File size: 35,175 Bytes
5f58699
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
"""Reproduce key metrics and visualisations for the polyreactivity model."""

from __future__ import annotations

import argparse
import copy
import json
import subprocess
from dataclasses import asdict, dataclass
from pathlib import Path
from typing import Any, Dict, Iterable, List, Sequence

import joblib
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import yaml
from scipy.stats import pearsonr, spearmanr
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import roc_curve
from sklearn.model_selection import KFold
from sklearn.preprocessing import StandardScaler

from polyreact import train as train_module
from polyreact.config import load_config
from polyreact.features.anarsi import AnarciNumberer
from polyreact.features.pipeline import FeaturePipeline
from polyreact.models.ordinal import (
    fit_negative_binomial_model,
    fit_poisson_model,
    pearson_dispersion,
    regression_metrics,
)


@dataclass(slots=True)
class DatasetSpec:
    name: str
    path: Path
    display: str


DISPLAY_LABELS = {
    "jain": "Jain (2017)",
    "shehata": "Shehata PSR (398)",
    "shehata_curated": "Shehata curated (88)",
    "harvey": "Harvey (2022)",
}

RAW_LABELS = {
    "jain": "jain2017",
    "shehata": "shehata2019",
    "shehata_curated": "shehata2019_curated",
    "harvey": "harvey2022",
}


def build_parser() -> argparse.ArgumentParser:
    parser = argparse.ArgumentParser(description="Reproduce paper-style metrics and plots")
    parser.add_argument(
        "--train-data",
        default="data/processed/boughter_counts_rebuilt.csv",
        help="Reconstructed Boughter dataset path.",
    )
    parser.add_argument(
        "--full-data",
        default="data/processed/boughter_counts_rebuilt.csv",
        help="Dataset (including mild flags) for correlation analysis.",
    )
    parser.add_argument("--jain", default="data/processed/jain.csv")
    parser.add_argument(
        "--shehata",
        default="data/processed/shehata_full.csv",
        help="Full Shehata PSR panel (398 sequences) in processed CSV form.",
    )
    parser.add_argument(
        "--shehata-curated",
        default="data/processed/shehata_curated.csv",
        help="Optional curated subset of Shehata et al. (88 sequences).",
    )
    parser.add_argument("--harvey", default="data/processed/harvey.csv")
    parser.add_argument("--output-dir", default="artifacts/paper")
    parser.add_argument("--config", default="configs/default.yaml")
    parser.add_argument("--batch-size", type=int, default=16)
    parser.add_argument("--rebuild", action="store_true")
    parser.add_argument(
        "--bootstrap-samples",
        type=int,
        default=1000,
        help="Bootstrap resamples for metrics confidence intervals.",
    )
    parser.add_argument(
        "--bootstrap-alpha",
        type=float,
        default=0.05,
        help="Alpha for bootstrap confidence intervals (default 0.05 → 95%).",
    )
    parser.add_argument(
        "--human-only",
        action="store_true",
        help=(
            "Restrict the main cross-validation run to human HIV and influenza families"
            " (legacy behaviour). By default all Boughter families, including mouse IgA,"
            " participate in CV as in Sakhnini et al."
        ),
    )
    parser.add_argument(
        "--skip-flag-regression",
        action="store_true",
        help="Skip ELISA flag regression diagnostics (Poisson/NB).",
    )
    parser.add_argument(
        "--skip-lofo",
        action="store_true",
        help="Skip leave-one-family-out experiments.",
    )
    parser.add_argument(
        "--skip-descriptor-variants",
        action="store_true",
        help="Skip descriptor-only benchmark variants.",
    )
    parser.add_argument(
        "--skip-fragment-variants",
        action="store_true",
        help="Skip CDR fragment ablation benchmarks.",
    )
    return parser


def _config_to_dict(config) -> Dict[str, Any]:
    data = asdict(config)
    data.pop("raw", None)
    return data


def _deep_merge(base: Dict[str, Any], overrides: Dict[str, Any]) -> Dict[str, Any]:
    result = copy.deepcopy(base)
    for key, value in overrides.items():
        if isinstance(value, dict) and isinstance(result.get(key), dict):
            result[key] = _deep_merge(result.get(key, {}), value)
        else:
            result[key] = value
    return result


def _write_variant_config(
    base_config: Dict[str, Any],
    overrides: Dict[str, Any],
    target_path: Path,
) -> Path:
    merged = _deep_merge(base_config, overrides)
    target_path.parent.mkdir(parents=True, exist_ok=True)
    with target_path.open("w", encoding="utf-8") as handle:
        yaml.safe_dump(merged, handle, sort_keys=False)
    return target_path


def _collect_metric_records(variant: str, metrics: pd.DataFrame) -> list[dict[str, Any]]:
    tracked = {
        "roc_auc",
        "pr_auc",
        "accuracy",
        "f1",
        "f1_positive",
        "f1_negative",
        "precision",
        "sensitivity",
        "specificity",
        "brier",
        "ece",
        "mce",
    }
    records: list[dict[str, Any]] = []
    for _, row in metrics.iterrows():
        metric_name = row["metric"]
        if metric_name not in tracked:
            continue
        record = {"variant": variant, "metric": metric_name}
        for column in metrics.columns:
            if column == "metric":
                continue
            record[column] = float(row[column]) if pd.notna(row[column]) else np.nan
        records.append(record)
    return records


def _dump_coefficients(model_path: Path, output_path: Path) -> None:
    artifact = joblib.load(model_path)
    trained = artifact["model"]
    estimator = getattr(trained, "estimator", None)
    if estimator is None or not hasattr(estimator, "coef_"):
        return
    coefs = estimator.coef_[0]
    feature_state = artifact.get("feature_state")
    feature_names: list[str]
    if feature_state is not None and getattr(feature_state, "feature_names", None):
        feature_names = list(feature_state.feature_names)
    else:
        feature_names = [f"f{i}" for i in range(len(coefs))]
    coeff_df = pd.DataFrame(
        {
            "feature": feature_names,
            "coef": coefs,
            "abs_coef": np.abs(coefs),
        }
    ).sort_values("abs_coef", ascending=False)
    coeff_df.to_csv(output_path, index=False)


def _summarise_predictions(preds: pd.DataFrame) -> pd.DataFrame:
    records: list[dict[str, Any]] = []
    for split, group in preds.groupby("split"):
        stats = {
            "split": split,
            "n_samples": int(len(group)),
            "positives": int(group["y_true"].sum()),
            "positive_rate": float(group["y_true"].mean()) if len(group) else np.nan,
            "score_mean": float(group["y_score"].mean()) if len(group) else np.nan,
            "score_std": float(group["y_score"].std(ddof=1)) if len(group) > 1 else np.nan,
        }
        records.append(stats)
    return pd.DataFrame(records)


def _summarise_raw_dataset(path: Path, name: str) -> dict[str, Any]:
    df = pd.read_csv(path)
    summary: dict[str, Any] = {
        "dataset": name,
        "path": str(path),
        "rows": int(len(df)),
    }
    if "label" in df.columns:
        positives = int(df["label"].sum())
        summary["positives"] = positives
        summary["positive_rate"] = float(df["label"].mean()) if len(df) else np.nan
    if "reactivity_count" in df.columns:
        summary["reactivity_count_mean"] = float(df["reactivity_count"].mean())
        summary["reactivity_count_median"] = float(df["reactivity_count"].median())
        summary["reactivity_count_max"] = int(df["reactivity_count"].max())
    if "smp" in df.columns:
        summary["smp_mean"] = float(df["smp"].mean())
        summary["smp_median"] = float(df["smp"].median())
        summary["smp_max"] = float(df["smp"].max())
        summary["smp_min"] = float(df["smp"].min())
    summary["unique_heavy"] = int(df["heavy_seq"].nunique()) if "heavy_seq" in df.columns else np.nan
    return summary


def _extract_region_sequence(sequence: str, regions: List[str], numberer: AnarciNumberer) -> str:
    if not sequence:
        return ""
    upper_regions = [region.upper() for region in regions]
    if upper_regions == ["VH"]:
        return sequence
    try:
        numbered = numberer.number_sequence(sequence)
    except Exception:
        return ""
    fragments: list[str] = []
    for region in upper_regions:
        if region == "VH":
            return sequence
        fragment = numbered.regions.get(region)
        if not fragment:
            return ""
        fragments.append(fragment)
    return "".join(fragments)


def _make_region_dataset(
    frame: pd.DataFrame, regions: List[str], numberer: AnarciNumberer
) -> tuple[pd.DataFrame, dict[str, Any]]:
    records: list[dict[str, Any]] = []
    dropped = 0
    for record in frame.to_dict(orient="records"):
        new_seq = _extract_region_sequence(record.get("heavy_seq", ""), regions, numberer)
        if not new_seq:
            dropped += 1
            continue
        updated = record.copy()
        updated["heavy_seq"] = new_seq
        updated["light_seq"] = ""
        records.append(updated)
    result = pd.DataFrame(records, columns=frame.columns)
    summary = {
        "regions": "+".join(regions),
        "input_rows": int(len(frame)),
        "retained_rows": int(len(result)),
        "dropped_rows": int(dropped),
    }
    return result, summary


def run_train(
    *,
    train_path: Path,
    eval_specs: Sequence[DatasetSpec],
    output_dir: Path,
    model_path: Path,
    config: str,
    batch_size: int,
    include_species: list[str] | None = None,
    include_families: list[str] | None = None,
    exclude_families: list[str] | None = None,
    keep_duplicates: bool = False,
    group_column: str | None = "lineage",
    train_loader: str | None = None,
    bootstrap_samples: int = 200,
    bootstrap_alpha: float = 0.05,
) -> None:
    args: list[str] = [
        "--config",
        str(config),
        "--train",
        str(train_path),
        "--report-to",
        str(output_dir),
        "--save-to",
        str(model_path),
        "--batch-size",
        str(batch_size),
    ]

    if eval_specs:
        args.append("--eval")
        args.extend(str(spec.path) for spec in eval_specs)

    if train_loader:
        args.extend(["--train-loader", train_loader])
    if eval_specs:
        args.append("--eval-loaders")
        args.extend(spec.name for spec in eval_specs)
    if include_species:
        args.append("--include-species")
        args.extend(include_species)
    if include_families:
        args.append("--include-families")
        args.extend(include_families)
    if exclude_families:
        args.append("--exclude-families")
        args.extend(exclude_families)
    if keep_duplicates:
        args.append("--keep-train-duplicates")
    if group_column:
        args.extend(["--cv-group-column", group_column])
    else:
        args.append("--no-group-cv")
    args.extend(["--bootstrap-samples", str(bootstrap_samples)])
    args.extend(["--bootstrap-alpha", str(bootstrap_alpha)])

    exit_code = train_module.main(args)
    if exit_code != 0:
        raise RuntimeError(f"Training command failed with exit code {exit_code}")


def compute_spearman(model_path: Path, dataset_path: Path, batch_size: int) -> tuple[float, float, pd.DataFrame]:
    artifact = joblib.load(model_path)
    config = artifact["config"]
    pipeline_state = artifact["feature_state"]
    trained_model = artifact["model"]

    pipeline = FeaturePipeline(backend=config.feature_backend, descriptors=config.descriptors, device=config.device)
    pipeline.load_state(pipeline_state)

    dataset = pd.read_csv(dataset_path)
    features = pipeline.transform(dataset, heavy_only=True, batch_size=batch_size)
    scores = trained_model.predict_proba(features)
    dataset = dataset.copy()
    dataset["score"] = scores

    stat, pvalue = spearmanr(dataset["reactivity_count"], dataset["score"])
    return float(stat), float(pvalue), dataset


def plot_accuracy(
    metrics: pd.DataFrame,
    output_path: Path,
    eval_specs: Sequence[DatasetSpec],
) -> None:
    row = metrics.loc[metrics["metric"] == "accuracy"].iloc[0]
    labels = ["Train CV"] + [spec.display for spec in eval_specs]
    values = [row.get("train_cv_mean", np.nan)] + [row.get(spec.name, np.nan) for spec in eval_specs]

    fig, ax = plt.subplots(figsize=(6, 4))
    xs = np.arange(len(labels))
    ax.bar(xs, values, color=["#1f77b4", "#ff7f0e", "#2ca02c", "#d62728"])
    ax.set_xticks(xs, labels)
    ax.set_ylim(0.0, 1.05)
    ax.set_ylabel("Accuracy")
    ax.set_title("Polyreactivity accuracy overview")
    for x, val in zip(xs, values, strict=False):
        if np.isnan(val):
            continue
        ax.text(x, val + 0.02, f"{val:.3f}", ha="center", va="bottom")
    fig.tight_layout()
    fig.savefig(output_path, dpi=300)
    plt.close(fig)


def plot_rocs(
    preds: pd.DataFrame,
    output_path: Path,
    eval_specs: Sequence[DatasetSpec],
) -> None:
    mapping = {"train_cv_oof": "Train CV"}
    for spec in eval_specs:
        mapping[spec.name] = spec.display
    fig, ax = plt.subplots(figsize=(6, 6))
    for split, label in mapping.items():
        subset = preds[preds["split"] == split]
        if subset.empty:
            continue
        fpr, tpr, _ = roc_curve(subset["y_true"], subset["y_score"])
        ax.plot(fpr, tpr, label=label)
    ax.plot([0, 1], [0, 1], linestyle="--", color="gray")
    ax.set_xlabel("False positive rate")
    ax.set_ylabel("True positive rate")
    ax.set_title("ROC curves")
    ax.legend()
    fig.tight_layout()
    fig.savefig(output_path, dpi=300)
    plt.close(fig)


def plot_flags_scatter(data: pd.DataFrame, spearman_stat: float, output_path: Path) -> None:
    rng = np.random.default_rng(42)
    jitter = rng.uniform(-0.1, 0.1, size=len(data))
    x = data["reactivity_count"].to_numpy(dtype=float) + jitter
    y = data["score"].to_numpy(dtype=float)

    fig, ax = plt.subplots(figsize=(6, 4))
    ax.scatter(x, y, alpha=0.5, s=10)
    ax.set_xlabel("ELISA flag count")
    ax.set_ylabel("Predicted probability")
    ax.set_title(f"Prediction vs flag count (Spearman={spearman_stat:.2f})")
    fig.tight_layout()
    fig.savefig(output_path, dpi=300)
    plt.close(fig)


def run_lofo(
    full_df: pd.DataFrame,
    *,
    families: list[str],
    config: str,
    batch_size: int,
    output_dir: Path,
    bootstrap_samples: int,
    bootstrap_alpha: float,
) -> pd.DataFrame:
    results: list[dict[str, float]] = []
    for family in families:
        family_lower = family.lower()
        holdout = full_df[full_df["family"].str.lower() == family_lower].copy()
        train = full_df[full_df["family"].str.lower() != family_lower].copy()
        if holdout.empty or train.empty:
            continue

        train_path = output_dir / f"train_lofo_{family_lower}.csv"
        holdout_path = output_dir / f"eval_lofo_{family_lower}.csv"
        train.to_csv(train_path, index=False)
        holdout.to_csv(holdout_path, index=False)

        run_dir = output_dir / f"lofo_{family_lower}"
        run_dir.mkdir(parents=True, exist_ok=True)
        model_path = run_dir / "model.joblib"

        run_train(
            train_path=train_path,
            eval_specs=[
                DatasetSpec(
                    name="boughter",
                    path=holdout_path,
                    display=f"{family.title()} holdout",
                )
            ],
            output_dir=run_dir,
            model_path=model_path,
            config=config,
            batch_size=batch_size,
            keep_duplicates=True,
            include_species=None,
            include_families=None,
            exclude_families=None,
            group_column="lineage",
            train_loader="boughter",
            bootstrap_samples=bootstrap_samples,
            bootstrap_alpha=bootstrap_alpha,
        )

        metrics = pd.read_csv(run_dir / "metrics.csv")
        evaluation_cols = [
            col
            for col in metrics.columns
            if col not in {"metric", "train_cv_mean", "train_cv_std"}
        ]
        if not evaluation_cols:
            continue
        eval_col = evaluation_cols[0]
        def _metric_value(name: str) -> float:
            series = metrics.loc[metrics["metric"] == name, eval_col]
            return float(series.values[0]) if not series.empty else float("nan")

        results.append(
            {
                "family": family,
                "accuracy": _metric_value("accuracy"),
                "roc_auc": _metric_value("roc_auc"),
                "pr_auc": _metric_value("pr_auc"),
                "sensitivity": _metric_value("sensitivity"),
                "specificity": _metric_value("specificity"),
            }
        )

    return pd.DataFrame(results)



def run_flag_regression(
    train_path: Path,
    *,
    output_dir: Path,
    config_path: str,
    batch_size: int,
    n_splits: int = 5,
) -> None:
    df = pd.read_csv(train_path)
    if "reactivity_count" not in df.columns:
        return

    config = load_config(config_path)
    kfold = KFold(n_splits=n_splits, shuffle=True, random_state=config.seed)

    metrics_rows: list[dict[str, float]] = []
    preds_rows: list[dict[str, float]] = []

    for fold_idx, (train_idx, val_idx) in enumerate(kfold.split(df), start=1):
        train_split = df.iloc[train_idx].reset_index(drop=True)
        val_split = df.iloc[val_idx].reset_index(drop=True)

        pipeline = FeaturePipeline(
            backend=config.feature_backend,
            descriptors=config.descriptors,
            device=config.device,
        )
        X_train = pipeline.fit_transform(train_split, heavy_only=True, batch_size=batch_size)
        scaler = StandardScaler()
        X_train_scaled = scaler.fit_transform(X_train)
        y_train = train_split["reactivity_count"].to_numpy(dtype=float)
        # Train a logistic head to obtain probabilities as a 1-D feature
        clf = LogisticRegression(
            C=config.model.C,
            class_weight=config.model.class_weight,
            max_iter=2000,
            solver="lbfgs",
        )
        clf.fit(X_train_scaled, train_split["label"].to_numpy(dtype=int))
        prob_train = clf.predict_proba(X_train_scaled)[:, 1]

        X_val = pipeline.transform(val_split, heavy_only=True, batch_size=batch_size)
        X_val_scaled = scaler.transform(X_val)
        y_val = val_split["reactivity_count"].to_numpy(dtype=float)
        prob_val = clf.predict_proba(X_val_scaled)[:, 1]

        poisson_X_train = prob_train.reshape(-1, 1)
        poisson_X_val = prob_val.reshape(-1, 1)
        model = fit_poisson_model(poisson_X_train, y_train)
        poisson_preds = model.predict(poisson_X_val)

        n_params = poisson_X_train.shape[1] + 1  # include intercept
        dof = max(len(y_val) - n_params, 1)
        variance_to_mean = float(np.var(y_val, ddof=1) / np.mean(y_val)) if np.mean(y_val) else float("nan")

        spearman_val = float(spearmanr(y_val, poisson_preds).statistic)
        try:
            pearson_val = float(pearsonr(y_val, poisson_preds)[0])
        except Exception:  # pragma: no cover - fallback if correlation fails
            pearson_val = float("nan")

        poisson_metrics = regression_metrics(y_val, poisson_preds)
        poisson_metrics.update(
            {
                "spearman": spearman_val,
                "pearson": pearson_val,
                "pearson_dispersion": pearson_dispersion(y_val, poisson_preds, dof=dof),
                "variance_to_mean": variance_to_mean,
                "fold": fold_idx,
                "model": "poisson",
                "status": "ok",
            }
        )
        metrics_rows.append(poisson_metrics)

        nb_preds: np.ndarray | None = None
        nb_model = None
        try:
            nb_model = fit_negative_binomial_model(poisson_X_train, y_train)
            nb_preds = nb_model.predict(poisson_X_val)
            if not np.all(np.isfinite(nb_preds)):
                raise ValueError("negative binomial produced non-finite predictions")
        except Exception:
            nb_metrics = {
                "spearman": float("nan"),
                "pearson": float("nan"),
                "pearson_dispersion": float("nan"),
                "variance_to_mean": variance_to_mean,
                "alpha": float("nan"),
                "fold": fold_idx,
                "model": "negative_binomial",
                "status": "failed",
            }
            metrics_rows.append(nb_metrics)
        else:
            spearman_nb = float(spearmanr(y_val, nb_preds).statistic)
            try:
                pearson_nb = float(pearsonr(y_val, nb_preds)[0])
            except Exception:  # pragma: no cover
                pearson_nb = float("nan")

            nb_metrics = regression_metrics(y_val, nb_preds)
            nb_metrics.update(
                {
                    "spearman": spearman_nb,
                    "pearson": pearson_nb,
                    "pearson_dispersion": pearson_dispersion(y_val, nb_preds, dof=dof),
                    "variance_to_mean": variance_to_mean,
                    "alpha": nb_model.alpha,
                    "fold": fold_idx,
                    "model": "negative_binomial",
                    "status": "ok",
                }
            )
            metrics_rows.append(nb_metrics)

        records = list(val_split.itertuples(index=False))
        for idx, row in enumerate(records):
            row_id = getattr(row, "id", idx)
            y_true_val = float(getattr(row, "reactivity_count"))
            preds_rows.append(
                {
                    "fold": fold_idx,
                    "model": "poisson",
                    "id": row_id,
                    "y_true": y_true_val,
                    "y_pred": float(poisson_preds[idx]),
                }
            )
            if nb_preds is not None:
                preds_rows.append(
                    {
                        "fold": fold_idx,
                        "model": "negative_binomial",
                        "id": row_id,
                        "y_true": y_true_val,
                        "y_pred": float(nb_preds[idx]),
                    }
                )

    metrics_df = pd.DataFrame(metrics_rows)
    metrics_df.to_csv(output_dir / "flag_regression_folds.csv", index=False)

    summary_records: list[dict[str, float]] = []
    for model_name, group in metrics_df.groupby("model"):
        for column in group.columns:
            if column in {"fold", "model", "status"}:
                continue
            values = group[column].dropna()
            if values.empty:
                continue
            summary_records.append(
                {
                    "model": model_name,
                    "metric": column,
                    "mean": float(values.mean()),
                    "std": float(values.std(ddof=1)) if len(values) > 1 else float("nan"),
                }
            )
    if summary_records:
        pd.DataFrame(summary_records).to_csv(
            output_dir / "flag_regression_metrics.csv", index=False
        )

    if preds_rows:
        pd.DataFrame(preds_rows).to_csv(output_dir / "flag_regression_preds.csv", index=False)

def run_descriptor_variants(
    base_config: Dict[str, Any],
    *,
    train_path: Path,
    eval_specs: Sequence[DatasetSpec],
    output_dir: Path,
    batch_size: int,
    include_species: List[str] | None,
    include_families: List[str] | None,
    bootstrap_samples: int,
    bootstrap_alpha: float,
) -> None:
    variants = [
        (
            "descriptors_full_vh",
            {
                "feature_backend": {"type": "descriptors"},
                "descriptors": {
                    "use_anarci": True,
                    "regions": ["CDRH1", "CDRH2", "CDRH3"],
                    "features": [
                        "length",
                        "charge",
                        "hydropathy",
                        "aromaticity",
                        "pI",
                        "net_charge",
                    ],
                },
            },
        ),
        (
            "descriptors_cdrh3_pi",
            {
                "feature_backend": {"type": "descriptors"},
                "descriptors": {
                    "use_anarci": True,
                    "regions": ["CDRH3"],
                    "features": ["pI"],
                },
            },
        ),
        (
            "descriptors_cdrh3_top5",
            {
                "feature_backend": {"type": "descriptors"},
                "descriptors": {
                    "use_anarci": True,
                    "regions": ["CDRH3"],
                    "features": [
                        "pI",
                        "net_charge",
                        "charge",
                        "hydropathy",
                        "length",
                    ],
                },
            },
        ),
    ]

    configs_dir = output_dir / "configs"
    configs_dir.mkdir(parents=True, exist_ok=True)
    summary_records: list[dict[str, Any]] = []

    for name, overrides in variants:
        variant_config_path = _write_variant_config(
            base_config,
            overrides,
            configs_dir / f"{name}.yaml",
        )
        variant_output = output_dir / name
        variant_output.mkdir(parents=True, exist_ok=True)
        model_path = variant_output / "model.joblib"

        run_train(
            train_path=train_path,
            eval_specs=eval_specs,
            output_dir=variant_output,
            model_path=model_path,
            config=str(variant_config_path),
            batch_size=batch_size,
            include_species=include_species,
            include_families=include_families,
            keep_duplicates=True,
            group_column="lineage",
            train_loader="boughter",
            bootstrap_samples=bootstrap_samples,
            bootstrap_alpha=bootstrap_alpha,
        )

        metrics_path = variant_output / "metrics.csv"
        if metrics_path.exists():
            metrics_df = pd.read_csv(metrics_path)
            summary_records.extend(_collect_metric_records(name, metrics_df))

        _dump_coefficients(model_path, variant_output / "coefficients.csv")

    if summary_records:
        pd.DataFrame(summary_records).to_csv(output_dir / "summary.csv", index=False)


def run_fragment_variants(
    config_path: str,
    *,
    train_path: Path,
    eval_specs: Sequence[DatasetSpec],
    output_dir: Path,
    batch_size: int,
    include_species: List[str] | None,
    include_families: List[str] | None,
    bootstrap_samples: int,
    bootstrap_alpha: float,
) -> None:
    numberer = AnarciNumberer()
    specs = [
        ("vh_full", ["VH"]),
        ("cdrh1", ["CDRH1"]),
        ("cdrh2", ["CDRH2"]),
        ("cdrh3", ["CDRH3"]),
        ("cdrh123", ["CDRH1", "CDRH2", "CDRH3"]),
    ]

    summary_rows: list[dict[str, Any]] = []
    metric_summary_rows: list[dict[str, Any]] = []

    for name, regions in specs:
        variant_dir = output_dir / name
        variant_dir.mkdir(parents=True, exist_ok=True)
        dataset_dir = variant_dir / "datasets"
        dataset_dir.mkdir(parents=True, exist_ok=True)

        train_df = pd.read_csv(train_path)
        train_variant, train_summary = _make_region_dataset(train_df, regions, numberer)
        train_variant_path = dataset_dir / "train.csv"
        train_variant.to_csv(train_variant_path, index=False)

        eval_variant_specs: list[DatasetSpec] = []
        for spec in eval_specs:
            eval_df = pd.read_csv(spec.path)
            transformed, eval_summary = _make_region_dataset(eval_df, regions, numberer)
            eval_path = dataset_dir / f"{spec.name}.csv"
            transformed.to_csv(eval_path, index=False)
            eval_variant_specs.append(
                DatasetSpec(name=spec.name, path=eval_path, display=spec.display)
            )
            eval_summary.update({"variant": name, "dataset": spec.name})
            summary_rows.append(eval_summary)

        train_summary.update({"variant": name, "dataset": "train"})
        summary_rows.append(train_summary)

        run_train(
            train_path=train_variant_path,
            eval_specs=eval_variant_specs,
            output_dir=variant_dir,
            model_path=variant_dir / "model.joblib",
            config=config_path,
            batch_size=batch_size,
            include_species=include_species,
            include_families=include_families,
            keep_duplicates=True,
            group_column="lineage",
            train_loader="boughter",
            bootstrap_samples=bootstrap_samples,
            bootstrap_alpha=bootstrap_alpha,
        )

        metrics_path = variant_dir / "metrics.csv"
        if metrics_path.exists():
            metrics_df = pd.read_csv(metrics_path)
            metric_records = _collect_metric_records(name, metrics_df)
            for record in metric_records:
                record["variant_type"] = "fragment"
            metric_summary_rows.extend(metric_records)

    if summary_rows:
        pd.DataFrame(summary_rows).to_csv(output_dir / "fragment_dataset_summary.csv", index=False)
    if metric_summary_rows:
        pd.DataFrame(metric_summary_rows).to_csv(output_dir / "fragment_metrics_summary.csv", index=False)


def main(argv: list[str] | None = None) -> int:
    parser = build_parser()
    args = parser.parse_args(argv)

    output_dir = Path(args.output_dir)
    output_dir.mkdir(parents=True, exist_ok=True)

    if args.rebuild:
        rebuild_cmd = [
            "python",
            "scripts/rebuild_boughter_from_counts.py",
            "--output",
            str(args.train_data),
        ]
        if subprocess.run(rebuild_cmd, check=False).returncode != 0:
            raise RuntimeError("Dataset rebuild failed")

    train_path = Path(args.train_data)

    def _make_spec(name: str, path_str: str) -> DatasetSpec | None:
        path = Path(path_str)
        if not path.exists():
            return None
        display = DISPLAY_LABELS.get(name, name.replace("_", " ").title())
        return DatasetSpec(name=name, path=path, display=display)

    eval_specs: list[DatasetSpec] = []
    seen_paths: set[Path] = set()
    for name, path_str in [
        ("jain", args.jain),
        ("shehata", args.shehata),
        ("shehata_curated", args.shehata_curated),
        ("harvey", args.harvey),
    ]:
        spec = _make_spec(name, path_str)
        if spec is not None:
            resolved = spec.path.resolve()
            if resolved in seen_paths:
                continue
            seen_paths.add(resolved)
            eval_specs.append(spec)

    base_config = load_config(args.config)
    base_config_dict = _config_to_dict(base_config)

    main_output = output_dir / "main"
    main_output.mkdir(parents=True, exist_ok=True)
    model_path = main_output / "model.joblib"

    main_include_species = ["human"] if args.human_only else None
    main_include_families = ["hiv", "influenza"] if args.human_only else None

    run_train(
        train_path=train_path,
        eval_specs=eval_specs,
        output_dir=main_output,
        model_path=model_path,
        config=args.config,
        batch_size=args.batch_size,
        include_species=main_include_species,
        include_families=main_include_families,
        keep_duplicates=True,
        group_column="lineage",
        train_loader="boughter",
        bootstrap_samples=args.bootstrap_samples,
        bootstrap_alpha=args.bootstrap_alpha,
    )

    metrics = pd.read_csv(main_output / "metrics.csv")
    preds = pd.read_csv(main_output / "preds.csv")

    plot_accuracy(metrics, main_output / "accuracy_overview.png", eval_specs)
    plot_rocs(preds, main_output / "roc_overview.png", eval_specs)

    if not args.skip_flag_regression:
        run_flag_regression(
            train_path=train_path,
            output_dir=main_output,
            config_path=args.config,
            batch_size=args.batch_size,
        )

    split_summary = _summarise_predictions(preds)
    split_summary.to_csv(main_output / "dataset_split_summary.csv", index=False)

    spearman_stat, spearman_p, corr_df = compute_spearman(
        model_path=model_path,
        dataset_path=Path(args.full_data),
        batch_size=args.batch_size,
    )
    plot_flags_scatter(corr_df, spearman_stat, main_output / "prob_vs_flags.png")
    (main_output / "spearman_flags.json").write_text(
        json.dumps({"spearman": spearman_stat, "p_value": spearman_p}, indent=2)
    )
    corr_df.to_csv(main_output / "prob_vs_flags.csv", index=False)

    if not args.skip_lofo:
        full_df = pd.read_csv(args.train_data)
        lofo_dir = output_dir / "lofo_runs"
        lofo_dir.mkdir(parents=True, exist_ok=True)
        lofo_df = run_lofo(
            full_df,
            families=["influenza", "hiv", "mouse_iga"],
            config=args.config,
            batch_size=args.batch_size,
            output_dir=lofo_dir,
            bootstrap_samples=args.bootstrap_samples,
            bootstrap_alpha=args.bootstrap_alpha,
        )
        lofo_df.to_csv(output_dir / "lofo_metrics.csv", index=False)

    if not args.skip_descriptor_variants:
        descriptor_dir = output_dir / "descriptor_variants"
        descriptor_dir.mkdir(parents=True, exist_ok=True)
        run_descriptor_variants(
            base_config_dict,
            train_path=train_path,
            eval_specs=eval_specs,
            output_dir=descriptor_dir,
            batch_size=args.batch_size,
            include_species=main_include_species,
            include_families=main_include_families,
            bootstrap_samples=args.bootstrap_samples,
            bootstrap_alpha=args.bootstrap_alpha,
        )

    if not args.skip_fragment_variants:
        fragment_dir = output_dir / "fragment_variants"
        fragment_dir.mkdir(parents=True, exist_ok=True)
        run_fragment_variants(
            args.config,
            train_path=train_path,
            eval_specs=eval_specs,
            output_dir=fragment_dir,
            batch_size=args.batch_size,
            include_species=main_include_species,
            include_families=main_include_families,
            bootstrap_samples=args.bootstrap_samples,
            bootstrap_alpha=args.bootstrap_alpha,
        )

    raw_summaries = []
    raw_summaries.append(_summarise_raw_dataset(train_path, "boughter_rebuilt"))
    for spec in eval_specs:
        summary_name = RAW_LABELS.get(spec.name, spec.name)
        raw_summaries.append(_summarise_raw_dataset(spec.path, summary_name))
    pd.DataFrame(raw_summaries).to_csv(output_dir / "raw_dataset_summary.csv", index=False)

    return 0


if __name__ == "__main__":
    raise SystemExit(main())