Update app.py
Browse files
app.py
CHANGED
|
@@ -1,319 +1,128 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
if data.get("errorCode", -1) != 0:
|
| 123 |
-
raise gr.Error("API returned an error:")
|
| 124 |
-
return data
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
# =========================
|
| 128 |
-
# API Response Processing
|
| 129 |
-
# =========================
|
| 130 |
-
|
| 131 |
-
# 【改动点】: 这个函数现在不再需要,因为我们不再将URL下载为PIL Image对象。
|
| 132 |
-
# def url_to_pil_image(url: str) -> Optional[Image.Image]:
|
| 133 |
-
# """Downloads an image from a URL and returns it as a PIL Image object for the Gradio Image component."""
|
| 134 |
-
# if not url or not url.startswith(('http://', 'https://')):
|
| 135 |
-
# print(f"Warning: Invalid URL provided for visualization image: {url}")
|
| 136 |
-
# return None
|
| 137 |
-
# try:
|
| 138 |
-
# start_time = time.time()
|
| 139 |
-
# response = requests.get(url, timeout=600)
|
| 140 |
-
# end_time = time.time()
|
| 141 |
-
# print(f"Fetched visualization image from {url} in {end_time - start_time:.2f} seconds.")
|
| 142 |
-
#
|
| 143 |
-
# response.raise_for_status()
|
| 144 |
-
# image_bytes = response.content
|
| 145 |
-
# pil_image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
|
| 146 |
-
# return pil_image
|
| 147 |
-
# except requests.exceptions.RequestException as e:
|
| 148 |
-
# print(f"Error fetching visualization image from URL {url}: {e}")
|
| 149 |
-
# return None
|
| 150 |
-
# except Exception as e:
|
| 151 |
-
# print(f"Error processing visualization image from URL {url}: {e}")
|
| 152 |
-
# return None
|
| 153 |
-
|
| 154 |
-
def _process_api_response_page(result: Dict[str, Any]) -> Tuple[str, str, str]:
|
| 155 |
-
"""
|
| 156 |
-
Processes the API response.
|
| 157 |
-
1. Replaces markdown image placeholders with their direct URLs.
|
| 158 |
-
2. Constructs an HTML <img> tag string for the visualization image URL.
|
| 159 |
-
"""
|
| 160 |
-
layout_results = (result or {}).get("layoutParsingResults", [])
|
| 161 |
-
if not layout_results:
|
| 162 |
-
return "No content was recognized.", "<p>No visualization available.</p>", ""
|
| 163 |
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
md_data = page0.get("markdown") or {}
|
| 168 |
-
md_text = md_data.get("text", "") or ""
|
| 169 |
-
md_images_map = md_data.get("images", {})
|
| 170 |
-
if md_images_map:
|
| 171 |
-
for placeholder_path, image_url in md_images_map.items():
|
| 172 |
-
md_text = md_text.replace(f'src="{placeholder_path}"', f'src="{image_url}"') \
|
| 173 |
-
.replace(f']({placeholder_path})', f']({image_url})')
|
| 174 |
-
|
| 175 |
-
# 【核心改动点】 Step 2: Process Visualization images by creating an HTML string
|
| 176 |
-
output_html = "<p style='text-align:center; color:#888;'>No visualization image available.</p>"
|
| 177 |
-
out_imgs = page0.get("outputImages") or {}
|
| 178 |
-
|
| 179 |
-
# Get all image URLs and sort them
|
| 180 |
-
sorted_urls = [img_url for _, img_url in sorted(out_imgs.items()) if img_url]
|
| 181 |
-
|
| 182 |
-
# Logic to select the final visualization image URL
|
| 183 |
-
output_image_url: Optional[str] = None
|
| 184 |
-
if len(sorted_urls) >= 2:
|
| 185 |
-
output_image_url = sorted_urls[1]
|
| 186 |
-
elif sorted_urls:
|
| 187 |
-
output_image_url = sorted_urls[0]
|
| 188 |
-
|
| 189 |
-
# If a URL was found, create the <img> tag
|
| 190 |
-
if output_image_url:
|
| 191 |
-
print(f"Found visualization image URL: {output_image_url}")
|
| 192 |
-
# The CSS will style this `img` tag because of the `#vis_image_doc img` selector
|
| 193 |
-
output_html = f'<img src="{output_image_url}" alt="Detection Visualization">'
|
| 194 |
-
else:
|
| 195 |
-
print("Warning: No visualization image URL found in the API response.")
|
| 196 |
-
|
| 197 |
-
return md_text or "(Empty result)", output_html, md_text
|
| 198 |
-
|
| 199 |
-
# =========================
|
| 200 |
-
# Handlers
|
| 201 |
-
# =========================
|
| 202 |
-
def handle_complex_doc(file_path: str, use_chart_recognition: bool) -> Tuple[str, str, str]:
|
| 203 |
-
if not file_path: raise gr.Error("Please upload an image first.")
|
| 204 |
-
data = _call_api(DEFAULT_API_URL, file_path, use_layout_detection=True, prompt_label=None, use_chart_recognition=use_chart_recognition)
|
| 205 |
-
result = data.get("result", {})
|
| 206 |
-
# Note the return types now align with the new function signature
|
| 207 |
-
return _process_api_response_page(result)
|
| 208 |
-
|
| 209 |
-
def handle_targeted_recognition(file_path: str, prompt_choice: str) -> Tuple[str, str]:
|
| 210 |
-
if not file_path: raise gr.Error("Please upload an image first.")
|
| 211 |
-
mapping = {"Text Recognition": "ocr", "Formula Recognition": "formula", "Table Recognition": "table", "Chart Recognition": "chart"}
|
| 212 |
-
label = mapping.get(prompt_choice, "ocr")
|
| 213 |
-
data = _call_api(DEFAULT_API_URL, file_path, use_layout_detection=False, prompt_label=label)
|
| 214 |
-
result = data.get("result", {})
|
| 215 |
-
md_preview, _, md_raw = _process_api_response_page(result)
|
| 216 |
-
return md_preview, md_raw
|
| 217 |
-
|
| 218 |
-
# =========================
|
| 219 |
-
# CSS & UI
|
| 220 |
-
# =========================
|
| 221 |
-
custom_css = """
|
| 222 |
-
/* 全局字体 */
|
| 223 |
-
body, .gradio-container {
|
| 224 |
-
font-family: "Noto Sans SC", "Microsoft YaHei", "PingFang SC", sans-serif;
|
| 225 |
-
}
|
| 226 |
-
/* ... (rest of the CSS is unchanged) ... */
|
| 227 |
-
.app-header { text-align: center; max-width: 900px; margin: 0 auto 8px !important; }
|
| 228 |
-
.gradio-container { padding: 4px 0 !important; }
|
| 229 |
-
.gradio-container [data-testid="tabs"], .gradio-container .tabs { margin-top: 0 !important; }
|
| 230 |
-
.gradio-container [data-testid="tabitem"], .gradio-container .tabitem { padding-top: 4px !important; }
|
| 231 |
-
.quick-links { text-align: center; padding: 8px 0; border: 1px solid #e5e7eb; border-radius: 8px; margin: 8px auto; max-width: 900px; }
|
| 232 |
-
.quick-links a { margin: 0 12px; font-size: 14px; font-weight: 600; color: #3b82f6; text-decoration: none; }
|
| 233 |
-
.quick-links a:hover { text-decoration: underline; }
|
| 234 |
-
.prompt-grid { display: flex; flex-wrap: wrap; gap: 8px; margin-top: 6px; }
|
| 235 |
-
.prompt-grid button { height: 40px !important; padding: 0 12px !important; border-radius: 8px !important; font-weight: 600 !important; font-size: 13px !important; letter-spacing: 0.2px; }
|
| 236 |
-
#image_preview_vl, #image_preview_doc { height: 400px !important; overflow: auto; }
|
| 237 |
-
#image_preview_vl img, #image_preview_doc img, #vis_image_doc img { width: 100% !important; height: auto !important; object-fit: contain !important; display: block; }
|
| 238 |
-
#md_preview_vl, #md_preview_doc { max-height: 540px; min-height: 180px; overflow: auto; scrollbar-gutter: stable both-edges; }
|
| 239 |
-
#md_preview_vl .prose, #md_preview_doc .prose { line-height: 1.7 !important; }
|
| 240 |
-
#md_preview_vl .prose img, #md_preview_doc .prose img { display: block; margin: 0 auto; max-width: 100%; height: auto; }
|
| 241 |
-
.notice { margin: 8px auto 0; max-width: 900px; padding: 10px 12px; border: 1px solid #e5e7eb; border-radius: 8px; background: #f8fafc; font-size: 14px; line-height: 1.6; }
|
| 242 |
-
.notice strong { font-weight: 700; }
|
| 243 |
-
.notice a { color: #3b82f6; text-decoration: none; }
|
| 244 |
-
.notice a:hover { text-decoration: underline; }
|
| 245 |
-
"""
|
| 246 |
-
|
| 247 |
-
with gr.Blocks(head=GOOGLE_FONTS_URL, css=custom_css, theme=gr.themes.Soft()) as demo:
|
| 248 |
-
logo_data_url = image_to_base64_data_url(LOGO_IMAGE_PATH) if os.path.exists(LOGO_IMAGE_PATH) else ""
|
| 249 |
-
gr.HTML(f"""<div class="app-header"><img src="{logo_data_url}" alt="App Logo" style="max-height:10%; width: auto; margin: 10px auto; display: block;"></div>""")
|
| 250 |
-
gr.HTML("""<div class="notice"><strong>Heads up:</strong> The Hugging Face demo can be slow at times. For a faster experience, please try <a href="https://aistudio.baidu.com/application/detail/98365" target="_blank" rel="noopener noreferrer">Baidu AI Studio</a> or <a href="https://modelscope.cn/studios/PaddlePaddle/PaddleOCR-VL_Online_Demo/summary" target="_blank" rel="noopener noreferrer">ModelScope</a>.</div>""")
|
| 251 |
-
gr.HTML("""<div class="quick-links"><a href="https://github.com/PaddlePaddle/PaddleOCR" target="_blank">GitHub</a> | <a href="https://ernie.baidu.com/blog/publication/PaddleOCR-VL_Technical_Report.pdf" target="_blank">Technical Report</a> | <a href="https://huggingface.co/PaddlePaddle/PaddleOCR-VL" target="_blank">Model</a></div>""")
|
| 252 |
-
|
| 253 |
-
with gr.Tabs():
|
| 254 |
-
with gr.Tab("Document Parsing"):
|
| 255 |
-
with gr.Row():
|
| 256 |
-
with gr.Column(scale=5):
|
| 257 |
-
file_doc = gr.File(label="Upload Image", file_count="single", type="filepath", file_types=["image"])
|
| 258 |
-
preview_doc_html = gr.HTML(value="", elem_id="image_preview_doc", visible=False)
|
| 259 |
-
gr.Markdown("_( Use this mode for recognizing full-page documents with structured layouts, such as reports, papers, or magazines.)_")
|
| 260 |
-
gr.Markdown("💡 *To recognize a single, pre-cropped element (e.g., a table or formula), switch to the 'Element-level Recognition' tab for better results.*")
|
| 261 |
-
with gr.Row(variant="panel"):
|
| 262 |
-
chart_parsing_switch = gr.Checkbox(label="Enable chart parsing", value=False, scale=1)
|
| 263 |
-
btn_parse = gr.Button("Parse Document", variant="primary", scale=2)
|
| 264 |
-
if complex_document_examples:
|
| 265 |
-
complex_paths = [e[0] for e in complex_document_examples]
|
| 266 |
-
complex_state = gr.State(complex_paths)
|
| 267 |
-
gr.Markdown("**Document Examples (Click an image to load)**")
|
| 268 |
-
gallery_complex = gr.Gallery(value=complex_paths, columns=4, height=400, preview=False, label=None, allow_preview=False)
|
| 269 |
-
gallery_complex.select(fn=_on_gallery_select, inputs=[complex_state], outputs=[file_doc])
|
| 270 |
-
|
| 271 |
-
with gr.Column(scale=7):
|
| 272 |
-
with gr.Tabs():
|
| 273 |
-
with gr.Tab("Markdown Preview"):
|
| 274 |
-
md_preview_doc = gr.Markdown("Please upload an image and click 'Parse Document'.", latex_delimiters=LATEX_DELIMS, elem_id="md_preview_doc")
|
| 275 |
-
with gr.Tab("Visualization"):
|
| 276 |
-
# 【核心改动点】: 将 gr.Image 替换为 gr.HTML
|
| 277 |
-
vis_image_doc = gr.HTML(label="Detection Visualization", elem_id="vis_image_doc")
|
| 278 |
-
with gr.Tab("Markdown Source"):
|
| 279 |
-
md_raw_doc = gr.Code(label="Markdown Source Code", language="markdown")
|
| 280 |
-
|
| 281 |
-
file_doc.change(fn=update_preview_visibility, inputs=[file_doc], outputs=[preview_doc_html])
|
| 282 |
-
btn_parse.click(fn=handle_complex_doc, inputs=[file_doc, chart_parsing_switch], outputs=[md_preview_doc, vis_image_doc, md_raw_doc])
|
| 283 |
-
|
| 284 |
-
with gr.Tab("Element-level Recognition"):
|
| 285 |
-
with gr.Row():
|
| 286 |
-
with gr.Column(scale=5):
|
| 287 |
-
file_vl = gr.File(label="Upload Image", file_count="single", type="filepath", file_types=["image"])
|
| 288 |
-
preview_vl_html = gr.HTML(value="", elem_id="image_preview_vl", visible=False)
|
| 289 |
-
gr.Markdown("_(Best for images with a **simple, single-column layout** (e.g., pure text), or for a **pre-cropped single element** like a table, formula, or chart.)_")
|
| 290 |
-
gr.Markdown("Choose a recognition type:")
|
| 291 |
-
with gr.Row(elem_classes=["prompt-grid"]):
|
| 292 |
-
btn_ocr = gr.Button("Text Recognition", variant="secondary")
|
| 293 |
-
btn_formula = gr.Button("Formula Recognition", "secondary")
|
| 294 |
-
with gr.Row(elem_classes=["prompt-grid"]):
|
| 295 |
-
btn_table = gr.Button("Table Recognition", variant="secondary")
|
| 296 |
-
btn_chart = gr.Button("Chart Recognition", variant="secondary")
|
| 297 |
-
if targeted_recognition_examples:
|
| 298 |
-
targeted_paths = [e[0] for e in targeted_recognition_examples]
|
| 299 |
-
targeted_state = gr.State(targeted_paths)
|
| 300 |
-
gr.Markdown("**Element-level Recognition Examples (Click an image to load)**")
|
| 301 |
-
gallery_targeted = gr.Gallery(value=targeted_paths, columns=4, height=400, preview=False, label=None, allow_preview=False)
|
| 302 |
-
gallery_targeted.select(fn=_on_gallery_select, inputs=[targeted_state], outputs=[file_vl])
|
| 303 |
-
|
| 304 |
-
with gr.Column(scale=7):
|
| 305 |
-
with gr.Tabs():
|
| 306 |
-
with gr.Tab("Recognition Result"):
|
| 307 |
-
md_preview_vl = gr.Markdown("Please upload an image and click a recognition type.", latex_delimiters=LATEX_DELIMS, elem_id="md_preview_vl")
|
| 308 |
-
with gr.Tab("Raw Output"):
|
| 309 |
-
md_raw_vl = gr.Code(label="Raw Output", language="markdown")
|
| 310 |
|
| 311 |
-
file_vl.change(fn=update_preview_visibility, inputs=[file_vl], outputs=[preview_vl_html])
|
| 312 |
-
btn_ocr.click(fn=handle_targeted_recognition, inputs=[file_vl, gr.State("Text Recognition")], outputs=[md_preview_vl, md_raw_vl])
|
| 313 |
-
btn_formula.click(fn=handle_targeted_recognition, inputs=[file_vl, gr.State("Formula Recognition")], outputs=[md_preview_vl, md_raw_vl])
|
| 314 |
-
btn_table.click(fn=handle_targeted_recognition, inputs=[file_vl, gr.State("Table Recognition")], outputs=[md_preview_vl, md_raw_vl])
|
| 315 |
-
btn_chart.click(fn=handle_targeted_recognition, inputs=[file_vl, gr.State("Chart Recognition")], outputs=[md_preview_vl, md_raw_vl])
|
| 316 |
|
| 317 |
if __name__ == "__main__":
|
| 318 |
-
|
| 319 |
-
demo.queue(max_size=6).launch(server_name="0.0.0.0", server_port=port,share=False)
|
|
|
|
| 1 |
+
*** Begin Patch
|
| 2 |
+
*** Update File: app.py
|
| 3 |
+
@@
|
| 4 |
+
- if 'pdf' in request.files and request.files['pdf'].filename:
|
| 5 |
+
- pdf = request.files['pdf']
|
| 6 |
+
- pdf_path = os.path.join(temp_dir, pdf.filename)
|
| 7 |
+
- pdf.save(pdf_path)
|
| 8 |
+
- print(f"📄 PDF saved to {pdf_path}")
|
| 9 |
+
-
|
| 10 |
+
- try:
|
| 11 |
+
- print("🚀 Sending PDF to /handle_complex_doc...")
|
| 12 |
+
- result = ocr_client.predict(
|
| 13 |
+
- file_path=handle_file(pdf_path),
|
| 14 |
+
- use_chart_recognition=False,
|
| 15 |
+
- api_name="/handle_complex_doc"
|
| 16 |
+
- )
|
| 17 |
+
- print("✅ OCR completed for PDF")
|
| 18 |
+
- print(f"OCR raw result: {result}")
|
| 19 |
+
-
|
| 20 |
+
- if isinstance(result, (list, tuple)) and len(result) >= 1:
|
| 21 |
+
- extracted_text = str(result[0])
|
| 22 |
+
- elif isinstance(result, str):
|
| 23 |
+
- extracted_text = result
|
| 24 |
+
- else:
|
| 25 |
+
- extracted_text = f"Unexpected result format: {type(result)}"
|
| 26 |
+
-
|
| 27 |
+
- return jsonify({"extracted_text": extracted_text.strip()})
|
| 28 |
+
- except Exception as e:
|
| 29 |
+
- return jsonify({"error": f"Error processing PDF: {e}"}), 500
|
| 30 |
+
+ if 'pdf' in request.files and request.files['pdf'].filename:
|
| 31 |
+
+ pdf = request.files['pdf']
|
| 32 |
+
+ pdf_path = os.path.join(temp_dir, pdf.filename)
|
| 33 |
+
+ pdf.save(pdf_path)
|
| 34 |
+
+ print(f"📄 PDF saved to {pdf_path}")
|
| 35 |
+
+
|
| 36 |
+
+ # Try local text extraction via PyMuPDF first
|
| 37 |
+
+ try:
|
| 38 |
+
+ doc = fitz.open(pdf_path)
|
| 39 |
+
+ collected_text = []
|
| 40 |
+
+ for page_index, page in enumerate(doc):
|
| 41 |
+
+ text = page.get_text("text") or ""
|
| 42 |
+
+ collected_text.append(f"--- Page {page_index + 1} ---\n{text.strip()}\n")
|
| 43 |
+
+ local_text = "\n".join(collected_text).strip()
|
| 44 |
+
+ if local_text:
|
| 45 |
+
+ print("✅ Extracted text locally via PyMuPDF")
|
| 46 |
+
+ return jsonify({"extracted_text": local_text})
|
| 47 |
+
+ except Exception as e:
|
| 48 |
+
+ print(f"⚠️ Local PyMuPDF extraction failed: {e}")
|
| 49 |
+
+
|
| 50 |
+
+ # Fallback to remote endpoint for complex layout parsing
|
| 51 |
+
+ try:
|
| 52 |
+
+ print("🚀 Sending PDF to /handle_complex_doc...")
|
| 53 |
+
+ result = ocr_client.predict(
|
| 54 |
+
+ file_path=handle_file(pdf_path),
|
| 55 |
+
+ use_chart_recognition=False,
|
| 56 |
+
+ api_name="/handle_complex_doc"
|
| 57 |
+
+ )
|
| 58 |
+
+ print("✅ OCR completed for PDF")
|
| 59 |
+
+ print(f"OCR raw result: {result}")
|
| 60 |
+
+
|
| 61 |
+
+ if isinstance(result, (list, tuple)) and len(result) >= 1:
|
| 62 |
+
+ extracted_text = str(result[0])
|
| 63 |
+
+ elif isinstance(result, str):
|
| 64 |
+
+ extracted_text = result
|
| 65 |
+
+ else:
|
| 66 |
+
+ extracted_text = f"Unexpected result format: {type(result)}"
|
| 67 |
+
+
|
| 68 |
+
+ return jsonify({"extracted_text": extracted_text.strip()})
|
| 69 |
+
+ except Exception as e:
|
| 70 |
+
+ return jsonify({"error": f"Error processing PDF: {e}"}), 500
|
| 71 |
+
*** End Patched_text = f"Unexpected result format: {type(result)}"
|
| 72 |
+
|
| 73 |
+
return jsonify({"extracted_text": extracted_text.strip()})
|
| 74 |
+
except Exception as e:
|
| 75 |
+
return jsonify({"error": f"Error processing image: {e}"}), 500
|
| 76 |
+
|
| 77 |
+
# Handle PDF uploads
|
| 78 |
+
if 'pdf' in request.files and request.files['pdf'].filename:
|
| 79 |
+
pdf = request.files['pdf']
|
| 80 |
+
pdf_path = os.path.join(temp_dir, pdf.filename)
|
| 81 |
+
pdf.save(pdf_path)
|
| 82 |
+
print(f"📄 PDF saved to {pdf_path}")
|
| 83 |
+
|
| 84 |
+
# Try local text extraction via PyMuPDF first
|
| 85 |
+
try:
|
| 86 |
+
doc = fitz.open(pdf_path)
|
| 87 |
+
collected_text = []
|
| 88 |
+
for page_index, page in enumerate(doc):
|
| 89 |
+
text = page.get_text("text") or ""
|
| 90 |
+
collected_text.append(f"--- Page {page_index + 1} ---\n{text.strip()}\n")
|
| 91 |
+
local_text = "\n".join(collected_text).strip()
|
| 92 |
+
if local_text:
|
| 93 |
+
print("✅ Extracted text locally via PyMuPDF")
|
| 94 |
+
return jsonify({"extracted_text": local_text})
|
| 95 |
+
except Exception as e:
|
| 96 |
+
print(f"⚠️ Local PyMuPDF extraction failed: {e}")
|
| 97 |
+
|
| 98 |
+
# Fallback to remote endpoint for complex layout parsing
|
| 99 |
+
try:
|
| 100 |
+
print("🚀 Sending PDF to /handle_complex_doc...")
|
| 101 |
+
result = ocr_client.predict(
|
| 102 |
+
file_path=handle_file(pdf_path),
|
| 103 |
+
use_chart_recognition=False,
|
| 104 |
+
api_name="/handle_complex_doc"
|
| 105 |
+
)
|
| 106 |
+
print("✅ OCR completed for PDF")
|
| 107 |
+
print(f"OCR raw result: {result}")
|
| 108 |
+
|
| 109 |
+
if isinstance(result, (list, tuple)) and len(result) >= 1:
|
| 110 |
+
extracted_text = str(result[0])
|
| 111 |
+
elif isinstance(result, str):
|
| 112 |
+
extracted_text = result
|
| 113 |
+
else:
|
| 114 |
+
extracted_text = f"Unexpected result format: {type(result)}"
|
| 115 |
+
|
| 116 |
+
return jsonify({"extracted_text": extracted_text.strip()})
|
| 117 |
+
except Exception as e:
|
| 118 |
+
return jsonify({"error": f"Error processing PDF: {e}"}), 500
|
| 119 |
+
|
| 120 |
+
return jsonify({"error": "No file uploaded. Please upload an image or a PDF."}), 400
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
|
| 122 |
+
except Exception as e:
|
| 123 |
+
print(f"❌ Fatal error in /extract: {e}")
|
| 124 |
+
return jsonify({"error": f"Fatal error: {str(e)}"}), 500
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
|
| 127 |
if __name__ == "__main__":
|
| 128 |
+
app.run(debug=True)
|
|
|