Spaces:
Running
Running
File size: 18,469 Bytes
8b72e45 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 |
# app.py
"""
Gradio word-level attention visualizer with:
- Paragraph-style wrapping and semi-transparent backgrounds per word
- Proper detokenization to words (regex)
- Ability to pick from many causal LMs
- Trailing EOS/PAD special tokens removed (no <|endoftext|> shown)
- FIX: safely reset Radio with value=None to avoid Gradio choices error
"""
import re
from typing import List, Tuple
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import numpy as np
# =========================
# Config
# =========================
ALLOWED_MODELS = [
# ---- GPT-2 family
"gpt2", "distilgpt2", "gpt2-medium", "gpt2-large", "gpt2-xl",
# ---- EleutherAI (Neo/J/NeoX/Pythia)
"EleutherAI/gpt-neo-125M", "EleutherAI/gpt-neo-1.3B", "EleutherAI/gpt-neo-2.7B",
"EleutherAI/gpt-j-6B", "EleutherAI/gpt-neox-20b",
"EleutherAI/pythia-70m", "EleutherAI/pythia-160m", "EleutherAI/pythia-410m",
"EleutherAI/pythia-1b", "EleutherAI/pythia-1.4b", "EleutherAI/pythia-2.8b",
"EleutherAI/pythia-6.9b", "EleutherAI/pythia-12b",
# ---- Meta OPT
"facebook/opt-125m", "facebook/opt-350m", "facebook/opt-1.3b", "facebook/opt-2.7b",
"facebook/opt-6.7b", "facebook/opt-13b", "facebook/opt-30b",
# ---- Mistral
"mistralai/Mistral-7B-v0.1", "mistralai/Mistral-7B-v0.3", "mistralai/Mistral-7B-Instruct-v0.2",
# ---- TinyLlama / OpenLLaMA
"TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T",
"openlm-research/open_llama_3b", "openlm-research/open_llama_7b",
# ---- Microsoft Phi
"microsoft/phi-1", "microsoft/phi-1_5", "microsoft/phi-2",
# ---- Qwen
"Qwen/Qwen1.5-0.5B", "Qwen/Qwen1.5-1.8B", "Qwen/Qwen1.5-4B", "Qwen/Qwen1.5-7B",
"Qwen/Qwen2-1.5B", "Qwen/Qwen2-7B",
# ---- MPT
"mosaicml/mpt-7b", "mosaicml/mpt-7b-instruct",
# ---- Falcon
"tiiuae/falcon-7b", "tiiuae/falcon-7b-instruct", "tiiuae/falcon-40b",
# ---- Cerebras GPT
"cerebras/Cerebras-GPT-111M", "cerebras/Cerebras-GPT-256M",
"cerebras/Cerebras-GPT-590M", "cerebras/Cerebras-GPT-1.3B", "cerebras/Cerebras-GPT-2.7B",
]
device = "cuda" if torch.cuda.is_available() else "cpu"
model = None
tokenizer = None
# Word regex (words + punctuation)
WORD_RE = re.compile(r"\w+(?:'\w+)?|[^\w\s]")
# =========================
# Model loading
# =========================
def _safe_set_attn_impl(m):
try:
m.config._attn_implementation = "eager"
except Exception:
pass
def load_model(model_name: str):
"""Load tokenizer+model globally."""
global model, tokenizer
try:
del model
torch.cuda.empty_cache()
except Exception:
pass
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
# Ensure pad token id
if tokenizer.pad_token_id is None:
if tokenizer.eos_token_id is not None:
tokenizer.pad_token_id = tokenizer.eos_token_id
else:
tokenizer.add_special_tokens({"pad_token": "<|pad|>"})
model = AutoModelForCausalLM.from_pretrained(model_name)
_safe_set_attn_impl(model)
if hasattr(model, "resize_token_embeddings") and tokenizer.pad_token_id >= model.get_input_embeddings().num_embeddings:
model.resize_token_embeddings(len(tokenizer))
model.eval()
model.to(device)
def model_heads_layers():
try:
L = int(getattr(model.config, "num_hidden_layers", 12))
except Exception:
L = 12
try:
H = int(getattr(model.config, "num_attention_heads", 12))
except Exception:
H = 12
return max(1, L), max(1, H)
# =========================
# Attention utils
# =========================
def get_attention_for_token_layer(
attentions,
token_index,
layer_index,
batch_index=0,
head_index=0,
mean_across_layers=True,
mean_across_heads=True,
):
"""
attentions: tuple length = #generated tokens
attentions[t] -> tuple of len = num_layers, each: (batch, heads, q, k)
"""
token_attention = attentions[token_index]
if mean_across_layers:
layer_attention = torch.stack(token_attention).mean(dim=0) # (batch, heads, q, k)
else:
layer_attention = token_attention[int(layer_index)] # (batch, heads, q, k)
batch_attention = layer_attention[int(batch_index)] # (heads, q, k)
if mean_across_heads:
head_attention = batch_attention.mean(dim=0) # (q, k)
else:
head_attention = batch_attention[int(head_index)] # (q, k)
return head_attention.squeeze(0) # q==1 -> (k,)
# =========================
# Tokens -> words mapping
# =========================
def _words_and_map_from_tokens(gen_token_ids: List[int]) -> Tuple[List[str], List[int]]:
"""
From *generated* token ids, return:
- words: detokenized words (regex-split)
- word2tok: list where word2tok[i] = index (relative to generated) of the
LAST token that composes that word.
"""
if not gen_token_ids:
return [], []
gen_tokens_str = tokenizer.convert_ids_to_tokens(gen_token_ids)
detok_text = tokenizer.convert_tokens_to_string(gen_tokens_str)
words = WORD_RE.findall(detok_text)
enc = tokenizer(detok_text, return_offsets_mapping=True, add_special_tokens=False)
tok_offsets = enc["offset_mapping"]
n = min(len(tok_offsets), len(gen_token_ids))
spans = [m.span() for m in re.finditer(WORD_RE, detok_text)]
word2tok: List[int] = []
t = 0
for (ws, we) in spans:
last_t = None
while t < n:
ts, te = tok_offsets[t]
if not (te <= ws or ts >= we):
last_t = t
t += 1
else:
if te <= ws:
t += 1
else:
break
if last_t is None:
last_t = max(0, min(n - 1, t - 1))
word2tok.append(int(last_t))
return words, word2tok
# =========================
# Helpers
# =========================
def _strip_trailing_special(ids: List[int]) -> List[int]:
"""Remove trailing EOS/PAD/other special tokens from the generated ids."""
specials = set(getattr(tokenizer, "all_special_ids", []) or [])
j = len(ids)
while j > 0 and ids[j - 1] in specials:
j -= 1
return ids[:j]
def clamp01(x: float) -> float:
x = float(x)
return 0.0 if x < 0 else 1.0 if x > 1 else x
# =========================
# Visualization (WORD-LEVEL)
# =========================
def generate_word_visualization(words: List[str],
abs_word_ends: List[int],
attention_values: np.ndarray,
selected_token_abs_idx: int) -> str:
"""
Paragraph-style visualization over words.
For each word, aggregate attention over its composing tokens (sum),
normalize across words, and render opacity as a semi-transparent background.
"""
if not words or attention_values is None or len(attention_values) == 0:
return (
"<div style='width:100%;'>"
" <div style='background:#444;border:1px solid #eee;border-radius:8px;padding:10px;'>"
" <div style='color:#ddd;'>No attention values.</div>"
" </div>"
"</div>"
)
# Start..end spans from ends
starts = []
for i, end in enumerate(abs_word_ends):
if i == 0:
starts.append(0)
else:
starts.append(min(abs_word_ends[i - 1] + 1, end))
# Sum attention per word
word_scores = []
for i, end in enumerate(abs_word_ends):
start = starts[i]
if start > end:
start = end
s = max(0, min(start, len(attention_values) - 1))
e = max(0, min(end, len(attention_values) - 1))
if e < s:
s, e = e, s
word_scores.append(float(attention_values[s:e + 1].sum()))
max_attn = max(0.1, float(max(word_scores)) if word_scores else 0.0)
# Which word holds the selected token?
selected_word_idx = None
for i, end in enumerate(abs_word_ends):
if selected_token_abs_idx <= end:
selected_word_idx = i
break
if selected_word_idx is None and abs_word_ends:
selected_word_idx = len(abs_word_ends) - 1
spans = []
for i, w in enumerate(words):
alpha = min(1.0, word_scores[i] / max_attn) if max_attn > 0 else 0.0
bg = f"rgba(66,133,244,{alpha:.3f})"
border = "2px solid #fff" if i == selected_word_idx else "1px solid transparent"
spans.append(
f"<span style='display:inline-block;background:{bg};border:{border};"
f"border-radius:6px;padding:2px 6px;margin:2px 4px 4px 0;color:#fff;'>"
f"{w}</span>"
)
return (
"<div style='width:100%;'>"
" <div style='background:#444;border:1px solid #eee;border-radius:8px;padding:10px;'>"
" <div style='white-space:normal;line-height:1.8;'>"
f" {''.join(spans)}"
" </div>"
" </div>"
"</div>"
)
# =========================
# Core functions
# =========================
def run_generation(prompt, max_new_tokens, temperature, top_p):
"""Generate and prepare word-level selector + initial visualization."""
inputs = tokenizer(prompt or "", return_tensors="pt").to(device)
prompt_len = inputs["input_ids"].shape[1]
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=int(max_new_tokens),
temperature=float(temperature),
top_p=float(top_p),
do_sample=True,
pad_token_id=tokenizer.pad_token_id,
output_attentions=True,
return_dict_in_generate=True,
)
all_token_ids = outputs.sequences[0].tolist()
generated_token_ids = _strip_trailing_special(all_token_ids[prompt_len:])
# Words and map (word -> last generated token index)
words, word2tok = _words_and_map_from_tokens(generated_token_ids)
display_choices = [(w, i) for i, w in enumerate(words)]
if not display_choices:
return {
state_attentions: None,
state_all_token_ids: None,
state_prompt_len: 0,
state_words: None,
state_word2tok: None,
# SAFE RADIO RESET
radio_word_selector: gr.update(choices=[], value=None),
html_visualization: "<div style='text-align:center;padding:20px;'>No new tokens generated.</div>",
}
first_word_idx = 0
html_init = update_visualization(
first_word_idx,
outputs.attentions,
all_token_ids,
prompt_len,
0, 0, True, True,
words,
word2tok,
)
return {
state_attentions: outputs.attentions,
state_all_token_ids: all_token_ids,
state_prompt_len: prompt_len,
state_words: words,
state_word2tok: word2tok,
radio_word_selector: gr.update(choices=display_choices, value=first_word_idx),
html_visualization: html_init,
}
def update_visualization(
selected_word_index,
attentions,
all_token_ids,
prompt_len,
layer,
head,
mean_layers,
mean_heads,
words,
word2tok,
):
"""Recompute visualization for the chosen word (maps to its last token)."""
if selected_word_index is None or attentions is None or word2tok is None:
return "<div style='text-align:center;padding:20px;'>Generate text first.</div>"
widx = int(selected_word_index)
if not (0 <= widx < len(word2tok)):
return "<div style='text-align:center;padding:20px;'>Invalid selection.</div>"
token_index_relative = int(word2tok[widx])
token_index_absolute = int(prompt_len) + token_index_relative
token_attn = get_attention_for_token_layer(
attentions,
token_index=token_index_relative,
layer_index=int(layer),
head_index=int(head),
mean_across_layers=bool(mean_layers),
mean_across_heads=bool(mean_heads),
)
attn_vals = token_attn.detach().cpu().numpy()
# Pad attention to full (prompt + generated) length
total_tokens = len(all_token_ids)
padded = np.zeros(total_tokens, dtype=float)
if attn_vals.ndim == 2:
attn_vals = attn_vals[-1]
padded[: len(attn_vals)] = attn_vals
# Absolute word ends (prompt offset + relative token index)
abs_word_ends = [int(prompt_len) + int(t) for t in (word2tok or [])]
return generate_word_visualization(words, abs_word_ends, padded, token_index_absolute)
def toggle_slider(is_mean):
return gr.update(interactive=not bool(is_mean))
# =========================
# Gradio UI
# =========================
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# 🤖 Word-Level Attention Visualizer — choose a model & explore")
gr.Markdown(
"Pick a model, generate text, then select a **generated word** to see where it attends. "
"Words wrap in a paragraph; opacity is the summed attention over the word’s tokens. "
"EOS tokens are stripped so `<|endoftext|>` doesn’t appear."
)
# States
state_attentions = gr.State(None)
state_all_token_ids = gr.State(None)
state_prompt_len = gr.State(None)
state_words = gr.State(None)
state_word2tok = gr.State(None)
state_model_name = gr.State(None)
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### 0) Model")
dd_model = gr.Dropdown(
ALLOWED_MODELS, value=ALLOWED_MODELS[0], label="Causal LM",
info="Models that work with AutoModelForCausalLM + attentions"
)
btn_load = gr.Button("Load / Switch Model", variant="secondary")
gr.Markdown("### 1) Generation")
txt_prompt = gr.Textbox("In a distant future, humanity", label="Prompt")
btn_generate = gr.Button("Generate", variant="primary")
slider_max_tokens = gr.Slider(10, 200, value=50, step=10, label="Max New Tokens")
slider_temp = gr.Slider(0.0, 1.5, value=0.7, step=0.1, label="Temperature")
slider_top_p = gr.Slider(0.0, 1.0, value=0.9, step=0.05, label="Top P")
gr.Markdown("### 2) Attention")
check_mean_layers = gr.Checkbox(True, label="Mean Across Layers")
check_mean_heads = gr.Checkbox(True, label="Mean Across Heads")
slider_layer = gr.Slider(0, 11, value=0, step=1, label="Layer", interactive=False)
slider_head = gr.Slider(0, 11, value=0, step=1, label="Head", interactive=False)
with gr.Column(scale=3):
radio_word_selector = gr.Radio(
[], label="Select Generated Word to Visualize",
info="Click Generate to populate"
)
html_visualization = gr.HTML(
"<div style='text-align:center;padding:20px;color:#888;border:1px dashed #888;border-radius:8px;'>"
"Attention visualization will appear here.</div>"
)
# Load/switch model
def on_load_model(selected_name, mean_layers, mean_heads):
load_model(selected_name)
L, H = model_heads_layers()
return (
selected_name, # state_model_name
gr.update(minimum=0, maximum=L - 1, value=0, interactive=not bool(mean_layers)),
gr.update(minimum=0, maximum=H - 1, value=0, interactive=not bool(mean_heads)),
# SAFE RADIO RESET (avoid Value: [] not in choices)
gr.update(choices=[], value=None),
"<div style='text-align:center;padding:20px;'>Model loaded. Generate to visualize.</div>",
)
btn_load.click(
fn=on_load_model,
inputs=[dd_model, check_mean_layers, check_mean_heads],
outputs=[state_model_name, slider_layer, slider_head, radio_word_selector, html_visualization],
)
# Load default model at app start
def _init_model(_):
load_model(ALLOWED_MODELS[0])
L, H = model_heads_layers()
return (
ALLOWED_MODELS[0],
gr.update(minimum=0, maximum=L - 1, value=0, interactive=False if check_mean_layers.value else True),
gr.update(minimum=0, maximum=H - 1, value=0, interactive=False if check_mean_heads.value else True),
# Also ensure radio is clean at start
gr.update(choices=[], value=None),
)
demo.load(_init_model, inputs=[gr.State(None)], outputs=[state_model_name, slider_layer, slider_head, radio_word_selector])
# Generate
btn_generate.click(
fn=run_generation,
inputs=[txt_prompt, slider_max_tokens, slider_temp, slider_top_p],
outputs=[
state_attentions,
state_all_token_ids,
state_prompt_len,
state_words,
state_word2tok,
radio_word_selector,
html_visualization,
],
)
# Update viz on any control
for control in [radio_word_selector, slider_layer, slider_head, check_mean_layers, check_mean_heads]:
control.change(
fn=update_visualization,
inputs=[
radio_word_selector,
state_attentions,
state_all_token_ids,
state_prompt_len,
slider_layer,
slider_head,
check_mean_layers,
check_mean_heads,
state_words,
state_word2tok,
],
outputs=html_visualization,
)
# Toggle slider interactivity
check_mean_layers.change(toggle_slider, check_mean_layers, slider_layer)
check_mean_heads.change(toggle_slider, check_mean_heads, slider_head)
if __name__ == "__main__":
print(f"Device: {device}")
# Ensure a default model is ready
load_model(ALLOWED_MODELS[0])
demo.launch(debug=True)
|