File size: 5,831 Bytes
5f58699
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
"""Loader for the Shehata et al. (2019) PSR dataset."""

from __future__ import annotations

from pathlib import Path
from typing import Iterable

import pandas as pd

from .utils import standardize_frame

SHEHATA_SOURCE = "shehata2019"

_COLUMN_ALIASES = {
    "id": (
        "antibody_id",
        "antibody",
        "antibody name",
        "antibody_name",
        "sequence_name",
        "Antibody Name",
    ),
    "heavy_seq": (
        "heavy",
        "heavy_chain",
        "heavy aa",
        "heavy_sequence",
        "vh",
        "vh_sequence",
        "heavy chain aa",
        "Heavy Chain AA",
    ),
    "light_seq": (
        "light",
        "light_chain",
        "light aa",
        "light_sequence",
        "vl",
        "vl_sequence",
        "light chain aa",
        "Light Chain AA",
    ),
    "label": (
        "polyreactive",
        "binding_class",
        "binding class",
        "psr_class",
        "psr binding",
        "psr classification",
        "Binding class",
        "Binding Class",
    ),
}

_LABEL_MAP = {
    "polyreactive": 1,
    "non-polyreactive": 0,
    "positive": 1,
    "negative": 0,
    "high": 1,
    "low": 0,
    "pos": 1,
    "neg": 0,
    1: 1,
    0: 0,
    1.0: 1,
    0.0: 0,
    "1": 1,
    "0": 0,
}

_PSR_SCORE_ALIASES: tuple[str, ...] = (
    "psr score",
    "psr_score",
    "psr overall score",
    "overall score",
    "psr z",
    "psr_z",
)


def _clean_sequence(sequence: object) -> str:
    if isinstance(sequence, str):
        return "".join(sequence.split()).upper()
    return ""


def _maybe_extract_psr_scores(frame: pd.DataFrame) -> pd.DataFrame:
    scores: dict[str, pd.Series] = {}
    for column in frame.columns:
        lowered = column.strip().lower()
        if any(alias in lowered for alias in _PSR_SCORE_ALIASES):
            key = lowered.replace(" ", "_")
            scores[key] = frame[column]
    if not scores:
        return pd.DataFrame(index=frame.index)
    renamed = {}
    for name, series in scores.items():
        cleaned_name = name
        for prefix in ("psr_", "overall_"):
            if cleaned_name.startswith(prefix):
                cleaned_name = cleaned_name[len(prefix) :]
                break
        cleaned_name = cleaned_name.replace("__", "_")
        cleaned_name = cleaned_name.replace("(", "").replace(")", "")
        cleaned_name = cleaned_name.replace("-", "_")
        renamed[f"psr_{cleaned_name}"] = pd.to_numeric(series, errors="coerce")
    return pd.DataFrame(renamed)


def _pick_source_label(path: Path | None) -> str:
    if path is None:
        return SHEHATA_SOURCE
    stem = path.stem.lower()
    if "curated" in stem or "subset" in stem:
        return f"{SHEHATA_SOURCE}_curated"
    return SHEHATA_SOURCE


def _standardize(
    frame: pd.DataFrame,
    *,
    heavy_only: bool,
    source: str,
) -> pd.DataFrame:
    standardized = standardize_frame(
        frame,
        source=source,
        heavy_only=heavy_only,
        column_aliases=_COLUMN_ALIASES,
        label_map=_LABEL_MAP,
        is_test=True,
    )

    psr_scores = _maybe_extract_psr_scores(frame)

    mask = standardized["heavy_seq"].map(_clean_sequence) != ""
    standardized = standardized.loc[mask].copy()
    standardized.reset_index(drop=True, inplace=True)
    standardized["heavy_seq"] = standardized["heavy_seq"].map(_clean_sequence)
    standardized["light_seq"] = standardized["light_seq"].map(_clean_sequence)

    if not psr_scores.empty:
        psr_scores = psr_scores.loc[mask]
        psr_scores = psr_scores.reset_index(drop=True)
        for column in psr_scores.columns:
            standardized[column] = psr_scores[column].reset_index(drop=True)

    return standardized


def _read_excel(path: Path, *, heavy_only: bool) -> pd.DataFrame:
    excel = pd.ExcelFile(path, engine="openpyxl")
    sheet_candidates: Iterable[str] = excel.sheet_names

    def _score(name: str) -> tuple[int, str]:
        lowered = name.lower()
        priority = 0
        if "psr" in lowered or "polyreactivity" in lowered:
            priority = 2
        elif "sheet" not in lowered:
            priority = 1
        return (-priority, name)

    sheet_name = sorted(sheet_candidates, key=_score)[0]
    raw = excel.parse(sheet_name)
    raw = raw.dropna(how="all")
    return _standardize(raw, heavy_only=heavy_only, source=_pick_source_label(path))


def load_dataframe(path_or_url: str, heavy_only: bool = True) -> pd.DataFrame:
    """Load the Shehata dataset into the canonical format.

    Supports both pre-processed CSV exports and the original Excel supplement
    (*.xls/*.xlsx). Additional PSR score columns are preserved when available.
    """

    lower = path_or_url.lower()
    source_override: str | None = None
    if lower.startswith("http://") or lower.startswith("https://"):
        if lower.endswith((".xls", ".xlsx")):
            raw = pd.read_excel(path_or_url, engine="openpyxl")
            return _standardize(raw, heavy_only=heavy_only, source=SHEHATA_SOURCE)
        frame = pd.read_csv(path_or_url)
        return _standardize(frame, heavy_only=heavy_only, source=SHEHATA_SOURCE)

    path = Path(path_or_url)
    source_override = _pick_source_label(path)
    if path.suffix.lower() in {".xls", ".xlsx"}:
        engine = "openpyxl" if path.suffix.lower() == ".xlsx" else None
        if engine:
            frame = _read_excel(path, heavy_only=heavy_only)
        else:
            frame = pd.read_excel(path, engine=None)
            frame = _standardize(frame, heavy_only=heavy_only, source=source_override)
        frame["source"] = source_override
        return frame

    frame = pd.read_csv(path)
    standardized = _standardize(frame, heavy_only=heavy_only, source=source_override)
    standardized["source"] = source_override
    return standardized