Spaces:
Sleeping
Sleeping
File size: 35,175 Bytes
5f58699 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 |
"""Reproduce key metrics and visualisations for the polyreactivity model."""
from __future__ import annotations
import argparse
import copy
import json
import subprocess
from dataclasses import asdict, dataclass
from pathlib import Path
from typing import Any, Dict, Iterable, List, Sequence
import joblib
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import yaml
from scipy.stats import pearsonr, spearmanr
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import roc_curve
from sklearn.model_selection import KFold
from sklearn.preprocessing import StandardScaler
from polyreact import train as train_module
from polyreact.config import load_config
from polyreact.features.anarsi import AnarciNumberer
from polyreact.features.pipeline import FeaturePipeline
from polyreact.models.ordinal import (
fit_negative_binomial_model,
fit_poisson_model,
pearson_dispersion,
regression_metrics,
)
@dataclass(slots=True)
class DatasetSpec:
name: str
path: Path
display: str
DISPLAY_LABELS = {
"jain": "Jain (2017)",
"shehata": "Shehata PSR (398)",
"shehata_curated": "Shehata curated (88)",
"harvey": "Harvey (2022)",
}
RAW_LABELS = {
"jain": "jain2017",
"shehata": "shehata2019",
"shehata_curated": "shehata2019_curated",
"harvey": "harvey2022",
}
def build_parser() -> argparse.ArgumentParser:
parser = argparse.ArgumentParser(description="Reproduce paper-style metrics and plots")
parser.add_argument(
"--train-data",
default="data/processed/boughter_counts_rebuilt.csv",
help="Reconstructed Boughter dataset path.",
)
parser.add_argument(
"--full-data",
default="data/processed/boughter_counts_rebuilt.csv",
help="Dataset (including mild flags) for correlation analysis.",
)
parser.add_argument("--jain", default="data/processed/jain.csv")
parser.add_argument(
"--shehata",
default="data/processed/shehata_full.csv",
help="Full Shehata PSR panel (398 sequences) in processed CSV form.",
)
parser.add_argument(
"--shehata-curated",
default="data/processed/shehata_curated.csv",
help="Optional curated subset of Shehata et al. (88 sequences).",
)
parser.add_argument("--harvey", default="data/processed/harvey.csv")
parser.add_argument("--output-dir", default="artifacts/paper")
parser.add_argument("--config", default="configs/default.yaml")
parser.add_argument("--batch-size", type=int, default=16)
parser.add_argument("--rebuild", action="store_true")
parser.add_argument(
"--bootstrap-samples",
type=int,
default=1000,
help="Bootstrap resamples for metrics confidence intervals.",
)
parser.add_argument(
"--bootstrap-alpha",
type=float,
default=0.05,
help="Alpha for bootstrap confidence intervals (default 0.05 → 95%).",
)
parser.add_argument(
"--human-only",
action="store_true",
help=(
"Restrict the main cross-validation run to human HIV and influenza families"
" (legacy behaviour). By default all Boughter families, including mouse IgA,"
" participate in CV as in Sakhnini et al."
),
)
parser.add_argument(
"--skip-flag-regression",
action="store_true",
help="Skip ELISA flag regression diagnostics (Poisson/NB).",
)
parser.add_argument(
"--skip-lofo",
action="store_true",
help="Skip leave-one-family-out experiments.",
)
parser.add_argument(
"--skip-descriptor-variants",
action="store_true",
help="Skip descriptor-only benchmark variants.",
)
parser.add_argument(
"--skip-fragment-variants",
action="store_true",
help="Skip CDR fragment ablation benchmarks.",
)
return parser
def _config_to_dict(config) -> Dict[str, Any]:
data = asdict(config)
data.pop("raw", None)
return data
def _deep_merge(base: Dict[str, Any], overrides: Dict[str, Any]) -> Dict[str, Any]:
result = copy.deepcopy(base)
for key, value in overrides.items():
if isinstance(value, dict) and isinstance(result.get(key), dict):
result[key] = _deep_merge(result.get(key, {}), value)
else:
result[key] = value
return result
def _write_variant_config(
base_config: Dict[str, Any],
overrides: Dict[str, Any],
target_path: Path,
) -> Path:
merged = _deep_merge(base_config, overrides)
target_path.parent.mkdir(parents=True, exist_ok=True)
with target_path.open("w", encoding="utf-8") as handle:
yaml.safe_dump(merged, handle, sort_keys=False)
return target_path
def _collect_metric_records(variant: str, metrics: pd.DataFrame) -> list[dict[str, Any]]:
tracked = {
"roc_auc",
"pr_auc",
"accuracy",
"f1",
"f1_positive",
"f1_negative",
"precision",
"sensitivity",
"specificity",
"brier",
"ece",
"mce",
}
records: list[dict[str, Any]] = []
for _, row in metrics.iterrows():
metric_name = row["metric"]
if metric_name not in tracked:
continue
record = {"variant": variant, "metric": metric_name}
for column in metrics.columns:
if column == "metric":
continue
record[column] = float(row[column]) if pd.notna(row[column]) else np.nan
records.append(record)
return records
def _dump_coefficients(model_path: Path, output_path: Path) -> None:
artifact = joblib.load(model_path)
trained = artifact["model"]
estimator = getattr(trained, "estimator", None)
if estimator is None or not hasattr(estimator, "coef_"):
return
coefs = estimator.coef_[0]
feature_state = artifact.get("feature_state")
feature_names: list[str]
if feature_state is not None and getattr(feature_state, "feature_names", None):
feature_names = list(feature_state.feature_names)
else:
feature_names = [f"f{i}" for i in range(len(coefs))]
coeff_df = pd.DataFrame(
{
"feature": feature_names,
"coef": coefs,
"abs_coef": np.abs(coefs),
}
).sort_values("abs_coef", ascending=False)
coeff_df.to_csv(output_path, index=False)
def _summarise_predictions(preds: pd.DataFrame) -> pd.DataFrame:
records: list[dict[str, Any]] = []
for split, group in preds.groupby("split"):
stats = {
"split": split,
"n_samples": int(len(group)),
"positives": int(group["y_true"].sum()),
"positive_rate": float(group["y_true"].mean()) if len(group) else np.nan,
"score_mean": float(group["y_score"].mean()) if len(group) else np.nan,
"score_std": float(group["y_score"].std(ddof=1)) if len(group) > 1 else np.nan,
}
records.append(stats)
return pd.DataFrame(records)
def _summarise_raw_dataset(path: Path, name: str) -> dict[str, Any]:
df = pd.read_csv(path)
summary: dict[str, Any] = {
"dataset": name,
"path": str(path),
"rows": int(len(df)),
}
if "label" in df.columns:
positives = int(df["label"].sum())
summary["positives"] = positives
summary["positive_rate"] = float(df["label"].mean()) if len(df) else np.nan
if "reactivity_count" in df.columns:
summary["reactivity_count_mean"] = float(df["reactivity_count"].mean())
summary["reactivity_count_median"] = float(df["reactivity_count"].median())
summary["reactivity_count_max"] = int(df["reactivity_count"].max())
if "smp" in df.columns:
summary["smp_mean"] = float(df["smp"].mean())
summary["smp_median"] = float(df["smp"].median())
summary["smp_max"] = float(df["smp"].max())
summary["smp_min"] = float(df["smp"].min())
summary["unique_heavy"] = int(df["heavy_seq"].nunique()) if "heavy_seq" in df.columns else np.nan
return summary
def _extract_region_sequence(sequence: str, regions: List[str], numberer: AnarciNumberer) -> str:
if not sequence:
return ""
upper_regions = [region.upper() for region in regions]
if upper_regions == ["VH"]:
return sequence
try:
numbered = numberer.number_sequence(sequence)
except Exception:
return ""
fragments: list[str] = []
for region in upper_regions:
if region == "VH":
return sequence
fragment = numbered.regions.get(region)
if not fragment:
return ""
fragments.append(fragment)
return "".join(fragments)
def _make_region_dataset(
frame: pd.DataFrame, regions: List[str], numberer: AnarciNumberer
) -> tuple[pd.DataFrame, dict[str, Any]]:
records: list[dict[str, Any]] = []
dropped = 0
for record in frame.to_dict(orient="records"):
new_seq = _extract_region_sequence(record.get("heavy_seq", ""), regions, numberer)
if not new_seq:
dropped += 1
continue
updated = record.copy()
updated["heavy_seq"] = new_seq
updated["light_seq"] = ""
records.append(updated)
result = pd.DataFrame(records, columns=frame.columns)
summary = {
"regions": "+".join(regions),
"input_rows": int(len(frame)),
"retained_rows": int(len(result)),
"dropped_rows": int(dropped),
}
return result, summary
def run_train(
*,
train_path: Path,
eval_specs: Sequence[DatasetSpec],
output_dir: Path,
model_path: Path,
config: str,
batch_size: int,
include_species: list[str] | None = None,
include_families: list[str] | None = None,
exclude_families: list[str] | None = None,
keep_duplicates: bool = False,
group_column: str | None = "lineage",
train_loader: str | None = None,
bootstrap_samples: int = 200,
bootstrap_alpha: float = 0.05,
) -> None:
args: list[str] = [
"--config",
str(config),
"--train",
str(train_path),
"--report-to",
str(output_dir),
"--save-to",
str(model_path),
"--batch-size",
str(batch_size),
]
if eval_specs:
args.append("--eval")
args.extend(str(spec.path) for spec in eval_specs)
if train_loader:
args.extend(["--train-loader", train_loader])
if eval_specs:
args.append("--eval-loaders")
args.extend(spec.name for spec in eval_specs)
if include_species:
args.append("--include-species")
args.extend(include_species)
if include_families:
args.append("--include-families")
args.extend(include_families)
if exclude_families:
args.append("--exclude-families")
args.extend(exclude_families)
if keep_duplicates:
args.append("--keep-train-duplicates")
if group_column:
args.extend(["--cv-group-column", group_column])
else:
args.append("--no-group-cv")
args.extend(["--bootstrap-samples", str(bootstrap_samples)])
args.extend(["--bootstrap-alpha", str(bootstrap_alpha)])
exit_code = train_module.main(args)
if exit_code != 0:
raise RuntimeError(f"Training command failed with exit code {exit_code}")
def compute_spearman(model_path: Path, dataset_path: Path, batch_size: int) -> tuple[float, float, pd.DataFrame]:
artifact = joblib.load(model_path)
config = artifact["config"]
pipeline_state = artifact["feature_state"]
trained_model = artifact["model"]
pipeline = FeaturePipeline(backend=config.feature_backend, descriptors=config.descriptors, device=config.device)
pipeline.load_state(pipeline_state)
dataset = pd.read_csv(dataset_path)
features = pipeline.transform(dataset, heavy_only=True, batch_size=batch_size)
scores = trained_model.predict_proba(features)
dataset = dataset.copy()
dataset["score"] = scores
stat, pvalue = spearmanr(dataset["reactivity_count"], dataset["score"])
return float(stat), float(pvalue), dataset
def plot_accuracy(
metrics: pd.DataFrame,
output_path: Path,
eval_specs: Sequence[DatasetSpec],
) -> None:
row = metrics.loc[metrics["metric"] == "accuracy"].iloc[0]
labels = ["Train CV"] + [spec.display for spec in eval_specs]
values = [row.get("train_cv_mean", np.nan)] + [row.get(spec.name, np.nan) for spec in eval_specs]
fig, ax = plt.subplots(figsize=(6, 4))
xs = np.arange(len(labels))
ax.bar(xs, values, color=["#1f77b4", "#ff7f0e", "#2ca02c", "#d62728"])
ax.set_xticks(xs, labels)
ax.set_ylim(0.0, 1.05)
ax.set_ylabel("Accuracy")
ax.set_title("Polyreactivity accuracy overview")
for x, val in zip(xs, values, strict=False):
if np.isnan(val):
continue
ax.text(x, val + 0.02, f"{val:.3f}", ha="center", va="bottom")
fig.tight_layout()
fig.savefig(output_path, dpi=300)
plt.close(fig)
def plot_rocs(
preds: pd.DataFrame,
output_path: Path,
eval_specs: Sequence[DatasetSpec],
) -> None:
mapping = {"train_cv_oof": "Train CV"}
for spec in eval_specs:
mapping[spec.name] = spec.display
fig, ax = plt.subplots(figsize=(6, 6))
for split, label in mapping.items():
subset = preds[preds["split"] == split]
if subset.empty:
continue
fpr, tpr, _ = roc_curve(subset["y_true"], subset["y_score"])
ax.plot(fpr, tpr, label=label)
ax.plot([0, 1], [0, 1], linestyle="--", color="gray")
ax.set_xlabel("False positive rate")
ax.set_ylabel("True positive rate")
ax.set_title("ROC curves")
ax.legend()
fig.tight_layout()
fig.savefig(output_path, dpi=300)
plt.close(fig)
def plot_flags_scatter(data: pd.DataFrame, spearman_stat: float, output_path: Path) -> None:
rng = np.random.default_rng(42)
jitter = rng.uniform(-0.1, 0.1, size=len(data))
x = data["reactivity_count"].to_numpy(dtype=float) + jitter
y = data["score"].to_numpy(dtype=float)
fig, ax = plt.subplots(figsize=(6, 4))
ax.scatter(x, y, alpha=0.5, s=10)
ax.set_xlabel("ELISA flag count")
ax.set_ylabel("Predicted probability")
ax.set_title(f"Prediction vs flag count (Spearman={spearman_stat:.2f})")
fig.tight_layout()
fig.savefig(output_path, dpi=300)
plt.close(fig)
def run_lofo(
full_df: pd.DataFrame,
*,
families: list[str],
config: str,
batch_size: int,
output_dir: Path,
bootstrap_samples: int,
bootstrap_alpha: float,
) -> pd.DataFrame:
results: list[dict[str, float]] = []
for family in families:
family_lower = family.lower()
holdout = full_df[full_df["family"].str.lower() == family_lower].copy()
train = full_df[full_df["family"].str.lower() != family_lower].copy()
if holdout.empty or train.empty:
continue
train_path = output_dir / f"train_lofo_{family_lower}.csv"
holdout_path = output_dir / f"eval_lofo_{family_lower}.csv"
train.to_csv(train_path, index=False)
holdout.to_csv(holdout_path, index=False)
run_dir = output_dir / f"lofo_{family_lower}"
run_dir.mkdir(parents=True, exist_ok=True)
model_path = run_dir / "model.joblib"
run_train(
train_path=train_path,
eval_specs=[
DatasetSpec(
name="boughter",
path=holdout_path,
display=f"{family.title()} holdout",
)
],
output_dir=run_dir,
model_path=model_path,
config=config,
batch_size=batch_size,
keep_duplicates=True,
include_species=None,
include_families=None,
exclude_families=None,
group_column="lineage",
train_loader="boughter",
bootstrap_samples=bootstrap_samples,
bootstrap_alpha=bootstrap_alpha,
)
metrics = pd.read_csv(run_dir / "metrics.csv")
evaluation_cols = [
col
for col in metrics.columns
if col not in {"metric", "train_cv_mean", "train_cv_std"}
]
if not evaluation_cols:
continue
eval_col = evaluation_cols[0]
def _metric_value(name: str) -> float:
series = metrics.loc[metrics["metric"] == name, eval_col]
return float(series.values[0]) if not series.empty else float("nan")
results.append(
{
"family": family,
"accuracy": _metric_value("accuracy"),
"roc_auc": _metric_value("roc_auc"),
"pr_auc": _metric_value("pr_auc"),
"sensitivity": _metric_value("sensitivity"),
"specificity": _metric_value("specificity"),
}
)
return pd.DataFrame(results)
def run_flag_regression(
train_path: Path,
*,
output_dir: Path,
config_path: str,
batch_size: int,
n_splits: int = 5,
) -> None:
df = pd.read_csv(train_path)
if "reactivity_count" not in df.columns:
return
config = load_config(config_path)
kfold = KFold(n_splits=n_splits, shuffle=True, random_state=config.seed)
metrics_rows: list[dict[str, float]] = []
preds_rows: list[dict[str, float]] = []
for fold_idx, (train_idx, val_idx) in enumerate(kfold.split(df), start=1):
train_split = df.iloc[train_idx].reset_index(drop=True)
val_split = df.iloc[val_idx].reset_index(drop=True)
pipeline = FeaturePipeline(
backend=config.feature_backend,
descriptors=config.descriptors,
device=config.device,
)
X_train = pipeline.fit_transform(train_split, heavy_only=True, batch_size=batch_size)
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
y_train = train_split["reactivity_count"].to_numpy(dtype=float)
# Train a logistic head to obtain probabilities as a 1-D feature
clf = LogisticRegression(
C=config.model.C,
class_weight=config.model.class_weight,
max_iter=2000,
solver="lbfgs",
)
clf.fit(X_train_scaled, train_split["label"].to_numpy(dtype=int))
prob_train = clf.predict_proba(X_train_scaled)[:, 1]
X_val = pipeline.transform(val_split, heavy_only=True, batch_size=batch_size)
X_val_scaled = scaler.transform(X_val)
y_val = val_split["reactivity_count"].to_numpy(dtype=float)
prob_val = clf.predict_proba(X_val_scaled)[:, 1]
poisson_X_train = prob_train.reshape(-1, 1)
poisson_X_val = prob_val.reshape(-1, 1)
model = fit_poisson_model(poisson_X_train, y_train)
poisson_preds = model.predict(poisson_X_val)
n_params = poisson_X_train.shape[1] + 1 # include intercept
dof = max(len(y_val) - n_params, 1)
variance_to_mean = float(np.var(y_val, ddof=1) / np.mean(y_val)) if np.mean(y_val) else float("nan")
spearman_val = float(spearmanr(y_val, poisson_preds).statistic)
try:
pearson_val = float(pearsonr(y_val, poisson_preds)[0])
except Exception: # pragma: no cover - fallback if correlation fails
pearson_val = float("nan")
poisson_metrics = regression_metrics(y_val, poisson_preds)
poisson_metrics.update(
{
"spearman": spearman_val,
"pearson": pearson_val,
"pearson_dispersion": pearson_dispersion(y_val, poisson_preds, dof=dof),
"variance_to_mean": variance_to_mean,
"fold": fold_idx,
"model": "poisson",
"status": "ok",
}
)
metrics_rows.append(poisson_metrics)
nb_preds: np.ndarray | None = None
nb_model = None
try:
nb_model = fit_negative_binomial_model(poisson_X_train, y_train)
nb_preds = nb_model.predict(poisson_X_val)
if not np.all(np.isfinite(nb_preds)):
raise ValueError("negative binomial produced non-finite predictions")
except Exception:
nb_metrics = {
"spearman": float("nan"),
"pearson": float("nan"),
"pearson_dispersion": float("nan"),
"variance_to_mean": variance_to_mean,
"alpha": float("nan"),
"fold": fold_idx,
"model": "negative_binomial",
"status": "failed",
}
metrics_rows.append(nb_metrics)
else:
spearman_nb = float(spearmanr(y_val, nb_preds).statistic)
try:
pearson_nb = float(pearsonr(y_val, nb_preds)[0])
except Exception: # pragma: no cover
pearson_nb = float("nan")
nb_metrics = regression_metrics(y_val, nb_preds)
nb_metrics.update(
{
"spearman": spearman_nb,
"pearson": pearson_nb,
"pearson_dispersion": pearson_dispersion(y_val, nb_preds, dof=dof),
"variance_to_mean": variance_to_mean,
"alpha": nb_model.alpha,
"fold": fold_idx,
"model": "negative_binomial",
"status": "ok",
}
)
metrics_rows.append(nb_metrics)
records = list(val_split.itertuples(index=False))
for idx, row in enumerate(records):
row_id = getattr(row, "id", idx)
y_true_val = float(getattr(row, "reactivity_count"))
preds_rows.append(
{
"fold": fold_idx,
"model": "poisson",
"id": row_id,
"y_true": y_true_val,
"y_pred": float(poisson_preds[idx]),
}
)
if nb_preds is not None:
preds_rows.append(
{
"fold": fold_idx,
"model": "negative_binomial",
"id": row_id,
"y_true": y_true_val,
"y_pred": float(nb_preds[idx]),
}
)
metrics_df = pd.DataFrame(metrics_rows)
metrics_df.to_csv(output_dir / "flag_regression_folds.csv", index=False)
summary_records: list[dict[str, float]] = []
for model_name, group in metrics_df.groupby("model"):
for column in group.columns:
if column in {"fold", "model", "status"}:
continue
values = group[column].dropna()
if values.empty:
continue
summary_records.append(
{
"model": model_name,
"metric": column,
"mean": float(values.mean()),
"std": float(values.std(ddof=1)) if len(values) > 1 else float("nan"),
}
)
if summary_records:
pd.DataFrame(summary_records).to_csv(
output_dir / "flag_regression_metrics.csv", index=False
)
if preds_rows:
pd.DataFrame(preds_rows).to_csv(output_dir / "flag_regression_preds.csv", index=False)
def run_descriptor_variants(
base_config: Dict[str, Any],
*,
train_path: Path,
eval_specs: Sequence[DatasetSpec],
output_dir: Path,
batch_size: int,
include_species: List[str] | None,
include_families: List[str] | None,
bootstrap_samples: int,
bootstrap_alpha: float,
) -> None:
variants = [
(
"descriptors_full_vh",
{
"feature_backend": {"type": "descriptors"},
"descriptors": {
"use_anarci": True,
"regions": ["CDRH1", "CDRH2", "CDRH3"],
"features": [
"length",
"charge",
"hydropathy",
"aromaticity",
"pI",
"net_charge",
],
},
},
),
(
"descriptors_cdrh3_pi",
{
"feature_backend": {"type": "descriptors"},
"descriptors": {
"use_anarci": True,
"regions": ["CDRH3"],
"features": ["pI"],
},
},
),
(
"descriptors_cdrh3_top5",
{
"feature_backend": {"type": "descriptors"},
"descriptors": {
"use_anarci": True,
"regions": ["CDRH3"],
"features": [
"pI",
"net_charge",
"charge",
"hydropathy",
"length",
],
},
},
),
]
configs_dir = output_dir / "configs"
configs_dir.mkdir(parents=True, exist_ok=True)
summary_records: list[dict[str, Any]] = []
for name, overrides in variants:
variant_config_path = _write_variant_config(
base_config,
overrides,
configs_dir / f"{name}.yaml",
)
variant_output = output_dir / name
variant_output.mkdir(parents=True, exist_ok=True)
model_path = variant_output / "model.joblib"
run_train(
train_path=train_path,
eval_specs=eval_specs,
output_dir=variant_output,
model_path=model_path,
config=str(variant_config_path),
batch_size=batch_size,
include_species=include_species,
include_families=include_families,
keep_duplicates=True,
group_column="lineage",
train_loader="boughter",
bootstrap_samples=bootstrap_samples,
bootstrap_alpha=bootstrap_alpha,
)
metrics_path = variant_output / "metrics.csv"
if metrics_path.exists():
metrics_df = pd.read_csv(metrics_path)
summary_records.extend(_collect_metric_records(name, metrics_df))
_dump_coefficients(model_path, variant_output / "coefficients.csv")
if summary_records:
pd.DataFrame(summary_records).to_csv(output_dir / "summary.csv", index=False)
def run_fragment_variants(
config_path: str,
*,
train_path: Path,
eval_specs: Sequence[DatasetSpec],
output_dir: Path,
batch_size: int,
include_species: List[str] | None,
include_families: List[str] | None,
bootstrap_samples: int,
bootstrap_alpha: float,
) -> None:
numberer = AnarciNumberer()
specs = [
("vh_full", ["VH"]),
("cdrh1", ["CDRH1"]),
("cdrh2", ["CDRH2"]),
("cdrh3", ["CDRH3"]),
("cdrh123", ["CDRH1", "CDRH2", "CDRH3"]),
]
summary_rows: list[dict[str, Any]] = []
metric_summary_rows: list[dict[str, Any]] = []
for name, regions in specs:
variant_dir = output_dir / name
variant_dir.mkdir(parents=True, exist_ok=True)
dataset_dir = variant_dir / "datasets"
dataset_dir.mkdir(parents=True, exist_ok=True)
train_df = pd.read_csv(train_path)
train_variant, train_summary = _make_region_dataset(train_df, regions, numberer)
train_variant_path = dataset_dir / "train.csv"
train_variant.to_csv(train_variant_path, index=False)
eval_variant_specs: list[DatasetSpec] = []
for spec in eval_specs:
eval_df = pd.read_csv(spec.path)
transformed, eval_summary = _make_region_dataset(eval_df, regions, numberer)
eval_path = dataset_dir / f"{spec.name}.csv"
transformed.to_csv(eval_path, index=False)
eval_variant_specs.append(
DatasetSpec(name=spec.name, path=eval_path, display=spec.display)
)
eval_summary.update({"variant": name, "dataset": spec.name})
summary_rows.append(eval_summary)
train_summary.update({"variant": name, "dataset": "train"})
summary_rows.append(train_summary)
run_train(
train_path=train_variant_path,
eval_specs=eval_variant_specs,
output_dir=variant_dir,
model_path=variant_dir / "model.joblib",
config=config_path,
batch_size=batch_size,
include_species=include_species,
include_families=include_families,
keep_duplicates=True,
group_column="lineage",
train_loader="boughter",
bootstrap_samples=bootstrap_samples,
bootstrap_alpha=bootstrap_alpha,
)
metrics_path = variant_dir / "metrics.csv"
if metrics_path.exists():
metrics_df = pd.read_csv(metrics_path)
metric_records = _collect_metric_records(name, metrics_df)
for record in metric_records:
record["variant_type"] = "fragment"
metric_summary_rows.extend(metric_records)
if summary_rows:
pd.DataFrame(summary_rows).to_csv(output_dir / "fragment_dataset_summary.csv", index=False)
if metric_summary_rows:
pd.DataFrame(metric_summary_rows).to_csv(output_dir / "fragment_metrics_summary.csv", index=False)
def main(argv: list[str] | None = None) -> int:
parser = build_parser()
args = parser.parse_args(argv)
output_dir = Path(args.output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
if args.rebuild:
rebuild_cmd = [
"python",
"scripts/rebuild_boughter_from_counts.py",
"--output",
str(args.train_data),
]
if subprocess.run(rebuild_cmd, check=False).returncode != 0:
raise RuntimeError("Dataset rebuild failed")
train_path = Path(args.train_data)
def _make_spec(name: str, path_str: str) -> DatasetSpec | None:
path = Path(path_str)
if not path.exists():
return None
display = DISPLAY_LABELS.get(name, name.replace("_", " ").title())
return DatasetSpec(name=name, path=path, display=display)
eval_specs: list[DatasetSpec] = []
seen_paths: set[Path] = set()
for name, path_str in [
("jain", args.jain),
("shehata", args.shehata),
("shehata_curated", args.shehata_curated),
("harvey", args.harvey),
]:
spec = _make_spec(name, path_str)
if spec is not None:
resolved = spec.path.resolve()
if resolved in seen_paths:
continue
seen_paths.add(resolved)
eval_specs.append(spec)
base_config = load_config(args.config)
base_config_dict = _config_to_dict(base_config)
main_output = output_dir / "main"
main_output.mkdir(parents=True, exist_ok=True)
model_path = main_output / "model.joblib"
main_include_species = ["human"] if args.human_only else None
main_include_families = ["hiv", "influenza"] if args.human_only else None
run_train(
train_path=train_path,
eval_specs=eval_specs,
output_dir=main_output,
model_path=model_path,
config=args.config,
batch_size=args.batch_size,
include_species=main_include_species,
include_families=main_include_families,
keep_duplicates=True,
group_column="lineage",
train_loader="boughter",
bootstrap_samples=args.bootstrap_samples,
bootstrap_alpha=args.bootstrap_alpha,
)
metrics = pd.read_csv(main_output / "metrics.csv")
preds = pd.read_csv(main_output / "preds.csv")
plot_accuracy(metrics, main_output / "accuracy_overview.png", eval_specs)
plot_rocs(preds, main_output / "roc_overview.png", eval_specs)
if not args.skip_flag_regression:
run_flag_regression(
train_path=train_path,
output_dir=main_output,
config_path=args.config,
batch_size=args.batch_size,
)
split_summary = _summarise_predictions(preds)
split_summary.to_csv(main_output / "dataset_split_summary.csv", index=False)
spearman_stat, spearman_p, corr_df = compute_spearman(
model_path=model_path,
dataset_path=Path(args.full_data),
batch_size=args.batch_size,
)
plot_flags_scatter(corr_df, spearman_stat, main_output / "prob_vs_flags.png")
(main_output / "spearman_flags.json").write_text(
json.dumps({"spearman": spearman_stat, "p_value": spearman_p}, indent=2)
)
corr_df.to_csv(main_output / "prob_vs_flags.csv", index=False)
if not args.skip_lofo:
full_df = pd.read_csv(args.train_data)
lofo_dir = output_dir / "lofo_runs"
lofo_dir.mkdir(parents=True, exist_ok=True)
lofo_df = run_lofo(
full_df,
families=["influenza", "hiv", "mouse_iga"],
config=args.config,
batch_size=args.batch_size,
output_dir=lofo_dir,
bootstrap_samples=args.bootstrap_samples,
bootstrap_alpha=args.bootstrap_alpha,
)
lofo_df.to_csv(output_dir / "lofo_metrics.csv", index=False)
if not args.skip_descriptor_variants:
descriptor_dir = output_dir / "descriptor_variants"
descriptor_dir.mkdir(parents=True, exist_ok=True)
run_descriptor_variants(
base_config_dict,
train_path=train_path,
eval_specs=eval_specs,
output_dir=descriptor_dir,
batch_size=args.batch_size,
include_species=main_include_species,
include_families=main_include_families,
bootstrap_samples=args.bootstrap_samples,
bootstrap_alpha=args.bootstrap_alpha,
)
if not args.skip_fragment_variants:
fragment_dir = output_dir / "fragment_variants"
fragment_dir.mkdir(parents=True, exist_ok=True)
run_fragment_variants(
args.config,
train_path=train_path,
eval_specs=eval_specs,
output_dir=fragment_dir,
batch_size=args.batch_size,
include_species=main_include_species,
include_families=main_include_families,
bootstrap_samples=args.bootstrap_samples,
bootstrap_alpha=args.bootstrap_alpha,
)
raw_summaries = []
raw_summaries.append(_summarise_raw_dataset(train_path, "boughter_rebuilt"))
for spec in eval_specs:
summary_name = RAW_LABELS.get(spec.name, spec.name)
raw_summaries.append(_summarise_raw_dataset(spec.path, summary_name))
pd.DataFrame(raw_summaries).to_csv(output_dir / "raw_dataset_summary.csv", index=False)
return 0
if __name__ == "__main__":
raise SystemExit(main())
|