Alessio Grancini
commited on
Update image_segmenter.py
Browse files- image_segmenter.py +81 -43
image_segmenter.py
CHANGED
|
@@ -3,10 +3,12 @@ import numpy as np
|
|
| 3 |
from ultralytics import YOLO
|
| 4 |
import random
|
| 5 |
import spaces
|
|
|
|
|
|
|
| 6 |
|
| 7 |
class ImageSegmenter:
|
| 8 |
def __init__(self, model_type="yolov8s-seg") -> None:
|
| 9 |
-
#
|
| 10 |
self.model_type = model_type
|
| 11 |
self.is_show_bounding_boxes = True
|
| 12 |
self.is_show_segmentation_boundary = False
|
|
@@ -17,6 +19,17 @@ class ImageSegmenter:
|
|
| 17 |
self.bb_clr = (255, 0, 0)
|
| 18 |
self.masks = {}
|
| 19 |
self.model = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
def get_cls_clr(self, cls_id):
|
| 22 |
if cls_id in self.cls_clr:
|
|
@@ -29,59 +42,84 @@ class ImageSegmenter:
|
|
| 29 |
|
| 30 |
@spaces.GPU
|
| 31 |
def predict(self, image):
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
|
|
|
| 42 |
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
cls_conf = predictions[0].boxes.conf.cpu().numpy()
|
| 46 |
-
|
| 47 |
-
if predictions[0].masks:
|
| 48 |
-
seg_mask_boundary = predictions[0].masks.xy
|
| 49 |
-
seg_mask = predictions[0].masks.data.cpu().numpy()
|
| 50 |
-
else:
|
| 51 |
-
seg_mask_boundary, seg_mask = [], np.array([])
|
| 52 |
-
|
| 53 |
-
for id, cls in enumerate(cls_ids):
|
| 54 |
-
cls_clr = self.get_cls_clr(cls)
|
| 55 |
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
-
|
| 65 |
-
|
| 66 |
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
|
| 71 |
-
if self.is_show_bounding_boxes
|
| 72 |
(x1, y1, x2, y2) = bounding_boxes[id]
|
| 73 |
-
cls_name = self.model.names[cls]
|
| 74 |
cls_confidence = cls_conf[id]
|
| 75 |
-
disp_str = cls_name
|
| 76 |
cv2.rectangle(image, (x1, y1), (x2, y2), cls_clr, self.bb_thickness)
|
| 77 |
-
cv2.rectangle(image, (x1, y1), (x1+
|
| 78 |
cv2.putText(image, disp_str, (x1+5, y1+10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
|
| 79 |
|
| 80 |
-
if len(seg_mask_boundary)
|
| 81 |
-
cv2.polylines(image, [np.array(seg_mask_boundary[id], dtype=np.int32)],
|
|
|
|
| 82 |
|
| 83 |
(x1, y1, x2, y2) = bounding_boxes[id]
|
| 84 |
-
center = x1+(x2-x1)//2, y1+(y2-y1)//2
|
| 85 |
-
objects_data.append([cls, self.model.names[cls], center,
|
|
|
|
| 86 |
|
| 87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
from ultralytics import YOLO
|
| 4 |
import random
|
| 5 |
import spaces
|
| 6 |
+
import os
|
| 7 |
+
import torch
|
| 8 |
|
| 9 |
class ImageSegmenter:
|
| 10 |
def __init__(self, model_type="yolov8s-seg") -> None:
|
| 11 |
+
# Initialize parameters
|
| 12 |
self.model_type = model_type
|
| 13 |
self.is_show_bounding_boxes = True
|
| 14 |
self.is_show_segmentation_boundary = False
|
|
|
|
| 19 |
self.bb_clr = (255, 0, 0)
|
| 20 |
self.masks = {}
|
| 21 |
self.model = None
|
| 22 |
+
|
| 23 |
+
# Ensure model directory exists
|
| 24 |
+
os.makedirs('models', exist_ok=True)
|
| 25 |
+
|
| 26 |
+
# Check if model file exists, if not download it
|
| 27 |
+
model_path = os.path.join('models', f'{model_type}.pt')
|
| 28 |
+
if not os.path.exists(model_path):
|
| 29 |
+
print(f"Downloading {model_type} model...")
|
| 30 |
+
self.model = YOLO(model_type)
|
| 31 |
+
self.model.export()
|
| 32 |
+
print("Model downloaded successfully")
|
| 33 |
|
| 34 |
def get_cls_clr(self, cls_id):
|
| 35 |
if cls_id in self.cls_clr:
|
|
|
|
| 42 |
|
| 43 |
@spaces.GPU
|
| 44 |
def predict(self, image):
|
| 45 |
+
try:
|
| 46 |
+
# Initialize model if needed
|
| 47 |
+
if self.model is None:
|
| 48 |
+
print("Loading YOLO model...")
|
| 49 |
+
model_path = os.path.join('models', f'{self.model_type}.pt')
|
| 50 |
+
# Force CPU mode for YOLO initialization
|
| 51 |
+
self.model = YOLO(model_path)
|
| 52 |
+
self.model.to('cpu') # Explicitly move to CPU
|
| 53 |
+
print("Model loaded successfully")
|
| 54 |
|
| 55 |
+
# Ensure image is in correct format
|
| 56 |
+
if isinstance(image, np.ndarray):
|
| 57 |
+
image = image.copy()
|
| 58 |
+
else:
|
| 59 |
+
raise ValueError("Input image must be a numpy array")
|
| 60 |
|
| 61 |
+
# Make prediction using CPU
|
| 62 |
+
predictions = self.model.predict(image, device='cpu')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
+
# Process results
|
| 65 |
+
objects_data = []
|
| 66 |
+
|
| 67 |
+
if len(predictions) == 0 or not predictions[0].boxes:
|
| 68 |
+
return image, objects_data
|
| 69 |
+
|
| 70 |
+
cls_ids = predictions[0].boxes.cls.numpy() # Changed from cpu().numpy()
|
| 71 |
+
bounding_boxes = predictions[0].boxes.xyxy.int().numpy()
|
| 72 |
+
cls_conf = predictions[0].boxes.conf.numpy()
|
| 73 |
+
|
| 74 |
+
if predictions[0].masks is not None:
|
| 75 |
+
seg_mask_boundary = predictions[0].masks.xy
|
| 76 |
+
seg_mask = predictions[0].masks.data.numpy() # Changed from cpu().numpy()
|
| 77 |
+
else:
|
| 78 |
+
seg_mask_boundary, seg_mask = [], np.array([])
|
| 79 |
+
|
| 80 |
+
for id, cls in enumerate(cls_ids):
|
| 81 |
+
if cls_conf[id] <= self.confidence_threshold:
|
| 82 |
+
continue
|
| 83 |
+
|
| 84 |
+
cls_clr = self.get_cls_clr(int(cls))
|
| 85 |
+
|
| 86 |
+
if seg_mask.size > 0:
|
| 87 |
+
self.masks[id] = seg_mask[id]
|
| 88 |
+
|
| 89 |
+
if self.is_show_segmentation:
|
| 90 |
+
alpha = 0.8
|
| 91 |
+
colored_mask = np.expand_dims(seg_mask[id], 0).repeat(3, axis=0)
|
| 92 |
+
colored_mask = np.moveaxis(colored_mask, 0, -1)
|
| 93 |
|
| 94 |
+
if image.shape[:2] != seg_mask[id].shape[:2]:
|
| 95 |
+
colored_mask = cv2.resize(colored_mask, (image.shape[1], image.shape[0]))
|
| 96 |
|
| 97 |
+
masked = np.ma.MaskedArray(image, mask=colored_mask, fill_value=cls_clr)
|
| 98 |
+
image_overlay = masked.filled()
|
| 99 |
+
image = cv2.addWeighted(image, 1 - alpha, image_overlay, alpha, 0)
|
| 100 |
|
| 101 |
+
if self.is_show_bounding_boxes:
|
| 102 |
(x1, y1, x2, y2) = bounding_boxes[id]
|
| 103 |
+
cls_name = self.model.names[int(cls)]
|
| 104 |
cls_confidence = cls_conf[id]
|
| 105 |
+
disp_str = f"{cls_name} {cls_confidence:.2f}"
|
| 106 |
cv2.rectangle(image, (x1, y1), (x2, y2), cls_clr, self.bb_thickness)
|
| 107 |
+
cv2.rectangle(image, (x1, y1), (x1+len(disp_str)*9, y1+15), cls_clr, -1)
|
| 108 |
cv2.putText(image, disp_str, (x1+5, y1+10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
|
| 109 |
|
| 110 |
+
if len(seg_mask_boundary) > 0 and self.is_show_segmentation_boundary:
|
| 111 |
+
cv2.polylines(image, [np.array(seg_mask_boundary[id], dtype=np.int32)],
|
| 112 |
+
isClosed=True, color=cls_clr, thickness=2)
|
| 113 |
|
| 114 |
(x1, y1, x2, y2) = bounding_boxes[id]
|
| 115 |
+
center = (x1+(x2-x1)//2, y1+(y2-y1)//2)
|
| 116 |
+
objects_data.append([int(cls), self.model.names[int(cls)], center,
|
| 117 |
+
self.masks.get(id, None), cls_clr])
|
| 118 |
|
| 119 |
+
return image, objects_data
|
| 120 |
+
|
| 121 |
+
except Exception as e:
|
| 122 |
+
print(f"Error in predict: {str(e)}")
|
| 123 |
+
import traceback
|
| 124 |
+
print(traceback.format_exc())
|
| 125 |
+
raise
|