Spaces:
Sleeping
Sleeping
File size: 10,081 Bytes
058c999 d7fc5fc 6b711d0 058c999 6b711d0 058c999 d7fc5fc 6b711d0 058c999 6b711d0 058c999 1bcf548 058c999 1bcf548 058c999 1bcf548 058c999 6b711d0 058c999 6b711d0 058c999 6b711d0 058c999 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
"""Gradio Space for polyreactivity prediction."""
from __future__ import annotations
import os
from pathlib import Path
from typing import Optional
import gradio as gr
import pandas as pd
from scipy.stats import spearmanr
from sklearn.metrics import (
accuracy_score,
average_precision_score,
brier_score_loss,
f1_score,
roc_auc_score,
)
from polyreact.api import predict_batch
DEFAULT_MODEL_PATH = Path(os.environ.get("POLYREACT_MODEL_PATH", "artifacts/model.joblib")).resolve()
DEFAULT_CONFIG_PATH = Path(os.environ.get("POLYREACT_CONFIG_PATH", "configs/default.yaml")).resolve()
def _resolve_model_path(upload: Optional[gr.File]) -> Path:
if upload is not None:
return Path(upload.name)
if DEFAULT_MODEL_PATH.exists():
return DEFAULT_MODEL_PATH
raise FileNotFoundError(
"Model artifact not found. Upload a trained model (.joblib) to run predictions."
)
def _predict_single(
heavy_seq: str,
light_seq: str,
use_paired: bool,
backend: str,
model_file: Optional[gr.File],
) -> tuple[str, float, int]:
model_path = _resolve_model_path(model_file)
heavy_seq = (heavy_seq or "").strip()
light_seq = (light_seq or "").strip()
if not heavy_seq:
raise gr.Error("Please provide a heavy-chain amino acid sequence.")
record = {
"id": "sample",
"heavy_seq": heavy_seq,
"light_seq": light_seq,
}
progress = gr.Progress(track_tqdm=True)
progress(0.02, "📦 Downloading ESM-1v weights (first run can take a few minutes)…", total=None)
preds = predict_batch(
[record],
weights=model_path,
heavy_only=not use_paired,
backend=backend or None,
config=DEFAULT_CONFIG_PATH if DEFAULT_CONFIG_PATH.exists() else None,
)
progress(1.0, "✅ Prediction complete")
score = float(preds.iloc[0]["score"])
pred = int(preds.iloc[0]["pred"])
label = "Polyreactive" if pred == 1 else "Non-polyreactive"
return label, score, pred
def _format_metric(value: float) -> float:
return float(f"{value:.4f}")
def _compute_metrics(results: pd.DataFrame) -> tuple[pd.DataFrame, list[str], Optional[str]]:
metrics_rows: list[dict[str, float]] = []
warnings: list[str] = []
spearman_text: Optional[str] = None
if "label" in results.columns:
label_series = results["label"].dropna()
valid_labels = label_series.isin({0, 1}).all()
if valid_labels and label_series.nunique() > 1:
y_true = results.loc[label_series.index, "label"].astype(int)
y_score = results.loc[label_series.index, "score"].astype(float)
y_pred = results.loc[label_series.index, "pred"].astype(int)
metrics_rows.append({"metric": "Accuracy", "value": _format_metric(accuracy_score(y_true, y_pred))})
metrics_rows.append({"metric": "F1", "value": _format_metric(f1_score(y_true, y_pred))})
try:
roc = roc_auc_score(y_true, y_score)
metrics_rows.append({"metric": "ROC-AUC", "value": _format_metric(roc)})
except ValueError:
warnings.append("ROC-AUC skipped (requires both positive and negative labels).")
try:
pr_auc = average_precision_score(y_true, y_score)
metrics_rows.append({"metric": "PR-AUC", "value": _format_metric(pr_auc)})
except ValueError:
warnings.append("PR-AUC skipped (requires both positive and negative labels).")
try:
brier = brier_score_loss(y_true, y_score)
metrics_rows.append({"metric": "Brier", "value": _format_metric(brier)})
except ValueError:
warnings.append("Brier score skipped (invalid probability values).")
else:
warnings.append("Label column found but must contain binary 0/1 values with both classes present.")
if "reactivity_count" in results.columns:
valid = results[["reactivity_count", "score"]].dropna()
if len(valid) > 2 and valid["reactivity_count"].nunique() > 1:
stat, pval = spearmanr(valid["reactivity_count"], valid["score"])
if stat == stat: # NaN check
spearman_text = f"Spearman ρ = {stat:.4f} (p = {pval:.3g})"
else:
warnings.append("Flag-count Spearman skipped (need ≥3 non-identical counts).")
metrics_df = pd.DataFrame(metrics_rows)
return metrics_df, warnings, spearman_text
def _predict_batch(
input_file: gr.File,
use_paired: bool,
backend: str,
model_file: Optional[gr.File],
) -> tuple[gr.File, gr.DataFrame, gr.Textbox, gr.Markdown]:
if input_file is None:
raise gr.Error("Upload a CSV file with columns id, heavy_seq[, light_seq].")
model_path = _resolve_model_path(model_file)
input_path = Path(input_file.name)
frame = pd.read_csv(input_path)
required_cols = {"id", "heavy_seq"}
if not required_cols.issubset(frame.columns):
raise gr.Error("CSV must include at least 'id' and 'heavy_seq' columns.")
records = frame.to_dict("records")
progress = gr.Progress(track_tqdm=True)
progress(0.02, "📦 Downloading ESM-1v weights (first run can take a few minutes)…", total=None)
preds = predict_batch(
records,
weights=model_path,
heavy_only=not use_paired,
backend=backend or None,
config=DEFAULT_CONFIG_PATH if DEFAULT_CONFIG_PATH.exists() else None,
)
progress(1.0, "✅ Batch prediction complete")
merged = frame.merge(preds, on="id", how="left")
output_path = input_path.parent / "polyreact_predictions.csv"
merged.to_csv(output_path, index=False)
metrics_df, warnings, spearman_text = _compute_metrics(merged)
metrics_update = gr.update(value=metrics_df, visible=not metrics_df.empty)
spearman_update = gr.update(value=spearman_text or "", visible=spearman_text is not None)
notes_update = gr.update(
value="\n".join(f"- {msg}" for msg in warnings) if warnings else "",
visible=bool(warnings),
)
return (
gr.update(value=str(output_path), visible=True),
metrics_update,
spearman_update,
notes_update,
)
def make_interface() -> gr.Blocks:
with gr.Blocks() as demo:
gr.Markdown(
"""
# Polyreactivity Predictor
Provide an antibody heavy chain (and optional light chain) to estimate
polyreactivity probability. Upload a trained model artifact or place it
at `artifacts/model.joblib`.
"""
)
with gr.Tab("Single Sequence"):
with gr.Row():
heavy_input = gr.Textbox(
label="Heavy chain sequence",
lines=6,
placeholder="Enter amino acid sequence",
)
light_input = gr.Textbox(
label="Light chain sequence (optional)",
lines=6,
placeholder="Enter amino acid sequence",
)
with gr.Row():
use_paired = gr.Checkbox(label="Use paired evaluation", value=False)
backend_input = gr.Dropdown(
label="Feature backend override",
choices=["", "descriptors", "plm", "concat"],
value="",
)
model_upload = gr.File(label="Model artifact (.joblib)", file_types=[".joblib"], file_count="single")
run_button = gr.Button("Predict", variant="primary")
result_label = gr.Textbox(label="Prediction", interactive=False)
result_score = gr.Number(label="Probability", precision=4)
result_class = gr.Number(label="Binary call (1=polyreactive)")
run_button.click(
_predict_single,
inputs=[heavy_input, light_input, use_paired, backend_input, model_upload],
outputs=[result_label, result_score, result_class],
)
with gr.Tab("Batch CSV"):
batch_file = gr.File(label="Upload CSV", file_types=[".csv"], file_count="single")
batch_paired = gr.Checkbox(label="Use paired evaluation", value=False)
batch_backend = gr.Dropdown(
label="Feature backend override",
choices=["", "descriptors", "plm", "concat"],
value="",
)
batch_model = gr.File(label="Model artifact (.joblib)", file_types=[".joblib"], file_count="single")
batch_button = gr.Button("Run batch predictions", variant="primary")
batch_output = gr.File(label="Download predictions", visible=False)
batch_metrics = gr.Dataframe(label="Benchmark metrics", visible=False)
batch_spearman = gr.Textbox(label="Flag-count Spearman", interactive=False, visible=False)
batch_notes = gr.Markdown(visible=False)
batch_button.click(
_predict_batch,
inputs=[batch_file, batch_paired, batch_backend, batch_model],
outputs=[batch_output, batch_metrics, batch_spearman, batch_notes],
)
gr.Markdown(
"""
### Notes
- Default configuration expects heavy-chain only evaluation.
- Backend overrides should match how the model was trained to avoid feature mismatch.
- CSV inputs should include `id`, `heavy_seq`, and optionally `light_seq`.
- Add a binary `label` column to compute accuracy/F1/ROC-AUC/PR-AUC/Brier.
- Include `reactivity_count` to report Spearman correlation with predicted probabilities.
- **First run downloads the 650M-parameter ESM-1v model; the progress bar will display a download message until it finishes (can take several minutes).**
"""
)
return demo
def main() -> None:
demo = make_interface()
demo.launch()
if __name__ == "__main__":
main()
|