Alessio Grancini
commited on
Update app.py
Browse files
app.py
CHANGED
|
@@ -13,23 +13,31 @@ from point_cloud_generator import display_pcd
|
|
| 13 |
|
| 14 |
|
| 15 |
|
| 16 |
-
import
|
| 17 |
-
import subprocess
|
| 18 |
-
import os
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
| 22 |
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
-
except Exception as e:
|
| 31 |
-
print(f"🚨 Error checking CUDA: {e}")
|
| 32 |
-
device = torch.device("cpu")
|
| 33 |
|
| 34 |
|
| 35 |
|
|
@@ -39,15 +47,17 @@ CANCEL_PROCESSING = False
|
|
| 39 |
img_seg = ImageSegmenter(model_type="yolov8s-seg")
|
| 40 |
depth_estimator = MonocularDepthEstimator(model_type="midas_v21_small_256")
|
| 41 |
|
| 42 |
-
@spaces.GPU # Ensures GPU is allocated
|
| 43 |
def process_image(image):
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
|
|
|
|
|
|
| 51 |
|
| 52 |
@spaces.GPU # Requests GPU for depth estimation
|
| 53 |
def test_process_img(image):
|
|
@@ -56,19 +66,20 @@ def test_process_img(image):
|
|
| 56 |
depthmap, depth_colormap = depth_estimator.make_prediction(image)
|
| 57 |
return image_segmentation, objects_data, depthmap, depth_colormap
|
| 58 |
|
| 59 |
-
@spaces.GPU
|
| 60 |
def process_video(vid_path=None):
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
|
|
|
| 72 |
return None
|
| 73 |
|
| 74 |
|
|
|
|
| 13 |
|
| 14 |
|
| 15 |
|
| 16 |
+
import spaces # Required for ZeroGPU
|
|
|
|
|
|
|
| 17 |
|
| 18 |
+
# Ensure CUDA is NOT initialized before ZeroGPU assigns a device
|
| 19 |
+
torch.backends.cudnn.enabled = False # Prevents CUDA errors on first GPU allocation
|
| 20 |
|
| 21 |
+
def initialize_gpu():
|
| 22 |
+
"""Ensure that ZeroGPU assigns a GPU before using CUDA"""
|
| 23 |
+
global device
|
| 24 |
+
try:
|
| 25 |
+
with spaces.GPU(): # Ensures GPU allocation
|
| 26 |
+
torch.cuda.init()
|
| 27 |
+
if torch.cuda.is_available():
|
| 28 |
+
device = torch.device("cuda")
|
| 29 |
+
print(f"✅ GPU initialized: {torch.cuda.get_device_name(0)}")
|
| 30 |
+
torch.cuda.empty_cache() # Clear memory
|
| 31 |
+
else:
|
| 32 |
+
print("❌ No GPU detected after ZeroGPU allocation.")
|
| 33 |
+
device = torch.device("cpu")
|
| 34 |
+
except Exception as e:
|
| 35 |
+
print(f"🚨 GPU initialization failed: {e}")
|
| 36 |
+
device = torch.device("cpu")
|
| 37 |
+
|
| 38 |
+
# Run GPU initialization before using CUDA
|
| 39 |
+
initialize_gpu()
|
| 40 |
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
|
| 43 |
|
|
|
|
| 47 |
img_seg = ImageSegmenter(model_type="yolov8s-seg")
|
| 48 |
depth_estimator = MonocularDepthEstimator(model_type="midas_v21_small_256")
|
| 49 |
|
| 50 |
+
@spaces.GPU # Ensures GPU is allocated before running
|
| 51 |
def process_image(image):
|
| 52 |
+
with spaces.GPU(): # Explicitly allocate a GPU
|
| 53 |
+
image = utils.resize(image)
|
| 54 |
+
image_segmentation, objects_data = img_seg.predict(image)
|
| 55 |
+
depthmap, depth_colormap = depth_estimator.make_prediction(image)
|
| 56 |
+
dist_image = utils.draw_depth_info(image, depthmap, objects_data)
|
| 57 |
+
objs_pcd = utils.generate_obj_pcd(depthmap, objects_data)
|
| 58 |
+
plot_fig = display_pcd(objs_pcd)
|
| 59 |
+
return image_segmentation, depth_colormap, dist_image, plot_fig
|
| 60 |
+
|
| 61 |
|
| 62 |
@spaces.GPU # Requests GPU for depth estimation
|
| 63 |
def test_process_img(image):
|
|
|
|
| 66 |
depthmap, depth_colormap = depth_estimator.make_prediction(image)
|
| 67 |
return image_segmentation, objects_data, depthmap, depth_colormap
|
| 68 |
|
| 69 |
+
@spaces.GPU
|
| 70 |
def process_video(vid_path=None):
|
| 71 |
+
with spaces.GPU():
|
| 72 |
+
vid_cap = cv2.VideoCapture(vid_path)
|
| 73 |
+
while vid_cap.isOpened():
|
| 74 |
+
ret, frame = vid_cap.read()
|
| 75 |
+
if ret:
|
| 76 |
+
print("making predictions ....")
|
| 77 |
+
frame = utils.resize(frame)
|
| 78 |
+
image_segmentation, objects_data = img_seg.predict(frame)
|
| 79 |
+
depthmap, depth_colormap = depth_estimator.make_prediction(frame)
|
| 80 |
+
dist_image = utils.draw_depth_info(frame, depthmap, objects_data)
|
| 81 |
+
yield cv2.cvtColor(image_segmentation, cv2.COLOR_BGR2RGB), depth_colormap, cv2.cvtColor(dist_image, cv2.COLOR_BGR2RGB)
|
| 82 |
+
|
| 83 |
return None
|
| 84 |
|
| 85 |
|