Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,17 +1,23 @@
|
|
| 1 |
import os
|
| 2 |
import io
|
| 3 |
import json
|
| 4 |
-
|
|
|
|
| 5 |
|
| 6 |
import fitz # PyMuPDF
|
| 7 |
from PIL import Image
|
| 8 |
import gradio as gr
|
|
|
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
# Lazy-load the OCR model to reduce startup time and memory
|
| 12 |
_ocr_model = None
|
| 13 |
|
| 14 |
-
|
| 15 |
def get_ocr_model(lang: str = "en"):
|
| 16 |
global _ocr_model
|
| 17 |
if _ocr_model is not None:
|
|
@@ -24,8 +30,7 @@ def get_ocr_model(lang: str = "en"):
|
|
| 24 |
_ocr_model = PaddleOCR(use_angle_cls=True, lang=lang, show_log=False)
|
| 25 |
return _ocr_model
|
| 26 |
|
| 27 |
-
|
| 28 |
-
def pdf_page_to_image(pdf_doc: fitz.Document, page_index: int, dpi: int = 170) -> Image.Image:
|
| 29 |
page = pdf_doc.load_page(page_index)
|
| 30 |
zoom = dpi / 72.0 # 72 dpi is PDF default
|
| 31 |
mat = fitz.Matrix(zoom, zoom)
|
|
@@ -33,12 +38,9 @@ def pdf_page_to_image(pdf_doc: fitz.Document, page_index: int, dpi: int = 170) -
|
|
| 33 |
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
| 34 |
return img
|
| 35 |
|
| 36 |
-
|
| 37 |
def run_paddle_ocr_on_image(image: Image.Image, lang: str = "en") -> Tuple[str, List[Dict[str, Any]]]:
|
| 38 |
ocr = get_ocr_model(lang=lang)
|
| 39 |
# Convert PIL image to numpy array for PaddleOCR
|
| 40 |
-
import numpy as np
|
| 41 |
-
|
| 42 |
img_np = np.array(image)
|
| 43 |
result = ocr.ocr(img_np, cls=True)
|
| 44 |
|
|
@@ -58,26 +60,27 @@ def run_paddle_ocr_on_image(image: Image.Image, lang: str = "en") -> Tuple[str,
|
|
| 58 |
|
| 59 |
return "\n".join(lines), items
|
| 60 |
|
| 61 |
-
|
| 62 |
-
def extract_text_from_pdf(file_obj, dpi: int = 170, max_pages: int | None = None, lang: str = "en") -> Tuple[str, str]:
|
| 63 |
"""
|
| 64 |
-
Returns combined text
|
| 65 |
"""
|
| 66 |
if file_obj is None:
|
| 67 |
-
return "", json.dumps({"pages": []}, ensure_ascii=False)
|
| 68 |
-
|
| 69 |
-
# Gradio may pass a path or a tempfile.NamedTemporaryFile-like with .name
|
| 70 |
-
pdf_path = file_obj if isinstance(file_obj, str) else getattr(file_obj, "name", None)
|
| 71 |
-
if pdf_path is None or not os.path.exists(pdf_path):
|
| 72 |
-
# If bytes were passed, fall back to reading from buffer
|
| 73 |
-
file_bytes = file_obj.read() if hasattr(file_obj, "read") else None
|
| 74 |
-
if not file_bytes:
|
| 75 |
-
return "", json.dumps({"pages": []}, ensure_ascii=False)
|
| 76 |
-
pdf_doc = fitz.open(stream=file_bytes, filetype="pdf")
|
| 77 |
-
else:
|
| 78 |
-
pdf_doc = fitz.open(pdf_path)
|
| 79 |
|
|
|
|
|
|
|
| 80 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
num_pages = pdf_doc.page_count
|
| 82 |
if max_pages is not None:
|
| 83 |
num_pages = min(num_pages, max_pages)
|
|
@@ -97,39 +100,262 @@ def extract_text_from_pdf(file_obj, dpi: int = 170, max_pages: int | None = None
|
|
| 97 |
|
| 98 |
combined_text = "\n\n".join([t for t in all_text_lines if t])
|
| 99 |
json_payload = json.dumps({"pages": pages_payload}, ensure_ascii=False)
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
pdf_doc.close()
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
""")
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
# Simple API note
|
| 126 |
-
gr.Markdown("""
|
| 127 |
-
## API usage
|
| 128 |
-
- Use `gradio_client` to call this Space. Function signature: `gradio_predict(pdf_file)` β `text`.
|
| 129 |
""")
|
| 130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
|
| 132 |
if __name__ == "__main__":
|
| 133 |
-
|
| 134 |
-
demo.launch(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
|
|
|
|
| 1 |
import os
|
| 2 |
import io
|
| 3 |
import json
|
| 4 |
+
import time
|
| 5 |
+
from typing import List, Tuple, Dict, Any, Optional
|
| 6 |
|
| 7 |
import fitz # PyMuPDF
|
| 8 |
from PIL import Image
|
| 9 |
import gradio as gr
|
| 10 |
+
import numpy as np
|
| 11 |
|
| 12 |
+
# =========================
|
| 13 |
+
# Config
|
| 14 |
+
# =========================
|
| 15 |
+
LOGO_IMAGE_PATH = './assets/logo.jpg'
|
| 16 |
+
GOOGLE_FONTS_URL = "<link href='https://fonts.googleapis.com/css2?family=Inter:wght@400;500;600;700&display=swap' rel='stylesheet'>"
|
| 17 |
|
| 18 |
# Lazy-load the OCR model to reduce startup time and memory
|
| 19 |
_ocr_model = None
|
| 20 |
|
|
|
|
| 21 |
def get_ocr_model(lang: str = "en"):
|
| 22 |
global _ocr_model
|
| 23 |
if _ocr_model is not None:
|
|
|
|
| 30 |
_ocr_model = PaddleOCR(use_angle_cls=True, lang=lang, show_log=False)
|
| 31 |
return _ocr_model
|
| 32 |
|
| 33 |
+
def pdf_page_to_image(pdf_doc: fitz.Document, page_index: int, dpi: int = 300) -> Image.Image:
|
|
|
|
| 34 |
page = pdf_doc.load_page(page_index)
|
| 35 |
zoom = dpi / 72.0 # 72 dpi is PDF default
|
| 36 |
mat = fitz.Matrix(zoom, zoom)
|
|
|
|
| 38 |
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
| 39 |
return img
|
| 40 |
|
|
|
|
| 41 |
def run_paddle_ocr_on_image(image: Image.Image, lang: str = "en") -> Tuple[str, List[Dict[str, Any]]]:
|
| 42 |
ocr = get_ocr_model(lang=lang)
|
| 43 |
# Convert PIL image to numpy array for PaddleOCR
|
|
|
|
|
|
|
| 44 |
img_np = np.array(image)
|
| 45 |
result = ocr.ocr(img_np, cls=True)
|
| 46 |
|
|
|
|
| 60 |
|
| 61 |
return "\n".join(lines), items
|
| 62 |
|
| 63 |
+
def extract_text_from_pdf(file_obj, dpi: int = 300, max_pages: int | None = None, lang: str = "en") -> Tuple[str, str, Dict[str, Any]]:
|
|
|
|
| 64 |
"""
|
| 65 |
+
Returns combined text, JSON string with per-page OCR results, and processing stats.
|
| 66 |
"""
|
| 67 |
if file_obj is None:
|
| 68 |
+
return "", json.dumps({"pages": []}, ensure_ascii=False), {"error": "No file provided"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
|
| 70 |
+
start_time = time.time()
|
| 71 |
+
|
| 72 |
try:
|
| 73 |
+
# Gradio may pass a path or a tempfile.NamedTemporaryFile-like with .name
|
| 74 |
+
pdf_path = file_obj if isinstance(file_obj, str) else getattr(file_obj, "name", None)
|
| 75 |
+
if pdf_path is None or not os.path.exists(pdf_path):
|
| 76 |
+
# If bytes were passed, fall back to reading from buffer
|
| 77 |
+
file_bytes = file_obj.read() if hasattr(file_obj, "read") else None
|
| 78 |
+
if not file_bytes:
|
| 79 |
+
return "", json.dumps({"pages": []}, ensure_ascii=False), {"error": "Could not read file"}
|
| 80 |
+
pdf_doc = fitz.open(stream=file_bytes, filetype="pdf")
|
| 81 |
+
else:
|
| 82 |
+
pdf_doc = fitz.open(pdf_path)
|
| 83 |
+
|
| 84 |
num_pages = pdf_doc.page_count
|
| 85 |
if max_pages is not None:
|
| 86 |
num_pages = min(num_pages, max_pages)
|
|
|
|
| 100 |
|
| 101 |
combined_text = "\n\n".join([t for t in all_text_lines if t])
|
| 102 |
json_payload = json.dumps({"pages": pages_payload}, ensure_ascii=False)
|
| 103 |
+
|
| 104 |
+
processing_time = time.time() - start_time
|
| 105 |
+
stats = {
|
| 106 |
+
"pages_processed": num_pages,
|
| 107 |
+
"total_pages": pdf_doc.page_count,
|
| 108 |
+
"processing_time": round(processing_time, 2),
|
| 109 |
+
"dpi": dpi,
|
| 110 |
+
"language": lang
|
| 111 |
+
}
|
| 112 |
+
|
| 113 |
pdf_doc.close()
|
| 114 |
+
return combined_text, json_payload, stats
|
| 115 |
+
|
| 116 |
+
except Exception as e:
|
| 117 |
+
return "", json.dumps({"pages": []}, ensure_ascii=False), {"error": str(e)}
|
| 118 |
+
|
| 119 |
+
def handle_pdf_ocr(pdf_file: str) -> Tuple[str, str, str]:
|
| 120 |
+
"""Main handler for PDF OCR processing"""
|
| 121 |
+
if not pdf_file:
|
| 122 |
+
raise gr.Error("Please upload a PDF file first.")
|
| 123 |
+
|
| 124 |
+
try:
|
| 125 |
+
print(f"Processing PDF: {pdf_file}")
|
| 126 |
+
start_time = time.time()
|
| 127 |
+
|
| 128 |
+
text, json_data, stats = extract_text_from_pdf(pdf_file, dpi=300, max_pages=None, lang="en")
|
| 129 |
+
|
| 130 |
+
end_time = time.time()
|
| 131 |
+
duration = end_time - start_time
|
| 132 |
+
print(f"PDF processing completed in {duration:.2f} seconds.")
|
| 133 |
+
|
| 134 |
+
if "error" in stats:
|
| 135 |
+
raise gr.Error(f"Processing failed: {stats['error']}")
|
| 136 |
+
|
| 137 |
+
# Format stats for display
|
| 138 |
+
stats_text = f"""**Processing Statistics:**
|
| 139 |
+
- Pages processed: {stats.get('pages_processed', 0)}/{stats.get('total_pages', 0)}
|
| 140 |
+
- Processing time: {stats.get('processing_time', 0)}s
|
| 141 |
+
- DPI: {stats.get('dpi', 300)}
|
| 142 |
+
- Language: {stats.get('language', 'en')}"""
|
| 143 |
+
|
| 144 |
+
return text, json_data, stats_text
|
| 145 |
+
|
| 146 |
+
except Exception as e:
|
| 147 |
+
error_msg = f"Error processing PDF: {str(e)}"
|
| 148 |
+
print(error_msg)
|
| 149 |
+
raise gr.Error(error_msg)
|
| 150 |
+
|
| 151 |
+
# =========================
|
| 152 |
+
# CSS & UI
|
| 153 |
+
# =========================
|
| 154 |
+
custom_css = """
|
| 155 |
+
/* Global fonts */
|
| 156 |
+
body, .gradio-container {
|
| 157 |
+
font-family: "Inter", "Segoe UI", "Roboto", sans-serif;
|
| 158 |
+
}
|
| 159 |
+
|
| 160 |
+
.app-header {
|
| 161 |
+
text-align: center;
|
| 162 |
+
max-width: 900px;
|
| 163 |
+
margin: 0 auto 20px !important;
|
| 164 |
+
padding: 20px;
|
| 165 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 166 |
+
border-radius: 12px;
|
| 167 |
+
color: white;
|
| 168 |
+
}
|
| 169 |
+
|
| 170 |
+
.app-header h1 {
|
| 171 |
+
margin: 0;
|
| 172 |
+
font-size: 2.5rem;
|
| 173 |
+
font-weight: 700;
|
| 174 |
+
}
|
| 175 |
+
|
| 176 |
+
.app-header p {
|
| 177 |
+
margin: 10px 0 0 0;
|
| 178 |
+
opacity: 0.9;
|
| 179 |
+
font-size: 1.1rem;
|
| 180 |
+
}
|
| 181 |
+
|
| 182 |
+
.gradio-container {
|
| 183 |
+
padding: 20px 0 !important;
|
| 184 |
+
max-width: 1200px;
|
| 185 |
+
margin: 0 auto;
|
| 186 |
+
}
|
| 187 |
+
|
| 188 |
+
.upload-section {
|
| 189 |
+
background: #f8fafc;
|
| 190 |
+
border: 2px dashed #cbd5e1;
|
| 191 |
+
border-radius: 12px;
|
| 192 |
+
padding: 30px;
|
| 193 |
+
text-align: center;
|
| 194 |
+
margin: 20px 0;
|
| 195 |
+
}
|
| 196 |
+
|
| 197 |
+
.upload-section:hover {
|
| 198 |
+
border-color: #667eea;
|
| 199 |
+
background: #f1f5f9;
|
| 200 |
+
}
|
| 201 |
+
|
| 202 |
+
.results-section {
|
| 203 |
+
margin-top: 20px;
|
| 204 |
+
}
|
| 205 |
+
|
| 206 |
+
.stats-box {
|
| 207 |
+
background: #f0f9ff;
|
| 208 |
+
border: 1px solid #0ea5e9;
|
| 209 |
+
border-radius: 8px;
|
| 210 |
+
padding: 15px;
|
| 211 |
+
margin: 10px 0;
|
| 212 |
+
}
|
| 213 |
+
|
| 214 |
+
#text_output {
|
| 215 |
+
min-height: 300px;
|
| 216 |
+
font-family: 'Monaco', 'Menlo', 'Ubuntu Mono', monospace;
|
| 217 |
+
font-size: 14px;
|
| 218 |
+
line-height: 1.6;
|
| 219 |
+
}
|
| 220 |
+
|
| 221 |
+
#json_output {
|
| 222 |
+
min-height: 200px;
|
| 223 |
+
font-family: 'Monaco', 'Menlo', 'Ubuntu Mono', monospace;
|
| 224 |
+
font-size: 12px;
|
| 225 |
+
}
|
| 226 |
+
|
| 227 |
+
.process-btn {
|
| 228 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
|
| 229 |
+
color: white !important;
|
| 230 |
+
border: none !important;
|
| 231 |
+
padding: 12px 30px !important;
|
| 232 |
+
border-radius: 8px !important;
|
| 233 |
+
font-weight: 600 !important;
|
| 234 |
+
font-size: 16px !important;
|
| 235 |
+
}
|
| 236 |
+
|
| 237 |
+
.process-btn:hover {
|
| 238 |
+
transform: translateY(-2px);
|
| 239 |
+
box-shadow: 0 8px 25px rgba(102, 126, 234, 0.3);
|
| 240 |
+
}
|
| 241 |
+
|
| 242 |
+
.notice {
|
| 243 |
+
background: #fef3c7;
|
| 244 |
+
border: 1px solid #f59e0b;
|
| 245 |
+
border-radius: 8px;
|
| 246 |
+
padding: 15px;
|
| 247 |
+
margin: 20px 0;
|
| 248 |
+
color: #92400e;
|
| 249 |
+
}
|
| 250 |
+
|
| 251 |
+
.api-section {
|
| 252 |
+
background: #f1f5f9;
|
| 253 |
+
border-radius: 8px;
|
| 254 |
+
padding: 20px;
|
| 255 |
+
margin: 20px 0;
|
| 256 |
+
border-left: 4px solid #667eea;
|
| 257 |
+
}
|
| 258 |
+
"""
|
| 259 |
+
|
| 260 |
+
with gr.Blocks(head=GOOGLE_FONTS_URL, css=custom_css, theme=gr.themes.Soft()) as demo:
|
| 261 |
+
# Header
|
| 262 |
+
gr.HTML("""
|
| 263 |
+
<div class="app-header">
|
| 264 |
+
<h1>π PDF OCR Extractor</h1>
|
| 265 |
+
<p>Extract text from PDF documents using PaddleOCR + PyMuPDF</p>
|
| 266 |
+
</div>
|
| 267 |
""")
|
| 268 |
+
|
| 269 |
+
# Notice
|
| 270 |
+
gr.HTML("""
|
| 271 |
+
<div class="notice">
|
| 272 |
+
<strong>π‘ Tip:</strong> This tool processes PDFs by rendering each page as a high-resolution image (300 DPI) and then applying OCR.
|
| 273 |
+
For best results, use clear, well-scanned PDFs with good contrast.
|
| 274 |
+
</div>
|
|
|
|
|
|
|
|
|
|
|
|
|
| 275 |
""")
|
| 276 |
+
|
| 277 |
+
with gr.Row():
|
| 278 |
+
with gr.Column(scale=1):
|
| 279 |
+
# Upload section
|
| 280 |
+
gr.HTML('<div class="upload-section">')
|
| 281 |
+
pdf_input = gr.File(
|
| 282 |
+
label="π Upload PDF File",
|
| 283 |
+
file_types=[".pdf"],
|
| 284 |
+
file_count="single",
|
| 285 |
+
elem_id="pdf_upload"
|
| 286 |
+
)
|
| 287 |
+
gr.HTML('</div>')
|
| 288 |
+
|
| 289 |
+
# Process button
|
| 290 |
+
process_btn = gr.Button(
|
| 291 |
+
"π Extract Text",
|
| 292 |
+
variant="primary",
|
| 293 |
+
elem_classes=["process-btn"],
|
| 294 |
+
scale=2
|
| 295 |
+
)
|
| 296 |
+
|
| 297 |
+
# API section
|
| 298 |
+
gr.HTML("""
|
| 299 |
+
<div class="api-section">
|
| 300 |
+
<h3>π API Usage</h3>
|
| 301 |
+
<p><strong>Endpoint:</strong> <code>/predict</code></p>
|
| 302 |
+
<p><strong>Input:</strong> PDF file</p>
|
| 303 |
+
<p><strong>Output:</strong> Extracted text</p>
|
| 304 |
+
</div>
|
| 305 |
+
""")
|
| 306 |
+
|
| 307 |
+
with gr.Column(scale=2):
|
| 308 |
+
# Results section
|
| 309 |
+
gr.HTML('<div class="results-section">')
|
| 310 |
+
|
| 311 |
+
with gr.Tabs():
|
| 312 |
+
with gr.Tab("π Extracted Text"):
|
| 313 |
+
text_output = gr.Textbox(
|
| 314 |
+
label="Extracted Text",
|
| 315 |
+
lines=20,
|
| 316 |
+
elem_id="text_output",
|
| 317 |
+
placeholder="Extracted text will appear here..."
|
| 318 |
+
)
|
| 319 |
+
|
| 320 |
+
with gr.Tab("π JSON Data"):
|
| 321 |
+
json_output = gr.Code(
|
| 322 |
+
label="Detailed OCR Results (JSON)",
|
| 323 |
+
language="json",
|
| 324 |
+
elem_id="json_output",
|
| 325 |
+
placeholder="Detailed OCR results will appear here..."
|
| 326 |
+
)
|
| 327 |
+
|
| 328 |
+
with gr.Tab("π Statistics"):
|
| 329 |
+
stats_output = gr.Markdown(
|
| 330 |
+
label="Processing Statistics",
|
| 331 |
+
placeholder="Processing statistics will appear here..."
|
| 332 |
+
)
|
| 333 |
+
|
| 334 |
+
gr.HTML('</div>')
|
| 335 |
+
|
| 336 |
+
# Event handlers
|
| 337 |
+
process_btn.click(
|
| 338 |
+
fn=handle_pdf_ocr,
|
| 339 |
+
inputs=[pdf_input],
|
| 340 |
+
outputs=[text_output, json_output, stats_output],
|
| 341 |
+
api_name="predict"
|
| 342 |
+
)
|
| 343 |
+
|
| 344 |
+
# Auto-process on file upload
|
| 345 |
+
pdf_input.change(
|
| 346 |
+
fn=handle_pdf_ocr,
|
| 347 |
+
inputs=[pdf_input],
|
| 348 |
+
outputs=[text_output, json_output, stats_output],
|
| 349 |
+
api_name="predict"
|
| 350 |
+
)
|
| 351 |
|
| 352 |
if __name__ == "__main__":
|
| 353 |
+
port = int(os.getenv("PORT", "7860"))
|
| 354 |
+
demo.queue(max_size=6).launch(
|
| 355 |
+
server_name="0.0.0.0",
|
| 356 |
+
server_port=port,
|
| 357 |
+
share=False
|
| 358 |
+
)
|
| 359 |
+
|
| 360 |
+
|
| 361 |
|