File size: 7,673 Bytes
05a9821
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import os
import gradio as gr
import pandas as pd
import numpy as np
from ai_chatbot import AIChatbot
from database_recommender import CourseRecommender
import warnings
import logging

# Suppress warnings
warnings.filterwarnings('ignore')
logging.getLogger('tensorflow').setLevel(logging.ERROR)

# Initialize components
try:
    chatbot = AIChatbot()
    print("βœ… Chatbot initialized successfully")
except Exception as e:
    print(f"⚠️  Warning: Could not initialize chatbot: {e}")
    chatbot = None

try:
    recommender = CourseRecommender()
    print("βœ… Recommender initialized successfully")
except Exception as e:
    print(f"⚠️  Warning: Could not initialize recommender: {e}")
    recommender = None

def chat_with_bot(message, history):
    """Handle chatbot interactions"""
    if chatbot is None:
        return "Sorry, the chatbot is not available at the moment. Please try again later."
    
    if not message.strip():
        return "Please enter a question."
    
    # Get answer from chatbot
    answer, confidence = chatbot.find_best_match(message)
    
    # Get suggested questions
    suggested_questions = chatbot.get_suggested_questions(message)
    
    # Format response
    response = f"**Answer:** {answer}\n\n"
    response += f"**Confidence:** {confidence:.2f}\n\n"
    
    if suggested_questions:
        response += "**Suggested Questions:**\n"
        for i, q in enumerate(suggested_questions, 1):
            response += f"{i}. {q}\n"
    
    return response

def get_course_recommendations(stanine, gwa, strand, hobbies):
    """Get course recommendations"""
    if recommender is None:
        return "Sorry, the recommendation system is not available at the moment. Please try again later."
    
    try:
        # Validate inputs
        stanine = int(stanine)
        gwa = float(gwa)
        
        if not (1 <= stanine <= 9):
            return "❌ Stanine score must be between 1 and 9"
        
        if not (75 <= gwa <= 100):
            return "❌ GWA must be between 75 and 100"
        
        if not strand:
            return "❌ Please select a strand"
        
        if not hobbies.strip():
            return "❌ Please enter your hobbies/interests"
        
        # Get recommendations
        recommendations = recommender.recommend_courses(
            stanine=stanine,
            gwa=gwa,
            strand=strand,
            hobbies=hobbies
        )
        
        if not recommendations:
            return "No recommendations available at the moment."
        
        # Format recommendations
        response = f"## 🎯 Course Recommendations for You\n\n"
        response += f"**Profile:** Stanine {stanine}, GWA {gwa}, {strand} Strand\n"
        response += f"**Interests:** {hobbies}\n\n"
        
        for i, rec in enumerate(recommendations, 1):
            response += f"### {i}. {rec['code']} - {rec['name']}\n"
            response += f"**Match Score:** {rec.get('rating', rec.get('probability', 0)):.1f}%\n\n"
        
        return response
        
    except Exception as e:
        return f"❌ Error getting recommendations: {str(e)}"

def get_faqs():
    """Get available FAQs"""
    if chatbot and chatbot.faqs:
        faq_text = "## πŸ“š Frequently Asked Questions\n\n"
        for i, faq in enumerate(chatbot.faqs, 1):
            faq_text += f"**{i}. {faq['question']}**\n"
            faq_text += f"{faq['answer']}\n\n"
        return faq_text
    return "No FAQs available at the moment."

def get_available_courses():
    """Get available courses"""
    if recommender and recommender.courses:
        course_text = "## πŸŽ“ Available Courses\n\n"
        for code, name in recommender.courses.items():
            course_text += f"**{code}** - {name}\n"
        return course_text
    return "No courses available at the moment."

# Create Gradio interface
with gr.Blocks(title="PSAU AI Chatbot & Course Recommender", theme=gr.themes.Soft()) as demo:
    gr.Markdown(
        """
        # πŸ€– PSAU AI Chatbot & Course Recommender
        
        Welcome to the Pangasinan State University AI-powered admission assistant! 
        Get instant answers to your questions and receive personalized course recommendations.
        """
    )
    
    with gr.Tabs():
        # Chatbot Tab
        with gr.Tab("πŸ€– AI Chatbot"):
            gr.Markdown("Ask me anything about university admissions, requirements, or general information!")
            
            chatbot_interface = gr.ChatInterface(
                fn=chat_with_bot,
                title="PSAU Admission Assistant",
                description="Type your question below and get instant answers!",
                examples=[
                    "What are the admission requirements?",
                    "When is the application deadline?",
                    "How much is the tuition fee?",
                    "Do you offer scholarships?",
                    "What courses are available?"
                ],
                cache_examples=True
            )
        
        # Course Recommender Tab
        with gr.Tab("🎯 Course Recommender"):
            gr.Markdown("Get personalized course recommendations based on your academic profile and interests!")
            
            with gr.Row():
                with gr.Column():
                    stanine_input = gr.Slider(
                        minimum=1, maximum=9, step=1, value=7,
                        label="Stanine Score (1-9)",
                        info="Your stanine score from entrance examination"
                    )
                    gwa_input = gr.Slider(
                        minimum=75, maximum=100, step=0.1, value=85.0,
                        label="GWA (75-100)",
                        info="Your General Weighted Average"
                    )
                    strand_input = gr.Dropdown(
                        choices=["STEM", "ABM", "HUMSS"],
                        value="STEM",
                        label="High School Strand",
                        info="Your senior high school strand"
                    )
                    hobbies_input = gr.Textbox(
                        label="Hobbies & Interests",
                        placeholder="e.g., programming, gaming, business, teaching, healthcare...",
                        info="Describe your interests and hobbies"
                    )
                    
                    recommend_btn = gr.Button("Get Recommendations", variant="primary")
                
                with gr.Column():
                    recommendations_output = gr.Markdown()
            
            recommend_btn.click(
                fn=get_course_recommendations,
                inputs=[stanine_input, gwa_input, strand_input, hobbies_input],
                outputs=recommendations_output
            )
        
        # Information Tab
        with gr.Tab("πŸ“š Information"):
            with gr.Row():
                with gr.Column():
                    gr.Markdown("### FAQ Section")
                    faq_btn = gr.Button("Show FAQs")
                    faq_output = gr.Markdown()
                    faq_btn.click(fn=get_faqs, outputs=faq_output)
                
                with gr.Column():
                    gr.Markdown("### Available Courses")
                    courses_btn = gr.Button("Show Courses")
                    courses_output = gr.Markdown()
                    courses_btn.click(fn=get_available_courses, outputs=courses_output)

if __name__ == "__main__":
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=False,
        show_error=True
    )