File size: 9,156 Bytes
270a762
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
# 🎬 Multilingual Video Classification (Beautiful + Voice Icon)
import os, json, base64
from pathlib import Path

import gradio as gr
import torch, cv2, numpy as np
from PIL import Image
from gtts import gTTS
from transformers import (
    BlipProcessor, BlipForConditionalGeneration,
    AutoTokenizer, AutoModelForSequenceClassification,
    AutoModelForSeq2SeqLM
)

# ---------- CONFIG ----------
MODEL_ID = "magedsar7an/caption-cls-en-small"   # ← your HF model repo
FRAMES_PER_VIDEO = 6
FRAME_SIZE = 384
device = "cuda" if torch.cuda.is_available() else "cpu"

SUPPORTED_LANGS = {
    "en":"English","ar":"Arabic","fr":"French","tr":"Turkish",
    "es":"Spanish","de":"German","hi":"Hindi","id":"Indonesian"
}
MARIAN_TO_EN = {
    "ar":"Helsinki-NLP/opus-mt-ar-en",
    "fr":"Helsinki-NLP/opus-mt-fr-en",
    "tr":"Helsinki-NLP/opus-mt-tr-en",
    "es":"Helsinki-NLP/opus-mt-es-en",
    "de":"Helsinki-NLP/opus-mt-de-en",
    "hi":"Helsinki-NLP/opus-mt-hi-en",
    "id":"Helsinki-NLP/opus-mt-id-en",
}
LABEL_TRANSLATIONS = {
    "ar": {"clap":"تصفيق","drink":"يشرب","hug":"عناق","kick_ball":"ركل الكرة",
           "kiss":"قبلة","run":"يجري","sit":"يجلس","wave":"يلوح"},
    "tr": {"clap":"alkış","drink":"içmek","hug":"sarılmak","kick_ball":"topa tekme",
           "kiss":"öpücük","run":"koşmak","sit":"oturmak","wave":"el sallamak"},
    "fr": {"clap":"applaudir","drink":"boire","hug":"embrasser","kick_ball":"frapper le ballon",
           "kiss":"baiser","run":"courir","sit":"s’asseoir","wave":"saluer"},
    "es": {"clap":"aplaudir","drink":"beber","hug":"abrazar","kick_ball":"patear la pelota",
           "kiss":"besar","run":"correr","sit":"sentarse","wave":"saludar"},
    "de": {"clap":"klatschen","drink":"trinken","hug":"umarmen","kick_ball":"den Ball treten",
           "kiss":"küssen","run":"laufen","sit":"sitzen","wave":"winken"},
    "hi": {"clap":"ताली बजाना","drink":"पीना","hug":"गले लगाना","kick_ball":"गेंद को मारना",
           "kiss":"चूमना","run":"दौड़ना","sit":"बैठना","wave":"हाथ हिलाना"},
    "id": {"clap":"bertepuk tangan","drink":"minum","hug":"berpelukan","kick_ball":"menendang bola",
           "kiss":"cium","run":"berlari","sit":"duduk","wave":"melambaikan tangan"},
}

# ---------- LOAD MODELS ----------
print("Loading BLIP captioner...")
blip_proc = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
blip = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to(device).eval()

print("Loading English classifier from HF Hub...")
tok = AutoTokenizer.from_pretrained(MODEL_ID)
cls = AutoModelForSequenceClassification.from_pretrained(MODEL_ID).to(device).eval()

# id2label from model config (you embedded it during upload)
cfg_map = getattr(cls.config, "id2label", None)
if not cfg_map:
    raise RuntimeError("id2label not found in config.json; add it to your HF model.")
# normalize keys to int
id2label = {int(k): v for k, v in (cfg_map.items() if isinstance(cfg_map, dict) else enumerate(cfg_map))}
print("✅ Models loaded successfully!")

# ---------- HELPERS ----------
def _resolve_video_path(video):
    if isinstance(video, str):
        return video if os.path.exists(video) else None
    if isinstance(video, dict):
        p = video.get("path") or video.get("name")
        return p if (isinstance(p, str) and os.path.exists(p)) else None
    name = getattr(video, "name", None)
    if isinstance(name, str) and os.path.exists(name):
        return name
    return None

def extract_frames(video_path, k=6, size=384):
    cap = cv2.VideoCapture(video_path)
    if not cap.isOpened():
        return []
    total = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) or 0
    idxs = np.linspace(0, max(total - 1, 0), num=k, dtype=int) if total > 0 else np.linspace(0, 240, num=k, dtype=int)
    frames = []
    for i in idxs:
        cap.set(cv2.CAP_PROP_POS_FRAMES, int(i))
        ok, frame = cap.read()
        if not ok or frame is None:
            continue
        h, w = frame.shape[:2]
        if h <= 0 or w <= 0:
            continue
        if h < w:
            new_h = size; new_w = int(w * (size / h))
        else:
            new_w = size; new_h = int(h * (size / w))
        frame = cv2.resize(frame, (new_w, new_h))
        frames.append(Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)))
    cap.release()
    return frames

def blip_caption(img):
    inputs = blip_proc(images=img, return_tensors="pt").to(device)
    with torch.no_grad():
        out = blip.generate(**inputs, max_new_tokens=30)
    return blip_proc.decode(out[0], skip_special_tokens=True).strip()

def translate_to_en(texts, lang):
    if lang == "en": return texts
    model_name = MARIAN_TO_EN.get(lang)
    if not model_name: return texts
    try:
        tok_tr = AutoTokenizer.from_pretrained(model_name)
        mt = AutoModelForSeq2SeqLM.from_pretrained(model_name).to(device).eval()
        outs = []
        for i in range(0, len(texts), 16):
            batch = texts[i:i + 16]
            enc = tok_tr(batch, return_tensors="pt", padding=True, truncation=True).to(device)
            with torch.no_grad():
                gen = mt.generate(**enc, max_new_tokens=120)
            outs.extend(tok_tr.batch_decode(gen, skip_special_tokens=True))
        return outs
    except Exception as e:
        print(f"⚠️ Translation failed: {e}")
        return texts

def classify(texts):
    enc = tok(texts, return_tensors="pt", padding=True, truncation=True).to(device)
    with torch.no_grad():
        logits = cls(**enc).logits
    probs = torch.softmax(logits, dim=-1).cpu().numpy()
    return probs

# ---------- MAIN FN ----------
def classify_video(video, lang):
    try:
        if not video:
            return "<div style='color:orange;'>⚠️ Please upload a video first.</div>"

        video_path = _resolve_video_path(video)
        if not video_path:
            return "<div style='color:red;'>❌ Could not find uploaded video path from Gradio input.</div>"

        frames = extract_frames(video_path, FRAMES_PER_VIDEO, FRAME_SIZE)
        if not frames:
            return "<div style='color:red;'>❌ Could not extract frames. OpenCV could not decode the video.</div>"

        captions = [blip_caption(f) for f in frames]
        en_caps = translate_to_en(captions, lang)
        probs = classify(en_caps)
        pred = id2label[int(np.argmax(probs.mean(axis=0)))]
        localized = LABEL_TRANSLATIONS.get(lang, {}).get(pred, pred)

        # 🔊 TTS (fail-soft if blocked)
        audio_b64 = ""
        try:
            tts = gTTS(localized, lang=lang if lang in SUPPORTED_LANGS else "en")
            audio_path = "pred_voice.mp3"
            tts.save(audio_path)
            with open(audio_path, "rb") as f:
                audio_b64 = base64.b64encode(f.read()).decode()
        except Exception as e:
            print(f"⚠️ TTS failed: {e}")

        # 🎨 Card
        lang_name = SUPPORTED_LANGS.get(lang, "Unknown")
        btn = f"<button onclick=\"new Audio('data:audio/mp3;base64,{audio_b64}').play()\" style='background:#00b4d8;color:white;border:none;border-radius:50%;width:70px;height:70px;cursor:pointer;font-size:1.8em;box-shadow:0 2px 10px rgba(0,180,216,0.5);'>🔊</button>" if audio_b64 else ""
        html = f"""
        <div style='background: linear-gradient(135deg,#141e30,#243b55);border-radius:16px;padding:35px;color:white;text-align:center;font-family:"Poppins",sans-serif;box-shadow:0 4px 20px rgba(0,0,0,0.3);'>
            <h2 style='color:#00b4d8;font-weight:600;margin-bottom:10px;'>🎬 Action Detected</h2>
            <h1 style='font-size:2.5em;margin:12px 0;'>{localized}</h1>
            {btn}
            <p style='opacity:0.8;margin-top:14px;font-size:1.1em;'>({lang_name})</p>
        </div>
        """
        return html

    except Exception as e:
        import traceback; traceback.print_exc()
        return f"<div style='color:red;font-weight:bold;'>❌ Error:<br>{e}</div>"

# ---------- GRADIO UI ----------
custom_css = """
.gradio-container {
    background: linear-gradient(135deg,#0f2027,#203a43,#2c5364);
    color: white;
}
h1,h2,h3,label,p,.description {color: white !important;}
footer {display:none !important;}
"""
title = "🎬 Multilingual Video Classification (Beautiful + Voice Icon)"
description = """
Upload your video and choose a language.
The model predicts the action and shows a **beautiful card** 🌍
Click the 🔊 icon to **hear the word pronounced** in that language.
"""
iface = gr.Interface(
    fn=classify_video,
    inputs=[
        gr.Video(label="🎥 Upload Video", sources=["upload"], format="mp4"),
        gr.Radio(choices=list(SUPPORTED_LANGS.keys()), value="en", label="🌍 Choose Language"),
    ],
    outputs=gr.HTML(label="✨ Prediction Result"),
    title=title,
    description=description,
    theme="gradio/soft",
    css=custom_css,
)
if __name__ == "__main__":
    iface.launch(server_name="0.0.0.0", server_port=int(os.environ.get("PORT", 7860)))