Spaces:
Running
on
Zero
Running
on
Zero
| import spaces | |
| import gradio as gr | |
| import torch | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
| from threading import Thread | |
| def predict(message, history): | |
| torch.set_default_device("cuda") | |
| # Load model and tokenizer | |
| model_id = "LiquidAI/LFM2-1.2B" | |
| tokenizer = AutoTokenizer.from_pretrained(model_id) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_id, | |
| device_map="auto", | |
| torch_dtype=torch.bfloat16, | |
| trust_remote_code=True, | |
| load_in_4bit=True, # Keeping 4-bit quantization for efficiency | |
| # attn_implementation="flash_attention_2" # Uncomment on compatible GPU | |
| ) | |
| # Format conversation history for chat template | |
| messages = [{"role": "user" if i % 2 == 0 else "assistant", "content": msg} | |
| for conv in history for i, msg in enumerate(conv) if msg] | |
| messages.append({"role": "user", "content": message}) | |
| # Apply chat template | |
| input_ids = tokenizer.apply_chat_template( | |
| messages, | |
| add_generation_prompt=True, | |
| return_tensors="pt", | |
| tokenize=True | |
| ).to('cuda') | |
| # Setup streamer for real-time output | |
| streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True) | |
| # Generation parameters | |
| generate_kwargs = dict( | |
| input_ids=input_ids, | |
| streamer=streamer, | |
| max_new_tokens=256, | |
| do_sample=True, | |
| temperature=0.3, | |
| min_p=0.15, | |
| repetition_penalty=1.05, | |
| pad_token_id=tokenizer.eos_token_id | |
| ) | |
| # Start generation in separate thread | |
| t = Thread(target=model.generate, kwargs=generate_kwargs) | |
| t.start() | |
| # Stream tokens | |
| partial_message = "" | |
| for new_token in streamer: | |
| partial_message += new_token | |
| yield partial_message | |
| # Setup Gradio interface | |
| gr.ChatInterface( | |
| predict, | |
| description=""" | |
| <center><h2>LiquidAI LFM2-1.2B Chat</h2></center> | |
| Chat with [LiquidAI/LFM2-1.2B](https://huggingface.co/LiquidAI/LFM2-1.2B), a compact and efficient language model. | |
| This model provides high-quality responses while maintaining a small footprint, making it ideal for fast inference. | |
| """, | |
| examples=[ | |
| 'Can you solve the equation 2x + 3 = 11 for x?', | |
| 'What is C. elegans?', | |
| 'Explain quantum computing in simple terms', | |
| 'Write a Python function to find prime numbers', | |
| 'What are the key differences between RNA and DNA?', | |
| 'Can you write a haiku about artificial intelligence?' | |
| ], | |
| theme=gr.themes.Soft(primary_hue="blue"), | |
| ).launch() |