Spaces:
Sleeping
Sleeping
Prathmesh Patil
commited on
Update code.py
Browse files
code.py
CHANGED
|
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#importing important libraries
|
| 2 |
+
import numpy as np
|
| 3 |
+
import keras
|
| 4 |
+
from keras.applications.vgg16 import VGG16, preprocess_input
|
| 5 |
+
from keras.layers import Flatten, Dense
|
| 6 |
+
from keras.models import Model
|
| 7 |
+
import cv2
|
| 8 |
+
import os
|
| 9 |
+
import numpy as np
|
| 10 |
+
import tensorflow as tf
|
| 11 |
+
|
| 12 |
+
from keras.models import Sequential
|
| 13 |
+
from keras.preprocessing import image
|
| 14 |
+
from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense
|
| 15 |
+
from tensorflow.keras.preprocessing.image import ImageDataGenerator
|
| 16 |
+
|
| 17 |
+
# Load the pre-trained VGG16 model
|
| 18 |
+
base_model = VGG16(weights='imagenet', include_top=False, input_shape=(224, 224, 3))
|
| 19 |
+
|
| 20 |
+
# Freeze the base model layers
|
| 21 |
+
for layer in base_model.layers:
|
| 22 |
+
layer.trainable = False
|
| 23 |
+
|
| 24 |
+
# Add custom layers for face classification
|
| 25 |
+
x = base_model.output
|
| 26 |
+
x = Flatten()(x)
|
| 27 |
+
x = Dense(1024, activation='relu')(x)
|
| 28 |
+
predictions = Dense(1, activation='sigmoid')(x)
|
| 29 |
+
|
| 30 |
+
# Create the final model
|
| 31 |
+
model = Model(inputs=base_model.input, outputs=predictions)
|
| 32 |
+
|
| 33 |
+
# Compile the model
|
| 34 |
+
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
|
| 35 |
+
|
| 36 |
+
# Define data generators for training and validation
|
| 37 |
+
data_generator = ImageDataGenerator(preprocessing_function=preprocess_input)
|
| 38 |
+
|
| 39 |
+
train_data = data_generator.flow_from_directory(
|
| 40 |
+
'img_for_deepfake_detection/train',
|
| 41 |
+
target_size=(224, 224),
|
| 42 |
+
batch_size=32,
|
| 43 |
+
class_mode='binary',
|
| 44 |
+
# Number of workers for parallel data loading
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
valid_data = data_generator.flow_from_directory(
|
| 48 |
+
'img_for_deepfake_detection/valid',
|
| 49 |
+
target_size=(224, 224),
|
| 50 |
+
batch_size=32,
|
| 51 |
+
class_mode='binary',
|
| 52 |
+
# Number of workers for parallel data loading
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
# Train the model
|
| 56 |
+
model.fit(train_data, epochs=10, validation_data=valid_data)
|
| 57 |
+
|
| 58 |
+
# Evaluate the model on the validation data
|
| 59 |
+
loss, accuracy = model.evaluate(valid_data)
|
| 60 |
+
print(f'Validation Accuracy: {accuracy*100:.2f}%')
|