File size: 9,008 Bytes
b476fef
f8ea354
b476fef
 
 
 
 
 
f8ea354
b476fef
 
 
f8ea354
b476fef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8ea354
b476fef
f8ea354
b476fef
 
f8ea354
b476fef
 
 
 
 
 
 
 
 
f8ea354
b476fef
 
f8ea354
 
 
b476fef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8ea354
 
b476fef
f8ea354
 
b476fef
f8ea354
b476fef
 
f8ea354
 
 
 
b476fef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8ea354
b476fef
 
 
 
 
 
 
 
 
 
 
 
f8ea354
b476fef
 
f8ea354
b476fef
 
 
f8ea354
b476fef
f8ea354
b476fef
 
 
f8ea354
 
 
b476fef
 
 
f8ea354
 
 
b476fef
f8ea354
 
 
b476fef
f8ea354
b476fef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8ea354
 
 
 
 
 
b476fef
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import os
import gradio as gr
import pandas as pd
import numpy as np
from ai_chatbot import AIChatbot
from database_recommender import CourseRecommender
import warnings
import logging

# Suppress warnings
warnings.filterwarnings('ignore')
logging.getLogger('tensorflow').setLevel(logging.ERROR)

# Initialize components
try:
    chatbot = AIChatbot()
    print("βœ… Chatbot initialized successfully")
except Exception as e:
    print(f"⚠️  Warning: Could not initialize chatbot: {e}")
    chatbot = None

try:
    recommender = CourseRecommender()
    print("βœ… Recommender initialized successfully")
except Exception as e:
    print(f"⚠️  Warning: Could not initialize recommender: {e}")
    recommender = None

def chat_with_bot(message, history):
    """Handle chatbot interactions"""
    if chatbot is None:
        return "Sorry, the chatbot is not available at the moment. Please try again later."
    
    if not message.strip():
        return "Please enter a message to start the conversation."
    
    # Get answer from chatbot
    answer, confidence = chatbot.find_best_match(message)
    
    # For general conversation, just return the answer
    # For FAQ questions, include suggested questions
    if confidence > 0.7:  # High confidence FAQ match
        suggested_questions = chatbot.get_suggested_questions(message)
        if suggested_questions:
            response = f"{answer}\n\n**Related Questions:**\n"
            for i, q in enumerate(suggested_questions, 1):
                response += f"{i}. {q}\n"
            return response
    
    # For general conversation or low confidence, just return the answer
    return answer

def get_course_recommendations(stanine, gwa, strand, hobbies):
    """Get course recommendations"""
    if recommender is None:
        return "Sorry, the recommendation system is not available at the moment. Please try again later."
    
    try:
        # Validate and convert inputs
        try:
            stanine = int(stanine.strip()) if stanine else 0
        except (ValueError, AttributeError):
            return "❌ Stanine score must be a valid number between 1 and 9"
        
        try:
            gwa = float(gwa.strip()) if gwa else 0
        except (ValueError, AttributeError):
            return "❌ GWA must be a valid number between 75 and 100"
        
        # Validate ranges
        if not (1 <= stanine <= 9):
            return "❌ Stanine score must be between 1 and 9"
        
        if not (75 <= gwa <= 100):
            return "❌ GWA must be between 75 and 100"
        
        if not strand:
            return "❌ Please select a strand"
        
        if not hobbies or not hobbies.strip():
            return "❌ Please enter your hobbies/interests"
        
        # Get recommendations
        recommendations = recommender.recommend_courses(
            stanine=stanine,
            gwa=gwa,
            strand=strand,
            hobbies=hobbies
        )
        
        if not recommendations:
            return "No recommendations available at the moment."
        
        # Format recommendations
        response = f"## 🎯 Course Recommendations for You\n\n"
        response += f"**Profile:** Stanine {stanine}, GWA {gwa}, {strand} Strand\n"
        response += f"**Interests:** {hobbies}\n\n"
        
        for i, rec in enumerate(recommendations, 1):
            response += f"### {i}. {rec['code']} - {rec['name']}\n"
            response += f"**Match Score:** {rec.get('rating', rec.get('probability', 0)):.1f}%\n\n"
        
        return response
        
    except Exception as e:
        return f"❌ Error getting recommendations: {str(e)}"

def get_faqs():
    """Get available FAQs"""
    if chatbot and chatbot.faqs:
        faq_text = "## πŸ“š Frequently Asked Questions\n\n"
        for i, faq in enumerate(chatbot.faqs, 1):
            faq_text += f"**{i}. {faq['question']}**\n"
            faq_text += f"{faq['answer']}\n\n"
        return faq_text
    return "No FAQs available at the moment."

def get_available_courses():
    """Get available courses"""
    if recommender and recommender.courses:
        course_text = "## πŸŽ“ Available Courses\n\n"
        for code, name in recommender.courses.items():
            course_text += f"**{code}** - {name}\n"
        return course_text
    return "No courses available at the moment."

# Create Gradio interface
with gr.Blocks(title="PSAU AI Chatbot & Course Recommender", theme=gr.themes.Soft()) as demo:
    gr.Markdown(
        """
        # πŸ€– PSAU AI Chatbot & Course Recommender
        
        Welcome to the Pangasinan State University AI-powered admission assistant! 
        Get instant answers to your questions and receive personalized course recommendations.
        """
    )
    
    with gr.Tabs():
        # Chatbot Tab
        with gr.Tab("πŸ€– AI Chatbot"):
            gr.Markdown("""
            **Chat with the PSAU AI Assistant!**
            
            I can help you with:
            β€’ University admission questions
            β€’ Course information and guidance  
            β€’ General conversation
            β€’ Academic support
            
            Just type your message below and I'll respond naturally!
            """)
            
            chatbot_interface = gr.ChatInterface(
                fn=chat_with_bot,
                title="PSAU AI Assistant",
                description="Chat with me about university admissions, courses, or just say hello!",
                examples=[
                    "Hello!",
                    "What are the admission requirements?",
                    "How are you?",
                    "What courses are available?",
                    "Tell me about PSAU",
                    "What can you help me with?",
                    "Thank you",
                    "Goodbye"
                ],
                cache_examples=True
            )
        
        # Course Recommender Tab
        with gr.Tab("🎯 Course Recommender"):
            gr.Markdown("""
            Get personalized course recommendations based on your academic profile and interests!
            
            **Input Guidelines:**
            - **Stanine Score**: Enter a number between 1-9 (from your entrance exam)
            - **GWA**: Enter your General Weighted Average (75-100)
            - **Strand**: Select your senior high school strand
            - **Hobbies**: Describe your interests and hobbies in detail
            """)
            
            with gr.Row():
                with gr.Column():
                    stanine_input = gr.Textbox(
                        label="Stanine Score (1-9)",
                        placeholder="Enter your stanine score (1-9)",
                        info="Your stanine score from entrance examination",
                        value="7"
                    )
                    gwa_input = gr.Textbox(
                        label="GWA (75-100)",
                        placeholder="Enter your GWA (75-100)",
                        info="Your General Weighted Average",
                        value="85.0"
                    )
                    strand_input = gr.Dropdown(
                        choices=["STEM", "ABM", "HUMSS"],
                        value="STEM",
                        label="High School Strand",
                        info="Your senior high school strand"
                    )
                    hobbies_input = gr.Textbox(
                        label="Hobbies & Interests",
                        placeholder="e.g., programming, gaming, business, teaching, healthcare...",
                        info="Describe your interests and hobbies"
                    )
                    
                    recommend_btn = gr.Button("Get Recommendations", variant="primary")
                
                with gr.Column():
                    recommendations_output = gr.Markdown()
            
            recommend_btn.click(
                fn=get_course_recommendations,
                inputs=[stanine_input, gwa_input, strand_input, hobbies_input],
                outputs=recommendations_output
            )
        
        # Information Tab
        with gr.Tab("πŸ“š Information"):
            with gr.Row():
                with gr.Column():
                    gr.Markdown("### FAQ Section")
                    faq_btn = gr.Button("Show FAQs")
                    faq_output = gr.Markdown()
                    faq_btn.click(fn=get_faqs, outputs=faq_output)
                
                with gr.Column():
                    gr.Markdown("### Available Courses")
                    courses_btn = gr.Button("Show Courses")
                    courses_output = gr.Markdown()
                    courses_btn.click(fn=get_available_courses, outputs=courses_output)

if __name__ == "__main__":
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=False,
        show_error=True
    )