File size: 4,940 Bytes
5f58699
 
 
 
 
91db4c0
 
 
 
 
 
 
5f58699
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
"""Configuration helpers for the polyreactivity project."""

from __future__ import annotations

from dataclasses import asdict, dataclass, field

try:
    import importlib.resources as pkg_resources
    from importlib.resources.abc import Traversable
except (ModuleNotFoundError, AttributeError):  # pragma: no cover - compatibility
    import importlib_resources as pkg_resources  # type: ignore[no-redef]
    from importlib_resources.abc import Traversable  # type: ignore[assignment]
from pathlib import Path
from typing import Any, Sequence

import yaml


@dataclass(slots=True)
class FeatureBackendSettings:
    type: str = "plm"
    plm_model_name: str = "facebook/esm2_t12_35M_UR50D"
    layer_pool: str = "mean"
    cache_dir: str = ".cache/embeddings"
    standardize: bool = True


@dataclass(slots=True)
class DescriptorSettings:
    use_anarci: bool = True
    regions: Sequence[str] = field(default_factory=lambda: ["CDRH1", "CDRH2", "CDRH3"])
    features: Sequence[str] = field(
        default_factory=lambda: [
            "length",
            "charge",
            "hydropathy",
            "aromaticity",
            "pI",
            "net_charge",
        ]
    )
    ph: float = 7.4


@dataclass(slots=True)
class ModelSettings:
    head: str = "logreg"
    C: float = 1.0
    class_weight: Any = "balanced"


@dataclass(slots=True)
class CalibrationSettings:
    method: str | None = "isotonic"


@dataclass(slots=True)
class TrainingSettings:
    cv_folds: int = 10
    scoring: str = "roc_auc"
    n_jobs: int = -1


@dataclass(slots=True)
class IOSettings:
    outputs_dir: str = "artifacts"
    preds_filename: str = "preds.csv"
    metrics_filename: str = "metrics.csv"


@dataclass(slots=True)
class Config:
    seed: int = 42
    device: str = "auto"
    feature_backend: FeatureBackendSettings = field(default_factory=FeatureBackendSettings)
    descriptors: DescriptorSettings = field(default_factory=DescriptorSettings)
    model: ModelSettings = field(default_factory=ModelSettings)
    calibration: CalibrationSettings = field(default_factory=CalibrationSettings)
    training: TrainingSettings = field(default_factory=TrainingSettings)
    io: IOSettings = field(default_factory=IOSettings)

    raw: dict[str, Any] = field(default_factory=dict)


def _merge_section(default: Any, data: dict[str, Any] | None) -> Any:
    if data is None:
        return default
    merged = asdict(default) | data
    return type(default)(**merged)


def load_config(path: str | Path | None = None) -> Config:
    """Load a YAML configuration file into a strongly-typed ``Config`` object."""

    data = _read_config_data(path)

    feature_backend = _merge_section(FeatureBackendSettings(), data.get("feature_backend"))
    descriptors = _merge_section(DescriptorSettings(), data.get("descriptors"))
    model = _merge_section(ModelSettings(), data.get("model"))
    calibration = _merge_section(CalibrationSettings(), data.get("calibration"))
    training = _merge_section(TrainingSettings(), data.get("training"))
    io_settings = _merge_section(IOSettings(), data.get("io"))

    config = Config(
        seed=int(data.get("seed", 42)),
        device=str(data.get("device", "auto")),
        feature_backend=feature_backend,
        descriptors=descriptors,
        model=model,
        calibration=calibration,
        training=training,
        io=io_settings,
        raw=data,
    )
    return config


def _read_config_data(path: str | Path | None) -> dict[str, Any]:
    """Return mapping data from YAML or the bundled default."""

    if path is None:
        resource = pkg_resources.files("polyreact.configs") / "default.yaml"
        return _load_yaml_resource(resource)

    resolved = _resolve_config_path(Path(path))
    if resolved is not None:
        return _load_yaml_file(resolved)

    resource_root = pkg_resources.files("polyreact")
    resource = resource_root / Path(path).as_posix()
    if resource.is_file():
        return _load_yaml_resource(resource)

    msg = f"Configuration file not found: {path}"
    raise FileNotFoundError(msg)


def _resolve_config_path(path: Path) -> Path | None:
    if path.exists():
        return path

    if not path.is_absolute():
        candidate = Path(__file__).resolve().parent / path
        if candidate.exists():
            return candidate

    return None


def _load_yaml_file(path: Path) -> dict[str, Any]:
    with path.open("r", encoding="utf-8") as handle:
        return _parse_yaml(handle.read())


def _load_yaml_resource(resource: Traversable) -> dict[str, Any]:
    with resource.open("r", encoding="utf-8") as handle:
        return _parse_yaml(handle.read())


def _parse_yaml(text: str) -> dict[str, Any]:
    parsed = yaml.safe_load(text) or {}
    if not isinstance(parsed, dict):  # pragma: no cover - safeguard
        msg = "Configuration must be a mapping at the top level"
        raise ValueError(msg)
    return parsed