Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,7 +7,6 @@ import spaces
|
|
| 7 |
tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
| 8 |
model = AutoModelForCausalLM.from_pretrained("gpt2")
|
| 9 |
|
| 10 |
-
tokenizer.pad_token_id = tokenizer.eos_token_id
|
| 11 |
print("Loading finished.")
|
| 12 |
|
| 13 |
print(f"Is CUDA available: {torch.cuda.is_available()}")
|
|
@@ -174,22 +173,13 @@ a:before {
|
|
| 174 |
"""
|
| 175 |
|
| 176 |
|
| 177 |
-
def
|
| 178 |
-
"""
|
| 179 |
-
|
| 180 |
-
html_content = f" <li> <a href='#' class='{('chosen' if node.table is None else '')}' id='{('root' if step==0 else '')}'> <span> <b>{token}</b> </span> "
|
| 181 |
-
html_content += node.table if node.table is not None else ""
|
| 182 |
-
html_content += "</a>"
|
| 183 |
-
if len(node.children.keys()) > 0:
|
| 184 |
-
html_content += "<ul> "
|
| 185 |
-
for token, subnode in node.children.items():
|
| 186 |
-
html_content += generate_nodes(token, subnode, step=step + 1)
|
| 187 |
-
html_content += "</ul>"
|
| 188 |
-
html_content += "</li>"
|
| 189 |
-
return html_content
|
| 190 |
|
| 191 |
|
| 192 |
-
def generate_markdown_table(
|
|
|
|
|
|
|
| 193 |
markdown_table = """
|
| 194 |
<table>
|
| 195 |
<tr>
|
|
@@ -204,21 +194,41 @@ def generate_markdown_table(scores, sequence_prob, top_k=4, chosen_tokens=None):
|
|
| 204 |
item_class = "chosen"
|
| 205 |
markdown_table += f"""
|
| 206 |
<tr class={item_class}>
|
| 207 |
-
<td>{token}</td>
|
| 208 |
<td>{scores[token_idx]:.4f}</td>
|
| 209 |
-
<td>{scores[token_idx] +
|
| 210 |
</tr>"""
|
| 211 |
markdown_table += """
|
| 212 |
</table>"""
|
| 213 |
return markdown_table
|
| 214 |
|
| 215 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 216 |
def generate_html(start_sentence, original_tree):
|
| 217 |
|
| 218 |
-
html_output = """<div class="custom-container">
|
| 219 |
<div class="tree">
|
| 220 |
-
<ul>
|
| 221 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 222 |
|
| 223 |
html_output += """
|
| 224 |
</ul>
|
|
@@ -236,16 +246,21 @@ from dataclasses import dataclass
|
|
| 236 |
@dataclass
|
| 237 |
class BeamNode:
|
| 238 |
cumulative_score: float
|
|
|
|
| 239 |
table: str
|
| 240 |
current_sentence: str
|
| 241 |
-
children: Dict[
|
| 242 |
|
| 243 |
|
| 244 |
-
def generate_beams(start_sentence, scores, sequences,
|
| 245 |
-
print(tokenizer.batch_decode(sequences))
|
| 246 |
sequences = sequences.cpu().numpy()
|
|
|
|
| 247 |
original_tree = BeamNode(
|
| 248 |
-
cumulative_score=0,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 249 |
)
|
| 250 |
n_beams = len(scores[0])
|
| 251 |
beam_trees = [original_tree] * n_beams
|
|
@@ -302,6 +317,7 @@ def generate_beams(start_sentence, scores, sequences, beam_indices):
|
|
| 302 |
markdown_table = generate_markdown_table(
|
| 303 |
step_scores[beam_ix, :],
|
| 304 |
current_beam.cumulative_score,
|
|
|
|
| 305 |
chosen_tokens=list(selected_tokens["token"].values),
|
| 306 |
)
|
| 307 |
beam_trees[beam_ix].table = markdown_table
|
|
@@ -315,18 +331,18 @@ def generate_beams(start_sentence, scores, sequences, beam_indices):
|
|
| 315 |
# Update the source tree
|
| 316 |
source_beam_ix = int(top_df_selected.iloc[beam_ix]["beam_index"])
|
| 317 |
|
| 318 |
-
|
| 319 |
-
|
|
|
|
|
|
|
|
|
|
| 320 |
table=None,
|
| 321 |
children={},
|
| 322 |
current_sentence=beam_trees[source_beam_ix].current_sentence
|
| 323 |
+ current_token_choice,
|
| 324 |
-
cumulative_score=
|
| 325 |
-
+
|
| 326 |
)
|
| 327 |
-
assert (
|
| 328 |
-
len(str(original_tree)) > previous_len
|
| 329 |
-
), "Original tree has not increased size"
|
| 330 |
|
| 331 |
# Reassign all beams at once
|
| 332 |
beam_trees = [
|
|
@@ -337,12 +353,12 @@ def generate_beams(start_sentence, scores, sequences, beam_indices):
|
|
| 337 |
# Advance all beams by one token
|
| 338 |
for beam_ix in range(n_beams):
|
| 339 |
current_token_choice_ix = top_df_selected.iloc[beam_ix]["token_index"]
|
| 340 |
-
|
| 341 |
-
|
| 342 |
return original_tree
|
| 343 |
|
| 344 |
@spaces.GPU
|
| 345 |
-
def get_beam_search_html(input_text, number_steps, number_beams):
|
| 346 |
inputs = tokenizer([input_text], return_tensors="pt")
|
| 347 |
|
| 348 |
outputs = model.generate(
|
|
@@ -351,19 +367,21 @@ def get_beam_search_html(input_text, number_steps, number_beams):
|
|
| 351 |
num_beams=number_beams,
|
| 352 |
num_return_sequences=number_beams,
|
| 353 |
return_dict_in_generate=True,
|
|
|
|
| 354 |
output_scores=True,
|
| 355 |
-
top_k=5,
|
| 356 |
do_sample=False,
|
| 357 |
)
|
|
|
|
|
|
|
|
|
|
| 358 |
|
| 359 |
original_tree = generate_beams(
|
| 360 |
input_text,
|
| 361 |
outputs.scores[:],
|
| 362 |
outputs.sequences[:, :],
|
| 363 |
-
|
| 364 |
)
|
| 365 |
html = generate_html(input_text, original_tree)
|
| 366 |
-
print(html)
|
| 367 |
return html
|
| 368 |
|
| 369 |
|
|
@@ -374,10 +392,12 @@ with gr.Blocks(
|
|
| 374 |
css=STYLE,
|
| 375 |
) as demo:
|
| 376 |
text = gr.Textbox(label="Sentence to decode from", value="Today is")
|
| 377 |
-
|
| 378 |
-
|
|
|
|
|
|
|
| 379 |
button = gr.Button()
|
| 380 |
out = gr.Markdown(label="Output")
|
| 381 |
-
button.click(get_beam_search_html, inputs=[text, steps, beams], outputs=out)
|
| 382 |
|
| 383 |
demo.launch()
|
|
|
|
| 7 |
tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
| 8 |
model = AutoModelForCausalLM.from_pretrained("gpt2")
|
| 9 |
|
|
|
|
| 10 |
print("Loading finished.")
|
| 11 |
|
| 12 |
print(f"Is CUDA available: {torch.cuda.is_available()}")
|
|
|
|
| 173 |
"""
|
| 174 |
|
| 175 |
|
| 176 |
+
def clean(s):
|
| 177 |
+
return s.replace("\n", r"\n").replace("\t", r"\t")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
|
| 179 |
|
| 180 |
+
def generate_markdown_table(
|
| 181 |
+
scores, previous_cumul_score, score_divider, top_k=4, chosen_tokens=None
|
| 182 |
+
):
|
| 183 |
markdown_table = """
|
| 184 |
<table>
|
| 185 |
<tr>
|
|
|
|
| 194 |
item_class = "chosen"
|
| 195 |
markdown_table += f"""
|
| 196 |
<tr class={item_class}>
|
| 197 |
+
<td>{clean(token)}</td>
|
| 198 |
<td>{scores[token_idx]:.4f}</td>
|
| 199 |
+
<td>{(scores[token_idx] + previous_cumul_score)/score_divider:.4f}</td>
|
| 200 |
</tr>"""
|
| 201 |
markdown_table += """
|
| 202 |
</table>"""
|
| 203 |
return markdown_table
|
| 204 |
|
| 205 |
|
| 206 |
+
def generate_nodes(token_ix, node, step):
|
| 207 |
+
"""Recursively generate HTML for the tree nodes."""
|
| 208 |
+
token = tokenizer.decode([token_ix])
|
| 209 |
+
html_content = f" <li> <a href='#' class='{('chosen' if node.table is None else '')}'> <span> <b>{token_ix}:<br>{clean(token)}</b> </span> "
|
| 210 |
+
html_content += node.table if node.table is not None else ""
|
| 211 |
+
html_content += "</a>"
|
| 212 |
+
if len(node.children.keys()) > 0:
|
| 213 |
+
html_content += "<ul> "
|
| 214 |
+
for token_ix, subnode in node.children.items():
|
| 215 |
+
html_content += generate_nodes(token_ix, subnode, step=step + 1)
|
| 216 |
+
html_content += "</ul>"
|
| 217 |
+
html_content += "</li>"
|
| 218 |
+
return html_content
|
| 219 |
+
|
| 220 |
+
|
| 221 |
def generate_html(start_sentence, original_tree):
|
| 222 |
|
| 223 |
+
html_output = f"""<div class="custom-container">
|
| 224 |
<div class="tree">
|
| 225 |
+
<ul>
|
| 226 |
+
<li> <a href='#' id='root'> <span> <b>{start_sentence}</b> </span> {original_tree.table} </a>"""
|
| 227 |
+
if len(original_tree.children.keys()) > 0:
|
| 228 |
+
html_output += "<ul> "
|
| 229 |
+
for token_ix, subnode in original_tree.children.items():
|
| 230 |
+
html_output += generate_nodes(token_ix, subnode, step=1)
|
| 231 |
+
html_output += "</ul>"
|
| 232 |
|
| 233 |
html_output += """
|
| 234 |
</ul>
|
|
|
|
| 246 |
@dataclass
|
| 247 |
class BeamNode:
|
| 248 |
cumulative_score: float
|
| 249 |
+
children_score_divider: float
|
| 250 |
table: str
|
| 251 |
current_sentence: str
|
| 252 |
+
children: Dict[int, "BeamNode"]
|
| 253 |
|
| 254 |
|
| 255 |
+
def generate_beams(start_sentence, scores, sequences, length_penalty):
|
|
|
|
| 256 |
sequences = sequences.cpu().numpy()
|
| 257 |
+
input_length = len(tokenizer([start_sentence], return_tensors="pt"))
|
| 258 |
original_tree = BeamNode(
|
| 259 |
+
cumulative_score=0,
|
| 260 |
+
table=None,
|
| 261 |
+
current_sentence=start_sentence,
|
| 262 |
+
children={},
|
| 263 |
+
children_score_divider=((input_length + 1) ** length_penalty),
|
| 264 |
)
|
| 265 |
n_beams = len(scores[0])
|
| 266 |
beam_trees = [original_tree] * n_beams
|
|
|
|
| 317 |
markdown_table = generate_markdown_table(
|
| 318 |
step_scores[beam_ix, :],
|
| 319 |
current_beam.cumulative_score,
|
| 320 |
+
current_beam.children_score_divider,
|
| 321 |
chosen_tokens=list(selected_tokens["token"].values),
|
| 322 |
)
|
| 323 |
beam_trees[beam_ix].table = markdown_table
|
|
|
|
| 331 |
# Update the source tree
|
| 332 |
source_beam_ix = int(top_df_selected.iloc[beam_ix]["beam_index"])
|
| 333 |
|
| 334 |
+
cumulative_score = (
|
| 335 |
+
cumulative_scores[source_beam_ix]
|
| 336 |
+
+ scores[step][source_beam_ix][current_token_choice_ix].numpy()
|
| 337 |
+
)
|
| 338 |
+
beam_trees[source_beam_ix].children[current_token_choice_ix] = BeamNode(
|
| 339 |
table=None,
|
| 340 |
children={},
|
| 341 |
current_sentence=beam_trees[source_beam_ix].current_sentence
|
| 342 |
+ current_token_choice,
|
| 343 |
+
cumulative_score=cumulative_score,
|
| 344 |
+
children_score_divider=((input_length + step + 1) ** length_penalty),
|
| 345 |
)
|
|
|
|
|
|
|
|
|
|
| 346 |
|
| 347 |
# Reassign all beams at once
|
| 348 |
beam_trees = [
|
|
|
|
| 353 |
# Advance all beams by one token
|
| 354 |
for beam_ix in range(n_beams):
|
| 355 |
current_token_choice_ix = top_df_selected.iloc[beam_ix]["token_index"]
|
| 356 |
+
beam_trees[beam_ix] = beam_trees[beam_ix].children[current_token_choice_ix]
|
| 357 |
+
|
| 358 |
return original_tree
|
| 359 |
|
| 360 |
@spaces.GPU
|
| 361 |
+
def get_beam_search_html(input_text, number_steps, number_beams, length_penalty):
|
| 362 |
inputs = tokenizer([input_text], return_tensors="pt")
|
| 363 |
|
| 364 |
outputs = model.generate(
|
|
|
|
| 367 |
num_beams=number_beams,
|
| 368 |
num_return_sequences=number_beams,
|
| 369 |
return_dict_in_generate=True,
|
| 370 |
+
length_penalty=-10.0,
|
| 371 |
output_scores=True,
|
|
|
|
| 372 |
do_sample=False,
|
| 373 |
)
|
| 374 |
+
print("Sequences:")
|
| 375 |
+
print(tokenizer.batch_decode(outputs.sequences))
|
| 376 |
+
print("Scores:", outputs.sequences_scores)
|
| 377 |
|
| 378 |
original_tree = generate_beams(
|
| 379 |
input_text,
|
| 380 |
outputs.scores[:],
|
| 381 |
outputs.sequences[:, :],
|
| 382 |
+
length_penalty,
|
| 383 |
)
|
| 384 |
html = generate_html(input_text, original_tree)
|
|
|
|
| 385 |
return html
|
| 386 |
|
| 387 |
|
|
|
|
| 392 |
css=STYLE,
|
| 393 |
) as demo:
|
| 394 |
text = gr.Textbox(label="Sentence to decode from", value="Today is")
|
| 395 |
+
with gr.Row():
|
| 396 |
+
steps = gr.Slider(label="Number of steps", minimum=1, maximum=8, step=1, value=4)
|
| 397 |
+
beams = gr.Slider(label="Number of beams", minimum=2, maximum=4, step=1, value=3)
|
| 398 |
+
length_penalty = gr.Slider(label="Length penalty", minimum=-5, maximum=5, step=0.5, value=1)
|
| 399 |
button = gr.Button()
|
| 400 |
out = gr.Markdown(label="Output")
|
| 401 |
+
button.click(get_beam_search_html, inputs=[text, steps, beams, length_penalty], outputs=out)
|
| 402 |
|
| 403 |
demo.launch()
|