Alessio Grancini
commited on
Update app.py
Browse files
app.py
CHANGED
|
@@ -19,11 +19,18 @@ img_seg = None
|
|
| 19 |
depth_estimator = None
|
| 20 |
|
| 21 |
def initialize_models():
|
|
|
|
| 22 |
global img_seg, depth_estimator
|
|
|
|
|
|
|
| 23 |
if img_seg is None:
|
| 24 |
-
|
|
|
|
|
|
|
| 25 |
if depth_estimator is None:
|
| 26 |
-
|
|
|
|
|
|
|
| 27 |
|
| 28 |
def safe_gpu_decorator(func):
|
| 29 |
"""Custom decorator to handle GPU operations safely"""
|
|
@@ -42,22 +49,38 @@ def safe_gpu_decorator(func):
|
|
| 42 |
@safe_gpu_decorator
|
| 43 |
def process_image(image):
|
| 44 |
try:
|
| 45 |
-
print("Starting image processing")
|
| 46 |
initialize_models()
|
| 47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
image = utils.resize(image)
|
| 49 |
image_segmentation, objects_data = img_seg.predict(image)
|
| 50 |
depthmap, depth_colormap = depth_estimator.make_prediction(image)
|
| 51 |
dist_image = utils.draw_depth_info(image, depthmap, objects_data)
|
| 52 |
objs_pcd = utils.generate_obj_pcd(depthmap, objects_data)
|
| 53 |
plot_fig = display_pcd(objs_pcd)
|
|
|
|
| 54 |
return image_segmentation, depth_colormap, dist_image, plot_fig
|
| 55 |
-
|
| 56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
import traceback
|
| 58 |
print(traceback.format_exc())
|
| 59 |
raise
|
| 60 |
|
|
|
|
|
|
|
| 61 |
@safe_gpu_decorator
|
| 62 |
def test_process_img(image):
|
| 63 |
initialize_models()
|
|
@@ -102,41 +125,43 @@ def update_confidence_threshold(thres_val):
|
|
| 102 |
@safe_gpu_decorator
|
| 103 |
def model_selector(model_type):
|
| 104 |
global img_seg, depth_estimator
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
|
|
|
|
|
|
|
|
|
| 117 |
|
| 118 |
def cancel():
|
| 119 |
global CANCEL_PROCESSING
|
| 120 |
CANCEL_PROCESSING = True
|
| 121 |
|
| 122 |
if __name__ == "__main__":
|
| 123 |
-
|
| 124 |
try:
|
| 125 |
if torch.cuda.is_available():
|
| 126 |
-
print("CUDA is available
|
| 127 |
-
# Test CUDA initialization
|
| 128 |
-
torch.cuda.init()
|
| 129 |
device = torch.device("cuda")
|
|
|
|
| 130 |
else:
|
| 131 |
-
print("
|
| 132 |
-
os.environ['CUDA_VISIBLE_DEVICES'] = ''
|
| 133 |
device = torch.device("cpu")
|
| 134 |
except RuntimeError as e:
|
| 135 |
-
print(f"CUDA initialization failed: {e}")
|
| 136 |
-
|
| 137 |
-
os.environ['CUDA_VISIBLE_DEVICES'] = ''
|
| 138 |
device = torch.device("cpu")
|
| 139 |
|
|
|
|
| 140 |
with gr.Blocks() as my_app:
|
| 141 |
# title
|
| 142 |
gr.Markdown("<h1><center>Simultaneous Segmentation and Depth Estimation</center></h1>")
|
|
|
|
| 19 |
depth_estimator = None
|
| 20 |
|
| 21 |
def initialize_models():
|
| 22 |
+
"""Loads models onto GPU if available, otherwise falls back to CPU."""
|
| 23 |
global img_seg, depth_estimator
|
| 24 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 25 |
+
|
| 26 |
if img_seg is None:
|
| 27 |
+
print(f"🔹 Loading ImageSegmenter model on {device}...")
|
| 28 |
+
img_seg = ImageSegmenter(model_type="yolov8s-seg", device=device)
|
| 29 |
+
|
| 30 |
if depth_estimator is None:
|
| 31 |
+
print(f"🔹 Loading Depth Estimator model on {device}...")
|
| 32 |
+
depth_estimator = MonocularDepthEstimator(model_type="midas_v21_small_256", device=device)
|
| 33 |
+
|
| 34 |
|
| 35 |
def safe_gpu_decorator(func):
|
| 36 |
"""Custom decorator to handle GPU operations safely"""
|
|
|
|
| 49 |
@safe_gpu_decorator
|
| 50 |
def process_image(image):
|
| 51 |
try:
|
| 52 |
+
print("🚀 Starting image processing...")
|
| 53 |
initialize_models()
|
| 54 |
+
|
| 55 |
+
if torch.cuda.is_available():
|
| 56 |
+
print("✅ Using GPU for processing")
|
| 57 |
+
torch.set_default_tensor_type(torch.cuda.FloatTensor)
|
| 58 |
+
else:
|
| 59 |
+
print("⚠️ Using CPU for processing")
|
| 60 |
+
|
| 61 |
+
# Process image
|
| 62 |
image = utils.resize(image)
|
| 63 |
image_segmentation, objects_data = img_seg.predict(image)
|
| 64 |
depthmap, depth_colormap = depth_estimator.make_prediction(image)
|
| 65 |
dist_image = utils.draw_depth_info(image, depthmap, objects_data)
|
| 66 |
objs_pcd = utils.generate_obj_pcd(depthmap, objects_data)
|
| 67 |
plot_fig = display_pcd(objs_pcd)
|
| 68 |
+
|
| 69 |
return image_segmentation, depth_colormap, dist_image, plot_fig
|
| 70 |
+
|
| 71 |
+
except RuntimeError as e:
|
| 72 |
+
print(f"🚨 RuntimeError in process_image: {e}")
|
| 73 |
+
|
| 74 |
+
if "cuda" in str(e).lower():
|
| 75 |
+
print("⚠️ CUDA error detected. Switching to CPU mode.")
|
| 76 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
|
| 77 |
+
|
| 78 |
import traceback
|
| 79 |
print(traceback.format_exc())
|
| 80 |
raise
|
| 81 |
|
| 82 |
+
|
| 83 |
+
|
| 84 |
@safe_gpu_decorator
|
| 85 |
def test_process_img(image):
|
| 86 |
initialize_models()
|
|
|
|
| 125 |
@safe_gpu_decorator
|
| 126 |
def model_selector(model_type):
|
| 127 |
global img_seg, depth_estimator
|
| 128 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 129 |
+
|
| 130 |
+
model_dict = {
|
| 131 |
+
"Small - Better performance and less accuracy": ("midas_v21_small_256", "yolov8s-seg"),
|
| 132 |
+
"Medium - Balanced performance and accuracy": ("dpt_hybrid_384", "yolov8m-seg"),
|
| 133 |
+
"Large - Slow performance and high accuracy": ("dpt_large_384", "yolov8l-seg"),
|
| 134 |
+
}
|
| 135 |
+
|
| 136 |
+
midas_model, yolo_model = model_dict.get(model_type, ("midas_v21_small_256", "yolov8s-seg"))
|
| 137 |
+
|
| 138 |
+
print(f"🔹 Switching to models: YOLO={yolo_model}, MiDaS={midas_model} on {device}")
|
| 139 |
+
|
| 140 |
+
img_seg = ImageSegmenter(model_type=yolo_model, device=device)
|
| 141 |
+
depth_estimator = MonocularDepthEstimator(model_type=midas_model, device=device)
|
| 142 |
+
|
| 143 |
|
| 144 |
def cancel():
|
| 145 |
global CANCEL_PROCESSING
|
| 146 |
CANCEL_PROCESSING = True
|
| 147 |
|
| 148 |
if __name__ == "__main__":
|
| 149 |
+
# Ensure CUDA is properly initialized
|
| 150 |
try:
|
| 151 |
if torch.cuda.is_available():
|
| 152 |
+
print(f"✅ CUDA is available: {torch.cuda.get_device_name(0)}")
|
|
|
|
|
|
|
| 153 |
device = torch.device("cuda")
|
| 154 |
+
torch.cuda.empty_cache() # Clear GPU cache
|
| 155 |
else:
|
| 156 |
+
print("❌ No CUDA available. Falling back to CPU.")
|
| 157 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
|
| 158 |
device = torch.device("cpu")
|
| 159 |
except RuntimeError as e:
|
| 160 |
+
print(f"🚨 CUDA initialization failed: {e}. Switching to CPU mode.")
|
| 161 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
|
|
|
|
| 162 |
device = torch.device("cpu")
|
| 163 |
|
| 164 |
+
|
| 165 |
with gr.Blocks() as my_app:
|
| 166 |
# title
|
| 167 |
gr.Markdown("<h1><center>Simultaneous Segmentation and Depth Estimation</center></h1>")
|