Spaces:
Sleeping
Sleeping
File size: 15,182 Bytes
5f58699 7420f23 5f58699 7420f23 5f58699 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 |
"""Protein language model embeddings backend with caching support."""
from __future__ import annotations
import hashlib
import warnings
from concurrent.futures import ThreadPoolExecutor
from dataclasses import dataclass
from pathlib import Path
from types import SimpleNamespace
from typing import Callable, Iterable, List, Sequence, Tuple
import numpy as np
import torch
from torch import nn
try: # pragma: no cover - optional dependency
from transformers import AutoModel, AutoTokenizer
except ImportError: # pragma: no cover - optional dependency
AutoModel = None
AutoTokenizer = None
try: # pragma: no cover - optional dependency
import esm
except ImportError: # pragma: no cover - optional dependency
esm = None
if esm is not None: # pragma: no cover - optional dependency
warnings.filterwarnings(
"ignore",
message="Regression weights not found, predicting contacts will not produce correct results.",
module="esm.pretrained",
)
from .anarsi import AnarciNumberer
ModelLoader = Callable[[str, str], Tuple[object, nn.Module]]
if esm is not None: # pragma: no cover - optional dependency
_ESM1V_LOADERS = {
"esm1v_t33_650m_ur90s_1": esm.pretrained.esm1v_t33_650M_UR90S_1,
"esm1v_t33_650m_ur90s_2": esm.pretrained.esm1v_t33_650M_UR90S_2,
"esm1v_t33_650m_ur90s_3": esm.pretrained.esm1v_t33_650M_UR90S_3,
"esm1v_t33_650m_ur90s_4": esm.pretrained.esm1v_t33_650M_UR90S_4,
"esm1v_t33_650m_ur90s_5": esm.pretrained.esm1v_t33_650M_UR90S_5,
}
else: # pragma: no cover - optional dependency
_ESM1V_LOADERS: dict[str, Callable[[], tuple[nn.Module, object]]] = {}
class _ESMTokenizer:
"""Callable wrapper that mimics Hugging Face tokenizers for ESM models."""
def __init__(self, alphabet) -> None: # noqa: ANN001
self.alphabet = alphabet
self._batch_converter = alphabet.get_batch_converter()
def __call__(
self,
sequences: Sequence[str],
*,
return_tensors: str = "pt",
padding: bool = True, # noqa: FBT002
truncation: bool = True, # noqa: FBT002
add_special_tokens: bool = True, # noqa: FBT002
return_special_tokens_mask: bool = True, # noqa: FBT002
) -> dict[str, torch.Tensor]:
if return_tensors != "pt": # pragma: no cover - defensive branch
msg = "ESM tokenizer only supports return_tensors='pt'"
raise ValueError(msg)
data = [(str(idx), (seq or "").upper()) for idx, seq in enumerate(sequences)]
_labels, _strings, tokens = self._batch_converter(data)
attention_mask = (tokens != self.alphabet.padding_idx).long()
special_tokens = torch.zeros_like(tokens)
specials = {
self.alphabet.padding_idx,
self.alphabet.cls_idx,
self.alphabet.eos_idx,
}
for special in specials:
special_tokens |= tokens == special
output: dict[str, torch.Tensor] = {
"input_ids": tokens,
"attention_mask": attention_mask,
}
if return_special_tokens_mask:
output["special_tokens_mask"] = special_tokens.long()
return output
class _ESMModelWrapper(nn.Module):
"""Adapter providing a Hugging Face style interface for ESM models."""
def __init__(self, model: nn.Module) -> None:
super().__init__()
self.model = model
self.layer_index = getattr(model, "num_layers", None)
if self.layer_index is None:
msg = "Unable to determine final layer for ESM model"
raise AttributeError(msg)
def eval(self) -> "_ESMModelWrapper": # pragma: no cover - trivial
self.model.eval()
return self
def to(self, device: str) -> "_ESMModelWrapper": # pragma: no cover - trivial
self.model.to(device)
return self
def forward(self, input_ids: torch.Tensor, **_): # noqa: ANN003
with torch.no_grad():
outputs = self.model(
input_ids,
repr_layers=[self.layer_index],
return_contacts=False,
)
hidden = outputs["representations"][self.layer_index]
return SimpleNamespace(last_hidden_state=hidden)
__call__ = forward
@dataclass(slots=True)
class PLMConfig:
model_name: str = "facebook/esm1v_t33_650M_UR90S_1"
layer_pool: str = "mean"
cache_dir: Path = Path(".cache/embeddings")
device: str = "auto"
class PLMEmbedder:
"""Embed amino-acid sequences using a transformer model with caching."""
def __init__(
self,
model_name: str = "facebook/esm1v_t33_650M_UR90S_1",
*,
layer_pool: str = "mean",
device: str = "auto",
cache_dir: str | Path | None = None,
numberer: AnarciNumberer | None = None,
model_loader: ModelLoader | None = None,
) -> None:
self.model_name = model_name
self.layer_pool = layer_pool
self.device = self._resolve_device(device)
self.cache_dir = Path(cache_dir or ".cache/embeddings")
self.cache_dir.mkdir(parents=True, exist_ok=True)
self.numberer = numberer
self.model_loader = model_loader
self._tokenizer: object | None = None
self._model: nn.Module | None = None
@staticmethod
def _resolve_device(device: str) -> str:
if device == "auto":
return "cuda" if torch.cuda.is_available() else "cpu"
return device
@property
def tokenizer(self): # noqa: D401
if self._tokenizer is None:
tokenizer, model = self._load_model_components()
self._tokenizer = tokenizer
self._model = model
return self._tokenizer
@property
def model(self) -> nn.Module:
if self._model is None:
tokenizer, model = self._load_model_components()
self._tokenizer = tokenizer
self._model = model
return self._model
def _load_model_components(self) -> Tuple[object, nn.Module]:
if self.model_loader is not None:
tokenizer, model = self.model_loader(self.model_name, self.device)
return tokenizer, model
if self._is_esm1v_model(self.model_name):
return self._load_esm_model()
if AutoModel is None or AutoTokenizer is None: # pragma: no cover - optional dependency
msg = "transformers must be installed to use PLMEmbedder"
raise ImportError(msg)
tokenizer = AutoTokenizer.from_pretrained(self.model_name, trust_remote_code=True)
model = AutoModel.from_pretrained(self.model_name, trust_remote_code=True)
model.eval()
model.to(self.device)
return tokenizer, model
def _load_esm_model(self) -> Tuple[object, nn.Module]:
if esm is None: # pragma: no cover - optional dependency
msg = (
"The 'esm' package is required to use ESM-1v models."
)
raise ImportError(msg)
normalized = self._canonical_esm_name(self.model_name)
loader = _ESM1V_LOADERS.get(normalized)
if loader is None: # pragma: no cover - guard branch
msg = f"Unsupported ESM-1v model: {self.model_name}"
raise ValueError(msg)
model, alphabet = loader()
model.eval()
model.to(self.device)
tokenizer = _ESMTokenizer(alphabet)
wrapper = _ESMModelWrapper(model)
return tokenizer, wrapper
@staticmethod
def _canonical_esm_name(model_name: str) -> str:
name = model_name.lower()
if "/" in name:
name = name.split("/")[-1]
return name
@classmethod
def _is_esm1v_model(cls, model_name: str) -> bool:
return cls._canonical_esm_name(model_name).startswith("esm1v")
def embed(self, sequences: Iterable[str], *, batch_size: int = 8) -> np.ndarray:
batch_sequences = list(sequences)
if not batch_sequences:
return np.empty((0, 0), dtype=np.float32)
outputs: List[np.ndarray | None] = [None] * len(batch_sequences)
unique_to_compute: dict[str, List[Tuple[int, Path]]] = {}
model_dir = self.cache_dir / self._normalized_model_name()
model_dir.mkdir(parents=True, exist_ok=True)
cache_hits: list[tuple[int, Path]] = []
for idx, sequence in enumerate(batch_sequences):
cache_path = self._sequence_cache_path(model_dir, sequence)
if cache_path.exists():
cache_hits.append((idx, cache_path))
else:
unique_to_compute.setdefault(sequence, []).append((idx, cache_path))
if cache_hits:
loaders = [path for _, path in cache_hits]
max_workers = min(len(loaders), 32)
with ThreadPoolExecutor(max_workers=max_workers) as executor:
for (idx, _), embedding in zip(cache_hits, executor.map(np.load, loaders), strict=True):
outputs[idx] = embedding
if unique_to_compute:
embeddings = self._compute_embeddings(list(unique_to_compute.keys()), batch_size=batch_size)
for sequence, embedding in zip(unique_to_compute.keys(), embeddings, strict=True):
targets = unique_to_compute[sequence]
for idx, cache_path in targets:
outputs[idx] = embedding
np.save(cache_path, embedding)
if any(item is None for item in outputs): # pragma: no cover - safety
msg = "Failed to compute embeddings for all sequences"
raise RuntimeError(msg)
array_outputs = [np.asarray(item, dtype=np.float32) for item in outputs] # type: ignore[arg-type]
return np.stack(array_outputs, axis=0)
def _compute_embeddings(self, sequences: Sequence[str], *, batch_size: int) -> List[np.ndarray]:
tokenizer = self.tokenizer
model = self.model
model.eval()
embeddings: List[np.ndarray] = []
for start in range(0, len(sequences), batch_size):
chunk = list(sequences[start : start + batch_size])
tokenized = self._tokenize(tokenizer, chunk)
model_inputs: dict[str, torch.Tensor] = {}
aux_inputs: dict[str, torch.Tensor] = {}
for key, value in tokenized.items():
if isinstance(value, torch.Tensor):
tensor_value = value.to(self.device)
else:
tensor_value = value
if key == "special_tokens_mask":
aux_inputs[key] = tensor_value
else:
model_inputs[key] = tensor_value
with torch.no_grad():
outputs = model(**model_inputs)
hidden_states = outputs.last_hidden_state.detach().cpu()
attention_mask = model_inputs.get("attention_mask")
special_tokens_mask = aux_inputs.get("special_tokens_mask")
if isinstance(attention_mask, torch.Tensor):
attention_mask = attention_mask.detach().cpu()
if isinstance(special_tokens_mask, torch.Tensor):
special_tokens_mask = special_tokens_mask.detach().cpu()
for idx, sequence in enumerate(chunk):
hidden = hidden_states[idx]
mask = attention_mask[idx] if isinstance(attention_mask, torch.Tensor) else None
special_mask = (
special_tokens_mask[idx]
if isinstance(special_tokens_mask, torch.Tensor)
else None
)
embedding = self._pool_hidden(hidden, mask, special_mask, sequence)
embeddings.append(embedding)
return embeddings
def _tokenize(self, tokenizer, sequences: Sequence[str]):
if hasattr(tokenizer, "__call__"):
return tokenizer(
list(sequences),
return_tensors="pt",
padding=True,
truncation=True,
add_special_tokens=True,
return_special_tokens_mask=True,
)
msg = "Tokenizer does not implement __call__"
raise TypeError(msg)
def _pool_hidden(
self,
hidden: torch.Tensor,
attention_mask: torch.Tensor | None,
special_mask: torch.Tensor | None,
sequence: str,
) -> np.ndarray:
if attention_mask is None:
attention = torch.ones(hidden.size(0), dtype=torch.float32)
else:
attention = attention_mask.to(dtype=torch.float32)
if special_mask is not None:
attention = attention * (1.0 - special_mask.to(dtype=torch.float32))
if attention.sum() == 0:
attention = torch.ones_like(attention)
if self.layer_pool == "mean":
return self._masked_mean(hidden, attention)
if self.layer_pool == "cls":
return hidden[0].detach().cpu().numpy()
if self.layer_pool == "per_token_mean_cdrh3":
return self._pool_cdrh3(hidden, attention, sequence)
msg = f"Unsupported layer pool: {self.layer_pool}"
raise ValueError(msg)
@staticmethod
def _masked_mean(hidden: torch.Tensor, mask: torch.Tensor) -> np.ndarray:
weights = mask.unsqueeze(-1)
weighted = hidden * weights
denom = weights.sum()
if denom == 0:
pooled = hidden.mean(dim=0)
else:
pooled = weighted.sum(dim=0) / denom
return pooled.detach().cpu().numpy()
def _pool_cdrh3(self, hidden: torch.Tensor, mask: torch.Tensor, sequence: str) -> np.ndarray:
numberer = self.numberer
if numberer is None:
numberer = AnarciNumberer()
self.numberer = numberer
numbered = numberer.number_sequence(sequence)
cdr = numbered.regions.get("CDRH3", "")
if not cdr:
return self._masked_mean(hidden, mask)
sequence_upper = sequence.upper()
start = sequence_upper.find(cdr.upper())
if start == -1:
return self._masked_mean(hidden, mask)
residues_idx = mask.nonzero(as_tuple=False).squeeze(-1).tolist()
if not residues_idx:
return self._masked_mean(hidden, mask)
end = start + len(cdr)
if end > len(residues_idx):
return self._masked_mean(hidden, mask)
cdr_token_positions = residues_idx[start:end]
if not cdr_token_positions:
return self._masked_mean(hidden, mask)
cdr_mask = torch.zeros_like(mask)
for pos in cdr_token_positions:
cdr_mask[pos] = 1.0
return self._masked_mean(hidden, cdr_mask)
def _sequence_cache_path(self, model_dir: Path, sequence: str) -> Path:
digest = hashlib.sha1(sequence.encode("utf-8")).hexdigest()
return model_dir / f"{digest}.npy"
def _normalized_model_name(self) -> str:
if self._is_esm1v_model(self.model_name):
return self._canonical_esm_name(self.model_name)
return self.model_name.replace("/", "_")
|