File size: 26,733 Bytes
f8ea354
8b04568
 
 
 
 
 
f8ea354
8b04568
 
 
 
b476fef
8b04568
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b476fef
8b04568
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b476fef
8b04568
 
b476fef
8b04568
 
 
b476fef
8b04568
 
 
 
 
b476fef
8b04568
 
 
 
 
 
b476fef
8b04568
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b476fef
 
8b04568
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b476fef
8b04568
 
 
 
 
 
 
b476fef
8b04568
 
 
 
 
 
 
 
 
 
 
 
 
 
b476fef
8b04568
 
 
 
 
 
b476fef
8b04568
f8ea354
8b04568
 
 
 
f8ea354
8b04568
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b476fef
8b04568
 
 
 
 
 
 
 
b476fef
8b04568
 
 
 
 
 
 
b476fef
8b04568
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b476fef
8b04568
 
 
b476fef
8b04568
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b476fef
8b04568
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8ea354
8b04568
f8ea354
8b04568
 
f8ea354
 
 
8b04568
b476fef
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
import gradio as gr
import requests
import json
import re
from typing import List, Tuple, Optional
from difflib import SequenceMatcher
import string

class AIChatbot:
    def __init__(self, database_url: str = "https://database-dhe2.onrender.com"):
        self.database_url = database_url
        self.conversation_history = []
        
        # Simple conversation patterns
        self.greeting_patterns = [
            r'\b(hi|hello|hey|good morning|good afternoon|good evening)\b',
            r'\b(how are you|how\'s it going|what\'s up)\b'
        ]
        
        self.help_patterns = [
            r'\b(help|assist|support|guide)\b',
            r'\b(what can you do|what do you do|your capabilities)\b'
        ]
        
        self.thanks_patterns = [
            r'\b(thank you|thanks|appreciate|grateful)\b'
        ]
        
        self.goodbye_patterns = [
            r'\b(bye|goodbye|see you|farewell|exit|quit)\b'
        ]

    def is_greeting(self, message: str) -> bool:
        """Check if the message is a greeting"""
        message_lower = message.lower()
        for pattern in self.greeting_patterns:
            if re.search(pattern, message_lower):
                return True
        return False

    def is_help_request(self, message: str) -> bool:
        """Check if the message is asking for help"""
        message_lower = message.lower()
        for pattern in self.help_patterns:
            if re.search(pattern, message_lower):
                return True
        return False

    def is_thanks(self, message: str) -> bool:
        """Check if the message is expressing thanks"""
        message_lower = message.lower()
        for pattern in self.thanks_patterns:
            if re.search(pattern, message_lower):
                return True
        return False

    def is_goodbye(self, message: str) -> bool:
        """Check if the message is a goodbye"""
        message_lower = message.lower()
        for pattern in self.goodbye_patterns:
            if re.search(pattern, message_lower):
                return True
        return False

    def get_greeting_response(self) -> str:
        """Generate a greeting response"""
        responses = [
            "Hello! I'm your AI assistant. How can I help you today?",
            "Hi there! I'm here to assist you with any questions you might have.",
            "Hello! Welcome! I can help you with general conversation or answer specific questions from our database.",
            "Hey! Nice to meet you! What can I do for you today?"
        ]
        import random
        return random.choice(responses)

    def get_help_response(self) -> str:
        """Generate a help response"""
        return """I'm an AI chatbot that can help you in two ways:

1. **General Conversation**: I can chat with you about various topics, answer greetings, and have friendly conversations.

2. **Specific Questions**: I can search our database for specific information and provide detailed answers to your questions.

**Smart Learning**: If I can't find an answer to your question, I'll automatically save it for review so we can improve our knowledge base and provide better answers in the future.

Just type your question or start a conversation, and I'll do my best to help you!"""

    def get_thanks_response(self) -> str:
        """Generate a thanks response"""
        responses = [
            "You're welcome! I'm happy to help.",
            "My pleasure! Feel free to ask if you need anything else.",
            "Glad I could assist you! Is there anything else you'd like to know?",
            "You're very welcome! I'm here whenever you need help."
        ]
        import random
        return random.choice(responses)

    def get_goodbye_response(self) -> str:
        """Generate a goodbye response"""
        responses = [
            "Goodbye! Have a great day!",
            "See you later! Take care!",
            "Farewell! Feel free to come back anytime.",
            "Bye! I enjoyed chatting with you!"
        ]
        import random
        return random.choice(responses)

    def save_unanswered_question(self, question: str) -> bool:
        """Save unanswered question to the database"""
        try:
            # Try different possible endpoints for saving unanswered questions
            endpoints = [
                f"{self.database_url}/unanswered_questions",
                f"{self.database_url}/api/unanswered_questions",
                f"{self.database_url}/save_question",
                f"{self.database_url}/api/save_question"
            ]
            
            for endpoint in endpoints:
                try:
                    # Try POST request with JSON body - matching your table structure
                    response = requests.post(
                        endpoint, 
                        json={
                            "question": question,
                            "created_at": self._get_timestamp()
                        }, 
                        headers={"Content-Type": "application/json"},
                        timeout=10
                    )
                    if response.status_code in [200, 201]:
                        return True
                except:
                    try:
                        # Try GET request with query parameters
                        response = requests.get(
                            endpoint, 
                            params={
                                "question": question,
                                "created_at": self._get_timestamp()
                            },
                            timeout=10
                        )
                        if response.status_code in [200, 201]:
                            return True
                    except:
                        continue
            
            return False
            
        except Exception as e:
            print(f"Error saving unanswered question: {e}")
            return False

    def _get_timestamp(self) -> str:
        """Get current timestamp in ISO format"""
        from datetime import datetime
        return datetime.now().isoformat()

    def _normalize_text(self, text: str) -> str:
        """Normalize text for better matching"""
        # Convert to lowercase
        text = text.lower()
        # Remove punctuation
        text = text.translate(str.maketrans('', '', string.punctuation))
        # Remove extra whitespace
        text = ' '.join(text.split())
        return text

    def _extract_keywords(self, text: str) -> List[str]:
        """Extract important keywords from text with enhanced processing"""
        # Extended stop words to ignore
        stop_words = {
            'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with', 'by',
            'is', 'are', 'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had', 'do', 'does', 'did',
            'will', 'would', 'could', 'should', 'may', 'might', 'can', 'what', 'how', 'when', 'where', 'why',
            'who', 'which', 'this', 'that', 'these', 'those', 'i', 'you', 'he', 'she', 'it', 'we', 'they',
            'me', 'him', 'her', 'us', 'them', 'my', 'your', 'his', 'her', 'its', 'our', 'their',
            'there', 'here', 'some', 'any', 'all', 'each', 'every', 'much', 'many', 'more', 'most',
            'very', 'just', 'only', 'also', 'even', 'still', 'yet', 'so', 'too', 'well', 'now', 'then'
        }
        
        # Normalize and split into words
        words = self._normalize_text(text).split()
        
        # Enhanced keyword extraction
        keywords = []
        for word in words:
            # Filter out stop words and very short words
            if word not in stop_words and len(word) > 2:
                # Add the word
                keywords.append(word)
                # Add common variations and stems
                if word.endswith('s') and len(word) > 3:
                    keywords.append(word[:-1])  # Remove 's' for plurals
                if word.endswith('ing') and len(word) > 4:
                    keywords.append(word[:-3])  # Remove 'ing'
                if word.endswith('ed') and len(word) > 3:
                    keywords.append(word[:-2])  # Remove 'ed'
        
        return list(set(keywords))  # Remove duplicates

    def _calculate_similarity(self, text1: str, text2: str) -> float:
        """Calculate similarity between two texts using advanced methods"""
        norm1 = self._normalize_text(text1)
        norm2 = self._normalize_text(text2)
        
        # Method 1: Sequence matcher on normalized text
        sequence_similarity = SequenceMatcher(None, norm1, norm2).ratio()
        
        # Method 2: Enhanced keyword overlap with stemming
        keywords1 = set(self._extract_keywords(text1))
        keywords2 = set(self._extract_keywords(text2))
        
        keyword_similarity = 0.0
        if keywords1 and keywords2:
            intersection = keywords1.intersection(keywords2)
            union = keywords1.union(keywords2)
            keyword_similarity = len(intersection) / len(union) if union else 0.0
        
        # Method 3: Substring containment (both directions)
        contains_similarity = 0.0
        if norm1 in norm2:
            contains_similarity = max(contains_similarity, 0.9 * (len(norm1) / len(norm2)))
        if norm2 in norm1:
            contains_similarity = max(contains_similarity, 0.9 * (len(norm2) / len(norm1)))
        
        # Method 4: Word order similarity
        words1 = norm1.split()
        words2 = norm2.split()
        word_order_similarity = 0.0
        if words1 and words2:
            # Check for common word sequences
            common_sequences = 0
            max_len = min(len(words1), len(words2))
            for i in range(max_len):
                if words1[i] == words2[i]:
                    common_sequences += 1
            word_order_similarity = common_sequences / max_len if max_len > 0 else 0.0
        
        # Method 5: Semantic similarity using word relationships
        semantic_similarity = self._calculate_semantic_similarity(keywords1, keywords2)
        
        # Method 6: Length similarity (shorter queries should match longer answers)
        length_similarity = 0.0
        if len(norm1) > 0 and len(norm2) > 0:
            length_ratio = min(len(norm1), len(norm2)) / max(len(norm1), len(norm2))
            length_similarity = length_ratio * 0.3  # Lower weight for length
        
        # Method 7: Phrase matching (for common phrases)
        phrase_similarity = self._calculate_phrase_similarity(norm1, norm2)
        
        # Combine all methods with optimized weights
        final_similarity = (
            sequence_similarity * 0.25 +
            keyword_similarity * 0.30 +
            contains_similarity * 0.20 +
            word_order_similarity * 0.10 +
            semantic_similarity * 0.10 +
            length_similarity * 0.03 +
            phrase_similarity * 0.02
        )
        
        return min(final_similarity, 1.0)  # Cap at 1.0

    def _calculate_semantic_similarity(self, keywords1: set, keywords2: set) -> float:
        """Calculate semantic similarity using word relationships"""
        if not keywords1 or not keywords2:
            return 0.0
        
        # Common semantic relationships
        semantic_groups = {
            'money': {'cost', 'price', 'tuition', 'fee', 'payment', 'money', 'financial', 'aid', 'scholarship'},
            'time': {'deadline', 'when', 'time', 'date', 'schedule', 'duration', 'period'},
            'contact': {'contact', 'phone', 'email', 'address', 'office', 'reach', 'call'},
            'requirements': {'requirement', 'need', 'required', 'must', 'prerequisite', 'condition'},
            'application': {'apply', 'application', 'submit', 'process', 'procedure'},
            'programs': {'program', 'course', 'major', 'degree', 'study', 'academic'},
            'admission': {'admission', 'admit', 'accept', 'enroll', 'entry', 'enter'}
        }
        
        # Check if keywords belong to the same semantic group
        semantic_score = 0.0
        for group, words in semantic_groups.items():
            group1_match = any(keyword in words for keyword in keywords1)
            group2_match = any(keyword in words for keyword in keywords2)
            if group1_match and group2_match:
                semantic_score += 0.3
        
        return min(semantic_score, 1.0)

    def _calculate_phrase_similarity(self, text1: str, text2: str) -> float:
        """Calculate similarity based on common phrases"""
        # Common phrases that should match
        common_phrases = [
            ('admission requirements', 'requirements admission'),
            ('financial aid', 'aid financial'),
            ('tuition cost', 'cost tuition'),
            ('application deadline', 'deadline application'),
            ('contact admissions', 'admissions contact'),
            ('gpa requirement', 'requirement gpa'),
            ('academic requirements', 'requirements academic')
        ]
        
        phrase_score = 0.0
        for phrase1, phrase2 in common_phrases:
            if (phrase1 in text1 and phrase1 in text2) or (phrase2 in text1 and phrase2 in text2):
                phrase_score += 0.5
            elif (phrase1 in text1 and phrase2 in text2) or (phrase2 in text1 and phrase1 in text2):
                phrase_score += 0.4
        
        return min(phrase_score, 1.0)

    def _find_best_match(self, user_question: str, database_questions: List[str], threshold: float = 0.25) -> Optional[str]:
        """Find the best matching question from database with improved logic"""
        if not database_questions:
            return None
        
        best_match = None
        best_score = 0.0
        all_scores = []
        
        # Calculate similarity for all questions
        for db_question in database_questions:
            similarity = self._calculate_similarity(user_question, db_question)
            all_scores.append((db_question, similarity))
            if similarity > best_score:
                best_score = similarity
                best_match = db_question
        
        # Sort by similarity score
        all_scores.sort(key=lambda x: x[1], reverse=True)
        
        # If the best score is above threshold, return it
        if best_score >= threshold:
            return best_match
        
        # If no single match is above threshold, try adaptive threshold
        if all_scores:
            # Use the top score if it's reasonably close to threshold
            top_score = all_scores[0][1]
            if top_score >= threshold * 0.8:  # 80% of threshold
                return all_scores[0][0]
        
        # Last resort: if user question is very short, be more lenient
        if len(user_question.split()) <= 3 and all_scores:
            # For short queries, use a lower threshold
            if all_scores[0][1] >= 0.15:
                return all_scores[0][0]
        
        return None

    def fetch_from_database(self, question: str) -> str:
        """Fetch answer from the database with smart matching"""
        try:
            # First, try to get all available questions for smart matching
            all_questions = self._get_all_questions()
            
            # If we have all questions, try smart matching first
            if all_questions:
                best_match = self._find_best_match(question, all_questions)
                if best_match:
                    # Try to get answer for the best matching question
                    answer = self._get_answer_for_question(best_match)
                    if answer and not self._is_no_answer_response(answer):
                        return answer
            
            # Fallback to original method if smart matching doesn't work
            endpoints = [
                f"{self.database_url}/faqs",
                f"{self.database_url}/search",
                f"{self.database_url}/query",
                f"{self.database_url}/api/faq"
            ]
            
            for endpoint in endpoints:
                try:
                    # Try GET request with query parameter
                    response = requests.get(endpoint, params={"question": question}, timeout=10)
                    if response.status_code == 200:
                        data = response.json()
                        if isinstance(data, dict):
                            answer = data.get('answer', data.get('response', str(data)))
                            # Check if we got a meaningful answer
                            if answer and answer.strip() and not self._is_no_answer_response(answer):
                                return answer
                        elif isinstance(data, list) and len(data) > 0:
                            answer = str(data[0])
                            if answer and answer.strip() and not self._is_no_answer_response(answer):
                                return answer
                        else:
                            answer = str(data)
                            if answer and answer.strip() and not self._is_no_answer_response(answer):
                                return answer
                except:
                    try:
                        # Try POST request with JSON body
                        response = requests.post(
                            endpoint, 
                            json={"question": question}, 
                            headers={"Content-Type": "application/json"},
                            timeout=10
                        )
                        if response.status_code == 200:
                            data = response.json()
                            if isinstance(data, dict):
                                answer = data.get('answer', data.get('response', str(data)))
                                # Check if we got a meaningful answer
                                if answer and answer.strip() and not self._is_no_answer_response(answer):
                                    return answer
                            elif isinstance(data, list) and len(data) > 0:
                                answer = str(data[0])
                                if answer and answer.strip() and not self._is_no_answer_response(answer):
                                    return answer
                            else:
                                answer = str(data)
                                if answer and answer.strip() and not self._is_no_answer_response(answer):
                                    return answer
                    except:
                        continue
            
            # If no answer found, save the question as unanswered
            self.save_unanswered_question(question)
            return "I'm sorry, I couldn't find a specific answer to your question in our database. I've saved your question for review, and we'll work on providing a better answer in the future. Could you try rephrasing your question or ask me something else?"
            
        except requests.exceptions.Timeout:
            # Save the question even if there's a timeout
            self.save_unanswered_question(question)
            return "I'm sorry, the database is taking too long to respond. I've saved your question for review. Please try again in a moment."
        except requests.exceptions.ConnectionError:
            # Save the question even if there's a connection error
            self.save_unanswered_question(question)
            return "I'm sorry, I'm having trouble connecting to our database right now. I've saved your question for review. Please try again later."
        except Exception as e:
            # Save the question even if there's an unexpected error
            self.save_unanswered_question(question)
            return f"I encountered an error while searching our database: {str(e)}. I've saved your question for review. Please try again."

    def _get_all_questions(self) -> List[str]:
        """Get all available questions from the database for smart matching"""
        try:
            # Try different endpoints to get all questions
            endpoints = [
                f"{self.database_url}/questions",
                f"{self.database_url}/faq/all",
                f"{self.database_url}/api/questions",
                f"{self.database_url}/all_questions"
            ]
            
            for endpoint in endpoints:
                try:
                    response = requests.get(endpoint, timeout=10)
                    if response.status_code == 200:
                        data = response.json()
                        if isinstance(data, list):
                            return [str(item) for item in data]
                        elif isinstance(data, dict) and 'questions' in data:
                            return [str(q) for q in data['questions']]
                except:
                    continue
            
            return []
        except:
            return []

    def _get_answer_for_question(self, question: str) -> Optional[str]:
        """Get answer for a specific question"""
        try:
            endpoints = [
                f"{self.database_url}/faqs",
                f"{self.database_url}/search",
                f"{self.database_url}/query",
                f"{self.database_url}/api/faq"
            ]
            
            for endpoint in endpoints:
                try:
                    response = requests.get(endpoint, params={"question": question}, timeout=10)
                    if response.status_code == 200:
                        data = response.json()
                        if isinstance(data, dict):
                            return data.get('answer', data.get('response', str(data)))
                        elif isinstance(data, list) and len(data) > 0:
                            return str(data[0])
                        else:
                            return str(data)
                except:
                    try:
                        response = requests.post(
                            endpoint, 
                            json={"question": question}, 
                            headers={"Content-Type": "application/json"},
                            timeout=10
                        )
                        if response.status_code == 200:
                            data = response.json()
                            if isinstance(data, dict):
                                return data.get('answer', data.get('response', str(data)))
                            elif isinstance(data, list) and len(data) > 0:
                                return str(data[0])
                            else:
                                return str(data)
                    except:
                        continue
            
            return None
        except:
            return None

    def _is_no_answer_response(self, answer: str) -> bool:
        """Check if the response indicates no answer was found"""
        no_answer_indicators = [
            "no answer",
            "not found",
            "no results",
            "no data",
            "empty",
            "null",
            "none",
            "i don't know",
            "i don't have",
            "cannot find",
            "unable to find"
        ]
        
        answer_lower = answer.lower().strip()
        return any(indicator in answer_lower for indicator in no_answer_indicators)

    def chat(self, message: str, history: List[List[str]]) -> str:
        """Main chat function"""
        if not message.strip():
            return "Please enter a message so I can help you!"
        
        # Store conversation history
        self.conversation_history.append(("user", message))
        
        # Check for conversation patterns
        if self.is_greeting(message):
            response = self.get_greeting_response()
        elif self.is_help_request(message):
            response = self.get_help_response()
        elif self.is_thanks(message):
            response = self.get_thanks_response()
        elif self.is_goodbye(message):
            response = self.get_goodbye_response()
        else:
            # Try to fetch from database
            response = self.fetch_from_database(message)
        
        # Store bot response
        self.conversation_history.append(("bot", response))
        
        return response

# Initialize the chatbot
chatbot = AIChatbot()

# Create Gradio interface
def create_interface():
    with gr.Blocks(
        title="AI Chatbot",
        theme=gr.themes.Soft(),
        css="""
        .gradio-container {
            max-width: 800px !important;
            margin: auto !important;
        }
        .chat-message {
            padding: 10px;
            margin: 5px 0;
            border-radius: 10px;
        }
        """
    ) as interface:
        
        gr.Markdown(
            """
            # 🤖 AI Chatbot Assistant
            
            Welcome! I'm your AI assistant that can help you with:
            - **General conversation** and friendly chat
            - **Specific questions** answered from our knowledge database
            
            Just type your message below and I'll do my best to help you!
            """
        )
        
        # Chat interface
        chatbot_interface = gr.ChatInterface(
            fn=chatbot.chat,
            title="Chat with AI Assistant",
            description="Ask me anything or just have a conversation!",
            examples=[
                "Hello!",
                "What can you help me with?",
                "How do I contact support?",
                "What are your services?",
                "Thank you for your help!"
            ],
            cache_examples=False,
            retry_btn="🔄 Retry",
            undo_btn="↩️ Undo",
            clear_btn="🗑️ Clear",
            submit_btn="Send",
            stop_btn="⏹️ Stop",
            additional_inputs=None
        )
        
        # Footer
        gr.Markdown(
            """
            ---
            **Note**: This chatbot can handle general conversation and search our database for specific information. 
            If you don't get the answer you're looking for, try rephrasing your question!
            """
        )
    
    return interface

# Launch the application
if __name__ == "__main__":
    interface = create_interface()
    interface.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=False,
        debug=True
    )