import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer import torch tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium") model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium") chat_history_ids = None def chat(user_input): global chat_history_ids new_input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors='pt') bot_input_ids = torch.cat([chat_history_ids, new_input_ids], dim=-1) if chat_history_ids is not None else new_input_ids chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id) response = tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True) return response gr.Interface(fn=chat, inputs="text", outputs="text", title="🤖 NetherMite Chatbot").launch()