Spaces:
Sleeping
Sleeping
File size: 21,849 Bytes
5f58699 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 |
"""Training entrypoint for the polyreactivity model."""
from __future__ import annotations
import argparse
import json
import subprocess
from pathlib import Path
from typing import Any, Sequence
import joblib
import numpy as np
import pandas as pd
from sklearn.metrics import roc_auc_score
from sklearn.model_selection import StratifiedKFold, StratifiedGroupKFold
from sklearn.linear_model import LogisticRegression
from .config import Config, load_config
from .data_loaders import boughter, harvey, jain, shehata
from .data_loaders.utils import deduplicate_sequences
from .features.pipeline import FeaturePipeline, FeaturePipelineState, build_feature_pipeline
from .models.calibrate import fit_calibrator
from .models.linear import LinearModelConfig, TrainedModel, build_estimator, train_linear_model
from .utils.io import write_table
from .utils.logging import configure_logging
from .utils.metrics import bootstrap_metric_intervals, compute_metrics
from .utils.plots import plot_precision_recall, plot_reliability_curve, plot_roc_curve
from .utils.seeds import set_global_seeds
DATASET_LOADERS = {
"boughter": boughter.load_dataframe,
"jain": jain.load_dataframe,
"shehata": shehata.load_dataframe,
"shehata_curated": shehata.load_dataframe,
"harvey": harvey.load_dataframe,
}
def build_parser() -> argparse.ArgumentParser:
parser = argparse.ArgumentParser(description="Train polyreactivity model")
parser.add_argument("--config", default="configs/default.yaml", help="Config file")
parser.add_argument("--train", required=True, help="Training dataset path")
parser.add_argument(
"--eval",
nargs="*",
default=[],
help="Evaluation dataset paths",
)
parser.add_argument(
"--save-to",
default="artifacts/model.joblib",
help="Path to save trained model artifact",
)
parser.add_argument(
"--report-to",
default="artifacts",
help="Directory for metrics, predictions, and plots",
)
parser.add_argument(
"--train-loader",
choices=list(DATASET_LOADERS.keys()),
help="Optional explicit loader for training dataset",
)
parser.add_argument(
"--eval-loaders",
nargs="*",
help="Optional explicit loaders for evaluation datasets (aligned with --eval order)",
)
parser.add_argument(
"--backend",
choices=["plm", "descriptors", "concat"],
help="Override feature backend",
)
parser.add_argument("--plm-model", help="Override PLM model name")
parser.add_argument("--cache-dir", help="Override embedding cache directory")
parser.add_argument("--device", choices=["auto", "cpu", "cuda"], help="Device override")
parser.add_argument("--batch-size", type=int, default=8, help="Batch size for embeddings")
parser.add_argument(
"--heavy-only",
action="store_true",
default=True,
help="Use heavy chains only (default true)",
)
parser.add_argument(
"--paired",
dest="heavy_only",
action="store_false",
help="Use paired heavy/light chains when available.",
)
parser.add_argument(
"--include-families",
nargs="*",
help="Optional list of family names to retain in the training dataset",
)
parser.add_argument(
"--exclude-families",
nargs="*",
help="Optional list of family names to drop from the training dataset",
)
parser.add_argument(
"--include-species",
nargs="*",
help="Optional list of species (e.g. human, mouse) to retain",
)
parser.add_argument(
"--cv-group-column",
default="lineage",
help="Column name used to group samples during cross-validation (default: lineage)",
)
parser.add_argument(
"--no-group-cv",
action="store_true",
help="Disable group-aware cross-validation even if group column is present",
)
parser.add_argument(
"--keep-train-duplicates",
action="store_true",
help="Keep duplicate keys within the training dataset when deduplicating across splits",
)
parser.add_argument(
"--dedupe-key-columns",
nargs="*",
help="Columns used to detect duplicates across datasets (defaults to heavy/light sequences)",
)
parser.add_argument(
"--bootstrap-samples",
type=int,
default=200,
help="Number of bootstrap resamples for confidence intervals (0 to disable).",
)
parser.add_argument(
"--bootstrap-alpha",
type=float,
default=0.05,
help="Alpha for two-sided bootstrap confidence intervals (default 0.05 → 95% CI).",
)
parser.add_argument(
"--write-train-in-sample",
action="store_true",
help=(
"Persist in-sample metrics on the full training set; disabled by default to avoid"
" over-optimistic reporting."
),
)
return parser
def _infer_loader(path: str, explicit: str | None) -> tuple[str, callable]:
if explicit:
return explicit, DATASET_LOADERS[explicit]
lower = Path(path).stem.lower()
for name, loader in DATASET_LOADERS.items():
if name in lower:
return name, loader
msg = f"Could not infer loader for dataset: {path}. Provide --train-loader/--eval-loaders."
raise ValueError(msg)
def _load_dataset(path: str, loader_name: str, loader_fn, *, heavy_only: bool) -> pd.DataFrame:
frame = loader_fn(path, heavy_only=heavy_only)
frame["source"] = loader_name
return frame
def _apply_dataset_filters(
frame: pd.DataFrame,
*,
include_families: Sequence[str] | None,
exclude_families: Sequence[str] | None,
include_species: Sequence[str] | None,
) -> pd.DataFrame:
filtered = frame.copy()
if include_families:
families = {fam.lower() for fam in include_families}
if "family" in filtered.columns:
filtered = filtered[
filtered["family"].astype(str).str.lower().isin(families)
]
if exclude_families:
families_ex = {fam.lower() for fam in exclude_families}
if "family" in filtered.columns:
filtered = filtered[
~filtered["family"].astype(str).str.lower().isin(families_ex)
]
if include_species:
species_set = {spec.lower() for spec in include_species}
if "species" in filtered.columns:
filtered = filtered[
filtered["species"].astype(str).str.lower().isin(species_set)
]
return filtered.reset_index(drop=True)
def main(argv: Sequence[str] | None = None) -> int:
parser = build_parser()
args = parser.parse_args(argv)
config = load_config(args.config)
if args.device:
config.device = args.device
if args.backend:
config.feature_backend.type = args.backend
if args.cache_dir:
config.feature_backend.cache_dir = args.cache_dir
if args.plm_model:
config.feature_backend.plm_model_name = args.plm_model
logger = configure_logging()
set_global_seeds(config.seed)
_log_environment(logger)
heavy_only = args.heavy_only
train_name, train_loader = _infer_loader(args.train, args.train_loader)
train_df = _load_dataset(args.train, train_name, train_loader, heavy_only=heavy_only)
train_df = _apply_dataset_filters(
train_df,
include_families=args.include_families,
exclude_families=args.exclude_families,
include_species=args.include_species,
)
eval_frames: list[pd.DataFrame] = []
if args.eval:
loaders_iter = args.eval_loaders or []
for idx, eval_path in enumerate(args.eval):
explicit = loaders_iter[idx] if idx < len(loaders_iter) else None
eval_name, eval_loader = _infer_loader(eval_path, explicit)
eval_df = _load_dataset(eval_path, eval_name, eval_loader, heavy_only=heavy_only)
eval_frames.append(eval_df)
all_frames = [train_df, *eval_frames]
dedup_keep = {0} if args.keep_train_duplicates else set()
deduped_frames = deduplicate_sequences(
all_frames,
heavy_only=heavy_only,
key_columns=args.dedupe_key_columns,
keep_intra_frames=dedup_keep,
)
train_df = deduped_frames[0]
eval_frames = deduped_frames[1:]
pipeline_factory = lambda: build_feature_pipeline( # noqa: E731
config,
backend_override=args.backend,
plm_model_override=args.plm_model,
cache_dir_override=args.cache_dir,
)
model_config = LinearModelConfig(
head=config.model.head,
C=config.model.C,
class_weight=config.model.class_weight,
)
groups = None
if not args.no_group_cv and args.cv_group_column:
if args.cv_group_column in train_df.columns:
groups = train_df[args.cv_group_column].fillna("").astype(str).to_numpy()
else:
logger.warning(
"Group column '%s' not found in training dataframe; falling back to standard CV",
args.cv_group_column,
)
cv_results = _cross_validate(
train_df,
pipeline_factory,
model_config,
config,
heavy_only=heavy_only,
batch_size=args.batch_size,
groups=groups,
)
trained_model, feature_pipeline = _fit_full_model(
train_df,
pipeline_factory,
model_config,
config,
heavy_only=heavy_only,
batch_size=args.batch_size,
)
outputs_dir = Path(args.report_to)
outputs_dir.mkdir(parents=True, exist_ok=True)
metrics_df, preds_rows = _evaluate_datasets(
train_df,
eval_frames,
trained_model,
feature_pipeline,
config,
cv_results,
outputs_dir,
batch_size=args.batch_size,
heavy_only=heavy_only,
bootstrap_samples=args.bootstrap_samples,
bootstrap_alpha=args.bootstrap_alpha,
write_train_in_sample=args.write_train_in_sample,
)
write_table(metrics_df, outputs_dir / config.io.metrics_filename)
preds_df = pd.DataFrame(preds_rows)
write_table(preds_df, outputs_dir / config.io.preds_filename)
artifact = {
"config": config,
"feature_state": feature_pipeline.get_state(),
"model": trained_model,
}
Path(args.save_to).parent.mkdir(parents=True, exist_ok=True)
joblib.dump(artifact, args.save_to)
logger.info("Training complete. Metrics written to %s", outputs_dir)
return 0
def _cross_validate(
train_df: pd.DataFrame,
pipeline_factory,
model_config: LinearModelConfig,
config: Config,
*,
heavy_only: bool,
batch_size: int,
groups: np.ndarray | None = None,
):
y = train_df["label"].to_numpy(dtype=int)
n_samples = len(y)
# Determine a safe number of folds for tiny fixtures; prefer the configured value
# but never exceed the number of samples. Fall back to non-stratified KFold when
# per-class counts are too small for stratification (e.g., 1 positive/1 negative).
n_splits = max(2, min(config.training.cv_folds, n_samples))
use_stratified = True
class_counts = np.bincount(y) if y.size else np.array([])
if class_counts.size > 0 and (class_counts.min(initial=0) < n_splits):
use_stratified = False
if groups is not None and use_stratified:
splitter = StratifiedGroupKFold(
n_splits=n_splits,
shuffle=True,
random_state=config.seed,
)
split_iter = splitter.split(train_df, y, groups)
elif use_stratified:
splitter = StratifiedKFold(
n_splits=n_splits,
shuffle=True,
random_state=config.seed,
)
split_iter = splitter.split(train_df, y)
else:
# Non-stratified fallback for extreme class imbalance / tiny datasets
from sklearn.model_selection import KFold # local import to limit surface
splitter = KFold(n_splits=n_splits, shuffle=True, random_state=config.seed)
split_iter = splitter.split(train_df)
oof_scores = np.zeros(len(train_df), dtype=float)
metrics_per_fold: list[dict[str, float]] = []
for fold_idx, (train_idx, val_idx) in enumerate(split_iter, start=1):
train_slice = train_df.iloc[train_idx].reset_index(drop=True)
val_slice = train_df.iloc[val_idx].reset_index(drop=True)
pipeline: FeaturePipeline = pipeline_factory()
X_train = pipeline.fit_transform(train_slice, heavy_only=heavy_only, batch_size=batch_size)
X_val = pipeline.transform(val_slice, heavy_only=heavy_only, batch_size=batch_size)
y_train = y[train_idx]
y_val = y[val_idx]
# Handle degenerate folds where training data contains a single class
if np.unique(y_train).size < 2:
fallback_prob = float(y.mean()) if y.size else 0.5
y_scores = np.full(X_val.shape[0], fallback_prob, dtype=float)
else:
trained = train_linear_model(
X_train, y_train, config=model_config, random_state=config.seed
)
calibrator = _fit_model_calibrator(
model_config,
config,
X_train,
y_train,
base_estimator=trained.estimator,
)
trained.calibrator = calibrator
if calibrator is not None:
y_scores = calibrator.predict_proba(X_val)[:, 1]
else:
y_scores = trained.predict_proba(X_val)
oof_scores[val_idx] = y_scores
fold_metrics = compute_metrics(y_val, y_scores)
try:
fold_metrics["roc_auc"] = float(roc_auc_score(y_val, y_scores))
except ValueError:
# For tiny validation folds with a single class, ROC-AUC is undefined
pass
metrics_per_fold.append(fold_metrics)
metrics_mean: dict[str, float] = {}
metrics_std: dict[str, float] = {}
metric_names = list(metrics_per_fold[0].keys()) if metrics_per_fold else []
for metric in metric_names:
values = [fold[metric] for fold in metrics_per_fold]
metrics_mean[metric] = float(np.mean(values))
metrics_std[metric] = float(np.std(values, ddof=1))
return {
"oof_scores": oof_scores,
"metrics_per_fold": metrics_per_fold,
"metrics_mean": metrics_mean,
"metrics_std": metrics_std,
}
def _fit_full_model(
train_df: pd.DataFrame,
pipeline_factory,
model_config: LinearModelConfig,
config: Config,
*,
heavy_only: bool,
batch_size: int,
) -> tuple[TrainedModel, FeaturePipeline]:
pipeline: FeaturePipeline = pipeline_factory()
X_train = pipeline.fit_transform(train_df, heavy_only=heavy_only, batch_size=batch_size)
y_train = train_df["label"].to_numpy(dtype=int)
trained = train_linear_model(X_train, y_train, config=model_config, random_state=config.seed)
calibrator = _fit_model_calibrator(
model_config,
config,
X_train,
y_train,
base_estimator=trained.estimator,
)
trained.calibrator = calibrator
return trained, pipeline
def _evaluate_datasets(
train_df: pd.DataFrame,
eval_frames: list[pd.DataFrame],
trained_model: TrainedModel,
pipeline: FeaturePipeline,
config: Config,
cv_results: dict,
outputs_dir: Path,
*,
batch_size: int,
heavy_only: bool,
bootstrap_samples: int,
bootstrap_alpha: float,
write_train_in_sample: bool,
):
metrics_lookup: dict[str, dict[str, float]] = {}
preds_rows: list[dict[str, float]] = []
metrics_mean: dict[str, float] = cv_results["metrics_mean"]
metrics_std: dict[str, float] = cv_results["metrics_std"]
for metric_name, value in metrics_mean.items():
metrics_lookup.setdefault(metric_name, {"metric": metric_name})[
"train_cv_mean"
] = value
for metric_name, value in metrics_std.items():
metrics_lookup.setdefault(metric_name, {"metric": metric_name})[
"train_cv_std"
] = value
train_scores = cv_results["oof_scores"]
train_preds = train_df[["id", "source", "label"]].copy()
train_preds["y_true"] = train_preds["label"]
train_preds["y_score"] = train_scores
train_preds["y_pred"] = (train_scores >= 0.5).astype(int)
train_preds["split"] = "train_cv_oof"
preds_rows.extend(
train_preds[["id", "source", "split", "y_true", "y_score", "y_pred"]].to_dict("records")
)
plot_reliability_curve(
train_preds["y_true"], train_preds["y_score"], path=outputs_dir / "reliability_train.png"
)
plot_precision_recall(
train_preds["y_true"], train_preds["y_score"], path=outputs_dir / "pr_train.png"
)
plot_roc_curve(train_preds["y_true"], train_preds["y_score"], path=outputs_dir / "roc_train.png")
if bootstrap_samples > 0:
ci_map = bootstrap_metric_intervals(
train_preds["y_true"],
train_preds["y_score"],
n_bootstrap=bootstrap_samples,
alpha=bootstrap_alpha,
random_state=config.seed,
)
for metric_name, stats in ci_map.items():
row = metrics_lookup.setdefault(metric_name, {"metric": metric_name})
row["train_cv_ci_lower"] = stats.get("ci_lower")
row["train_cv_ci_upper"] = stats.get("ci_upper")
row["train_cv_ci_median"] = stats.get("ci_median")
if write_train_in_sample:
train_features_full = pipeline.transform(
train_df, heavy_only=heavy_only, batch_size=batch_size
)
train_full_scores = trained_model.predict_proba(train_features_full)
train_full_metrics = compute_metrics(
train_df["label"].to_numpy(dtype=int), train_full_scores
)
(outputs_dir / "train_in_sample.json").write_text(
json.dumps(train_full_metrics, indent=2),
encoding="utf-8",
)
for frame in eval_frames:
if frame.empty:
continue
features = pipeline.transform(frame, heavy_only=heavy_only, batch_size=batch_size)
scores = trained_model.predict_proba(features)
y_true = frame["label"].to_numpy(dtype=int)
metrics = compute_metrics(y_true, scores)
dataset_name = frame["source"].iloc[0]
for metric_name, value in metrics.items():
metrics_lookup.setdefault(metric_name, {"metric": metric_name})[
dataset_name
] = value
preds = frame[["id", "source", "label"]].copy()
preds["y_true"] = preds["label"]
preds["y_score"] = scores
preds["y_pred"] = (scores >= 0.5).astype(int)
preds["split"] = dataset_name
preds_rows.extend(
preds[["id", "source", "split", "y_true", "y_score", "y_pred"]].to_dict("records")
)
plot_reliability_curve(
preds["y_true"],
preds["y_score"],
path=outputs_dir / f"reliability_{dataset_name}.png",
)
plot_precision_recall(
preds["y_true"],
preds["y_score"],
path=outputs_dir / f"pr_{dataset_name}.png",
)
plot_roc_curve(
preds["y_true"], preds["y_score"], path=outputs_dir / f"roc_{dataset_name}.png"
)
if bootstrap_samples > 0:
ci_map = bootstrap_metric_intervals(
preds["y_true"],
preds["y_score"],
n_bootstrap=bootstrap_samples,
alpha=bootstrap_alpha,
random_state=config.seed,
)
for metric_name, stats in ci_map.items():
row = metrics_lookup.setdefault(metric_name, {"metric": metric_name})
row[f"{dataset_name}_ci_lower"] = stats.get("ci_lower")
row[f"{dataset_name}_ci_upper"] = stats.get("ci_upper")
row[f"{dataset_name}_ci_median"] = stats.get("ci_median")
metrics_df = pd.DataFrame(sorted(metrics_lookup.values(), key=lambda row: row["metric"]))
return metrics_df, preds_rows
def _fit_model_calibrator(
model_config: LinearModelConfig,
config: Config,
X: np.ndarray,
y: np.ndarray,
*,
base_estimator: Any | None = None,
):
method = config.calibration.method
if not method:
return None
if len(np.unique(y)) < 2:
return None
if len(y) >= 4:
cv_cal = min(config.training.cv_folds, max(2, len(y) // 2))
estimator = build_estimator(config=model_config, random_state=config.seed)
if isinstance(estimator, LogisticRegression) and X.shape[0] >= 1000:
estimator.set_params(solver="lbfgs")
calibrator = fit_calibrator(estimator, X, y, method=method, cv=cv_cal)
else:
estimator = base_estimator or build_estimator(config=model_config, random_state=config.seed)
if isinstance(estimator, LogisticRegression) and X.shape[0] >= 1000:
estimator.set_params(solver="lbfgs")
estimator.fit(X, y)
calibrator = fit_calibrator(estimator, X, y, method=method, cv="prefit")
return calibrator
def _log_environment(logger) -> None:
try:
git_head = subprocess.check_output(["git", "rev-parse", "HEAD"], text=True).strip()
except Exception: # pragma: no cover - best effort
git_head = "unknown"
try:
pip_freeze = subprocess.check_output(["pip", "freeze"], text=True)
except Exception: # pragma: no cover
pip_freeze = ""
logger.info("git_head=%s", git_head)
logger.info("pip_freeze=%s", pip_freeze)
if __name__ == "__main__":
raise SystemExit(main())
|