1, + "type": { + "enum": [ + "Yi-34B (triton)" + ] + } + }, + "faq_dist": { + "name": "faq_dist", + "default": 0.12, + "type": { + "type": "" + } + }, + "max_dist": { + "name": "max_dist", + "default": 0.25, + "type": { + "type": "" + } + }, + "ctx_tokens": { + "name": "ctx_tokens", + "default": 2800, + "type": { + "type": "" + } + }, + "distance": { + "name": "distance", + "default": 1, + "type": { + "enum": [ + "cosine", + "euclidean" + ] + } + }, + "graph_rag_params": { + "name": "graph_rag_params", + "default": "", + "type": { + "format": "collapsed" + } + } + }, + "inputs": { + "qa_embs": { + "name": "qa_embs", + "type": { + "type": "None" + }, + "position": "left" + }, + "intent": { + "name": "intent", + "type": { + "type": "None" + }, + "position": "left" + }, + "rag_graph": { + "name": "rag_graph", + "type": { + "type": "None" + }, + "position": "left" + }, + "prompt_dict": { + "name": "prompt_dict", + "type": { + "type": "None" + }, + "position": "left" + } + }, + "outputs": { + "output": { + "name": "output", + "type": { + "type": "None" + }, + "position": "right" + } + }, + "type": "basic", + "sub_nodes": null + }, + "collapsed": false + }, + "position": { + "x": 954.7861764338505, + "y": 158.59348288997435 + }, + "parentId": null, + "parentNode": null + }, + { + "id": "Scenario Builder 1", + "type": "basic", + "data": { + "title": "Scenario Builder", + "params": { + "scenario": "" + }, + "display": null, + "error": null, + "inputs": { + "input": "" + }, + "outputs": { + "output": "" + }, + "meta": { + "name": "Scenario Builder", + "params": { + "scenario": { + "name": "scenario", + "default": "", + "type": { + "format": "collapsed" + } + } + }, + "inputs": { + "input": { + "name": "input", + "type": { + "type": "None" + }, + "position": "left" + } + }, + "outputs": { + "output": { + "name": "output", + "type": { + "type": "None" + }, + "position": "right" + } + }, + "type": "basic", + "sub_nodes": null + } + }, + "position": { + "x": 564.4460318313352, + "y": 542.19038386186 + }, + "parentId": null, + "parentNode": null + }, + { + "id": "Answer Post Processing 1", + "type": "basic", + "data": { + "title": "Answer Post Processing", + "params": { + "distance": "cosine", + "min_conf": 0.78 + }, + "display": null, + "error": null, + "inputs": { + "qa_embs": "None", + "rag_graph": "None" + }, + "outputs": { + "output": "" + }, + "meta": { + "name": "Answer Post Processing", + "params": { + "distance": { + "name": "distance", + "default": 1, + "type": { + "enum": [ + "cosine", + "euclidean" + ] + } + }, + "min_conf": { + "name": "min_conf", + "default": 0.78, + "type": { + "type": "" + } + } + }, + "inputs": { + "qa_embs": { + "name": "qa_embs", + "type": { + "type": "None" + }, + "position": "left" + }, + "rag_graph": { + "name": "rag_graph", + "type": { + "type": "None" + }, + "position": "left" + } + }, + "outputs": { + "output": { + "name": "output", + "type": { + "type": "None" + }, + "position": "right" + } + }, + "type": "basic", + "sub_nodes": null + } + }, + "position": { + "x": 1278.9987187264371, + "y": 203.10622200721383 + }, + "parentId": null, + "parentNode": null + }, + { + "id": "Chat Output 1", + "type": "basic", + "data": { + "title": "Chat Output", + "params": {}, + "display": null, + "error": null, + "inputs": { + "input": "" + }, + "outputs": {}, + "meta": { + "name": "Chat Output", + "params": {}, + "inputs": { + "input": { + "name": "input", + "type": { + "type": "None" + }, + "position": "left" + } + }, + "outputs": {}, + "type": "basic", + "sub_nodes": null + }, + "collapsed": true + }, + "position": { + "x": 1567.1754450730762, + "y": 249.55429591996437 + }, + "parentId": null, + "parentNode": null + } + ], + "edges": [ + { + "id": "xy-edge__Answer Post Processing 1output-Chat Output 1input", + "source": "Answer Post Processing 1", + "target": "Chat Output 1", + "sourceHandle": "output", + "targetHandle": "input" + }, + { + "id": "xy-edge__Chat Input 1output-Graph RAG Answer 1qa_embs", + "source": "Chat Input 1", + "target": "Graph RAG Answer 1", + "sourceHandle": "output", + "targetHandle": "qa_embs" + }, + { + "id": "xy-edge__Chat Input 1output-k-NN Intent Classifier 1qa_embs", + "source": "Chat Input 1", + "target": "k-NN Intent Classifier 1", + "sourceHandle": "output", + "targetHandle": "qa_embs" + }, + { + "id": "xy-edge__Chroma Graph RAG Loader 1output-k-NN Intent Classifier 1rag_graph", + "source": "Chroma Graph RAG Loader 1", + "target": "k-NN Intent Classifier 1", + "sourceHandle": "output", + "targetHandle": "rag_graph" + }, + { + "id": "xy-edge__k-NN Intent Classifier 1output-Graph RAG Answer 1intent", + "source": "k-NN Intent Classifier 1", + "target": "Graph RAG Answer 1", + "sourceHandle": "output", + "targetHandle": "intent" + }, + { + "id": "xy-edge__Chroma Graph RAG Loader 1output-Scenario Builder 1input", + "source": "Chroma Graph RAG Loader 1", + "target": "Scenario Builder 1", + "sourceHandle": "output", + "targetHandle": "input" + }, + { + "id": "xy-edge__Scenario Builder 1output-Graph RAG Answer 1prompt_dict", + "source": "Scenario Builder 1", + "target": "Graph RAG Answer 1", + "sourceHandle": "output", + "targetHandle": "prompt_dict" + }, + { + "id": "xy-edge__Graph RAG Answer 1output-Answer Post Processing 1qa_embs", + "source": "Graph RAG Answer 1", + "target": "Answer Post Processing 1", + "sourceHandle": "output", + "targetHandle": "qa_embs" + }, + { + "id": "xy-edge__Chroma Graph RAG Loader 1output-Answer Post Processing 1rag_graph", + "source": "Chroma Graph RAG Loader 1", + "target": "Answer Post Processing 1", + "sourceHandle": "output", + "targetHandle": "rag_graph" + }, + { + "id": "xy-edge__Chroma Graph RAG Loader 1output-Graph RAG Answer 1rag_graph", + "source": "Chroma Graph RAG Loader 1", + "target": "Graph RAG Answer 1", + "sourceHandle": "output", + "targetHandle": "rag_graph" + } + ] +} \ No newline at end of file