import pandas as pd import numpy as np from sklearn.neighbors import KNeighborsClassifier from sklearn.preprocessing import LabelEncoder, StandardScaler import joblib import json class CourseRecommender: def __init__(self): self.model = None self.label_encoders = {} self.scaler = StandardScaler() self.courses = self.get_courses() self.training_data = self.get_training_data() self.train_model() def get_courses(self): """Get static course data""" return { 'BSCS': 'Bachelor of Science in Computer Science', 'BSIT': 'Bachelor of Science in Information Technology', 'BSBA': 'Bachelor of Science in Business Administration', 'BSED': 'Bachelor of Science in Education', 'BSN': 'Bachelor of Science in Nursing', 'BSArch': 'Bachelor of Science in Architecture', 'BSIE': 'Bachelor of Science in Industrial Engineering', 'BSHM': 'Bachelor of Science in Hospitality Management', 'BSA': 'Bachelor of Science in Accountancy', 'BSPsych': 'Bachelor of Science in Psychology', 'BSAgri': 'Bachelor of Science in Agriculture' } def save_student_data(self, stanine, gwa, strand, course, rating, hobbies=None): """Save student feedback to in-memory storage (for demonstration purposes)""" try: # In a real implementation, you could save this to a file or external storage print(f"Student feedback saved: Stanine={stanine}, GWA={gwa}, Strand={strand}, Course={course}, Rating={rating}, Hobbies={hobbies}") return True except Exception as e: print(f"Error saving student feedback: {e}") return False def get_training_data(self): """Get static training data for demonstration purposes""" # Sample training data to demonstrate the recommender system training_data = [ # STEM students (8, 95, 'STEM', 'BSCS', 5, 'programming, gaming, technology'), (7, 90, 'STEM', 'BSIT', 4, 'computers, software, coding'), (9, 98, 'STEM', 'BSCS', 5, 'programming, algorithms, math'), (6, 85, 'STEM', 'BSIT', 3, 'technology, computers'), (8, 92, 'STEM', 'BSArch', 4, 'design, drawing, creativity'), (7, 88, 'STEM', 'BSIE', 4, 'engineering, problem solving'), # ABM students (8, 90, 'ABM', 'BSBA', 5, 'business, management, leadership'), (7, 85, 'ABM', 'BSA', 4, 'accounting, numbers, finance'), (6, 82, 'ABM', 'BSBA', 3, 'business, marketing'), (9, 95, 'ABM', 'BSA', 5, 'accounting, finance, analysis'), # HUMSS students (8, 88, 'HUMSS', 'BSED', 5, 'teaching, helping, education'), (7, 85, 'HUMSS', 'BSPsych', 4, 'psychology, helping, people'), (6, 80, 'HUMSS', 'BSED', 3, 'teaching, children'), (9, 92, 'HUMSS', 'BSPsych', 5, 'psychology, counseling, people'), # General interests (7, 87, 'STEM', 'BSN', 4, 'helping, healthcare, caring'), (8, 89, 'ABM', 'BSHM', 4, 'hospitality, service, management'), (6, 83, 'HUMSS', 'BSAgri', 3, 'agriculture, environment, nature'), ] return pd.DataFrame(training_data, columns=['stanine', 'gwa', 'strand', 'course', 'rating', 'hobbies']) def train_model(self): """Train the recommendation model using the training data""" try: training_data = self.get_training_data() if training_data.empty: print("No training data available - using default recommendations") return # Prepare features (hobbies required) feature_columns = ['stanine', 'gwa', 'strand', 'hobbies'] # Create feature matrix X = training_data[feature_columns].copy() y = training_data['course'] # Handle categorical variables categorical_columns = ['strand', 'hobbies'] # Refit encoders every training to incorporate new categories for col in categorical_columns: if col in X.columns: X[col] = X[col].fillna('unknown') self.label_encoders[col] = LabelEncoder() X[col] = self.label_encoders[col].fit_transform(X[col]) # Scale numerical features numerical_columns = ['stanine', 'gwa'] if not X[numerical_columns].empty: X[numerical_columns] = self.scaler.fit_transform(X[numerical_columns]) # Train KNN model self.model = KNeighborsClassifier(n_neighbors=3, weights='distance') self.model.fit(X, y) print("✅ Model trained successfully (hobbies required and encoded)") except Exception as e: print(f"Error training model: {e}") self.model = None def get_default_recommendations(self, stanine, gwa, strand): """Provide default recommendations based on basic rules when no training data is available""" courses = self.courses recommendations = [] # Basic rules for recommendations if strand == 'STEM': if stanine >= 8 and gwa >= 90: priority_courses = ['BSCS', 'BSIT'] else: priority_courses = ['BSIT', 'BSCS'] elif strand == 'ABM': priority_courses = ['BSBA'] elif strand == 'HUMSS': priority_courses = ['BSED'] else: priority_courses = list(courses.keys()) # Add courses with default probabilities for i, course in enumerate(priority_courses[:2]): # Only take top 2 if course in courses: recommendations.append({ 'code': course, 'name': courses[course], 'probability': 1.0 - (i * 0.2) # Decreasing probability for each course }) return recommendations def recommend_courses(self, stanine, gwa, strand, hobbies=None, top_n=5): """Recommend courses based on student profile (hobbies required)""" try: if self.model is None: return self.get_default_recommendations(stanine, gwa, strand) # Prepare input features input_data = pd.DataFrame([{ 'stanine': stanine, 'gwa': gwa, 'strand': strand, 'hobbies': (hobbies or '').strip() }]) # Validate hobbies if not input_data['hobbies'].iloc[0]: raise ValueError('hobbies is required for recommendations') # Encode categorical variables for col in ['strand', 'hobbies']: if col in input_data.columns and col in self.label_encoders: value = input_data[col].iloc[0] if value not in self.label_encoders[col].classes_: # Extend encoder classes to include unseen value at inference self.label_encoders[col].classes_ = np.append(self.label_encoders[col].classes_, value) input_data[col] = self.label_encoders[col].transform(input_data[col]) # Scale numerical features numerical_columns = ['stanine', 'gwa'] if not input_data[numerical_columns].empty: input_data[numerical_columns] = self.scaler.transform(input_data[numerical_columns]) # Get predictions predictions = self.model.predict_proba(input_data) courses = self.model.classes_ # Get top recommendations top_indices = np.argsort(predictions[0])[-top_n:][::-1] recommendations = [] course_map = self.courses for idx in top_indices: code = courses[idx] confidence = predictions[0][idx] recommendations.append({ 'code': code, 'name': course_map.get(code, code), 'rating': round(confidence * 100, 1) }) return recommendations except Exception as e: print(f"Error recommending courses: {e}") return self.get_default_recommendations(stanine, gwa, strand) def _get_recommendation_reason(self, course, stanine, gwa, strand, hobbies, interests, personality_type, learning_style, career_goals): """Generate personalized reason for recommendation""" reasons = [] # Academic performance reasons if stanine >= 8: reasons.append("Excellent academic performance") elif stanine >= 6: reasons.append("Good academic foundation") if gwa >= 85: reasons.append("High academic achievement") elif gwa >= 80: reasons.append("Strong academic record") # Strand alignment if strand == "STEM" and course in ["BSCS", "BSIT", "BSArch", "BSIE", "BSN"]: reasons.append("Perfect match with your STEM background") elif strand == "ABM" and course in ["BSBA", "BSA"]: reasons.append("Excellent alignment with your ABM strand") elif strand == "HUMSS" and course in ["BSED", "BSPsych"]: reasons.append("Great fit with your HUMSS background") # Hobbies and interests alignment if hobbies and any(hobby in hobbies.lower() for hobby in ["gaming", "programming", "technology", "computers"]): if course in ["BSCS", "BSIT"]: reasons.append("Matches your technology interests") if hobbies and any(hobby in hobbies.lower() for hobby in ["business", "leadership", "management"]): if course in ["BSBA", "BSA"]: reasons.append("Aligns with your business interests") if hobbies and any(hobby in hobbies.lower() for hobby in ["helping", "teaching", "caring"]): if course in ["BSED", "BSN", "BSPsych"]: reasons.append("Perfect for your helping nature") # Personality type alignment if personality_type == "introvert" and course in ["BSCS", "BSA", "BSArch"]: reasons.append("Suits your introverted personality") elif personality_type == "extrovert" and course in ["BSBA", "BSED", "BSHM"]: reasons.append("Great for your outgoing personality") # Learning style alignment if learning_style == "hands-on" and course in ["BSIT", "BSHM", "BSAgri"]: reasons.append("Matches your hands-on learning preference") elif learning_style == "visual" and course in ["BSArch", "BSCS"]: reasons.append("Perfect for your visual learning style") # Career goals alignment if career_goals and any(goal in career_goals.lower() for goal in ["developer", "programmer", "software"]): if course in ["BSCS", "BSIT"]: reasons.append("Direct path to your career goals") if career_goals and any(goal in career_goals.lower() for goal in ["business", "entrepreneur", "manager"]): if course in ["BSBA", "BSA"]: reasons.append("Direct path to your business goals") # Default reason if no specific matches if not reasons: reasons.append("Good academic and personal fit") return " • ".join(reasons[:3]) # Limit to top 3 reasons def save_model(self, model_path='course_recommender_model.joblib'): """Save the trained model""" if self.model is None: raise Exception("No model to save!") model_data = { 'model': self.model, 'scaler': self.scaler, 'label_encoders': self.label_encoders } joblib.dump(model_data, model_path) def load_model(self, model_path='course_recommender_model.joblib'): """Load a trained model""" model_data = joblib.load(model_path) self.model = model_data['model'] self.scaler = model_data['scaler'] self.label_encoders = model_data['label_encoders'] # Example usage if __name__ == "__main__": recommender = CourseRecommender() # Example recommendation recommendations = recommender.recommend_courses( stanine=8, gwa=95, strand='STEM', hobbies='programming, gaming, technology' ) print("Recommended courses:", json.dumps(recommendations, indent=2))