File size: 6,346 Bytes
d425e71 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
"""Model info lookup utilities."""
import os
from enum import Enum
from pathlib import Path
from typing import Tuple
from src.models.config import ModelSelection
REPO_ROOT = Path(__file__).resolve().parents[1]
SPECS_DIR = Path(os.getenv('MODEL_SPECS_DIR', REPO_ROOT / 'logs'))
# TODO: To store local model weights in the repo, also define:
# MODELS_DIR = Path(os.getenv('MODELS_DIR', REPO_ROOT / 'checkpoints'))
class ModelVariants(str, Enum):
"""Enum that contains all possible model variants."""
AYA_VISION_8B = 'aya-vision-8b'
BLIP2_3B = 'blip2-opt-2.7b'
COGVLM_17B = 'cogvlm-17b'
GLAMM_7B = 'glamm-7b'
INTERNLM_XC_25_7B = 'internlm-xcomposer2.5-7b'
INTERNVL_25_8B = 'internvl-2.5-8b'
JANUS_1B = 'janus-pro-1b'
LLAVA_15_7B = 'llava-1.5-7b'
MINICPM_O_26_8B = 'minicpm-o-2.6-8b'
MINICPM_V_20_3B = 'minicpm-v-2.0-2.8b'
MOLMO_7B = 'molmo-7b'
PALIGEMMA_3B = 'paligemma-3b'
PIXTRAL_12B = 'pixtral-12b'
PERCEPTION_LM_1B = 'perception-lm-1b'
QWENVL_20_2B = 'qwen2-vl-2b-instruct'
QWENVL_20_7B = 'qwen2-vl-7b-instruct'
# TODO: Add more models here as needed.
# ---- Mapping ----
# model_path: can be a local path or a HF repo id string
# model_spec: absolute Path to the .txt file (we'll return a repo-root-relative string)
_MODEL_MAPPING: dict[ModelVariants, dict[ModelSelection, str, str | Path]] = {
ModelVariants.AYA_VISION_8B: {
'model_arch': ModelSelection.AYA_VISION,
'model_path': 'CohereLabs/aya-vision-8b',
'model_spec': SPECS_DIR / 'CohereLabs' / 'aya-vision-8b.txt',
},
ModelVariants.BLIP2_3B: {
'model_arch': ModelSelection.BLIP2,
'model_path': 'Salesforce/blip2-opt-2.7b',
'model_spec': SPECS_DIR / 'Salesforce' / 'blip2-opt-2.7b.txt',
},
ModelVariants.COGVLM_17B: {
'model_arch': ModelSelection.COGVLM,
'model_path': 'THUDM/cogvlm-chat-hf',
'model_spec': SPECS_DIR / 'THUDM' / 'cogvlm-chat-hf.txt',
},
ModelVariants.GLAMM_7B: {
'model_arch': ModelSelection.GLAMM,
'model_path': 'MBZUAI/GLaMM-FullScope',
'model_spec': SPECS_DIR / 'MBZUAI' / 'GLaMM-FullScope.txt',
},
ModelVariants.INTERNLM_XC_25_7B: {
'model_arch': ModelSelection.INTERNLM_XC,
'model_path': 'internlm/internlm-xcomposer2d5-7b',
'model_spec': SPECS_DIR / 'internlm' / 'internlm-xcomposer2d5-7b.txt',
},
ModelVariants.INTERNVL_25_8B: {
'model_arch': ModelSelection.INTERNVL,
'model_path': 'OpenGVLab/InternVL2_5-8B',
'model_spec': SPECS_DIR / 'internvl' / 'InternVL2_5-8B.txt',
},
ModelVariants.JANUS_1B: {
'model_arch': ModelSelection.JANUS,
'model_path': 'deepseek-community/Janus-Pro-1B',
'model_spec': SPECS_DIR / 'deepseek-community' / 'Janus-Pro-1B.txt',
},
ModelVariants.LLAVA_15_7B: {
'model_arch': ModelSelection.LLAVA,
'model_path': 'llava-hf/llava-1.5-7b-hf',
'model_spec': SPECS_DIR / 'llava-hf' / 'llava-1.5-7b-hf.txt',
},
ModelVariants.MINICPM_O_26_8B: {
'model_arch': ModelSelection.MINICPM,
'model_path': 'openbmb/MiniCPM-o-2_6',
'model_spec': SPECS_DIR / 'openbmb' / 'MiniCPM-o-2_6.txt',
},
ModelVariants.MINICPM_V_20_3B: {
'model_arch': ModelSelection.MINICPM,
'model_path': 'compling/MiniCPM-V-2',
'model_spec': SPECS_DIR / 'wonderwind271' / 'MiniCPM-V-2.txt',
},
ModelVariants.MOLMO_7B: {
'model_arch': ModelSelection.MOLMO,
'model_path': 'allenai/Molmo-7B-D-0924',
'model_spec': SPECS_DIR / 'allenai' / 'Molmo-7B-D-0924.txt',
},
ModelVariants.PALIGEMMA_3B: {
'model_arch': ModelSelection.PALIGEMMA,
'model_path': 'google/paligemma-3b-mix-224',
'model_spec': SPECS_DIR / 'paligemma' / 'paligemma-3b.txt',
},
ModelVariants.PIXTRAL_12B: {
'model_arch': ModelSelection.PIXTRAL,
'model_path': 'mistralai/Pixtral-12B-2409',
'model_spec': SPECS_DIR / 'mistralai' / 'Pixtral-12B-2409.txt',
},
ModelVariants.PERCEPTION_LM_1B: {
'model_arch': ModelSelection.PLM,
'model_path': 'facebook/Perception-LM-1B',
'model_spec': SPECS_DIR / 'facebook' / 'Perception-LM-1B.txt',
},
ModelVariants.QWENVL_20_2B: {
'model_arch': ModelSelection.QWEN,
'model_path': 'Qwen/Qwen2-VL-2B-Instruct',
'model_spec': SPECS_DIR / 'Qwen' / 'Qwen2-VL-2B-Instruct.txt',
},
ModelVariants.QWENVL_20_7B: {
'model_arch': ModelSelection.QWEN,
'model_path': 'Qwen/Qwen2-VL-7B-Instruct',
'model_spec': SPECS_DIR / 'Qwen' / 'Qwen2-VL-7B-Instruct.txt',
},
# TODO: Add more models here as needed.
}
def _to_repo_relative(p: Path) -> str:
"""Convert a path to a repo-root–relative string if possible.
Args:
p (Path): The path to convert.
Returns:
str: `p` relative to ``REPO_ROOT`` if `p` is within it; otherwise the
absolute path as a string.
"""
try:
return str(p.resolve().relative_to(REPO_ROOT))
except ValueError:
return str(p)
def get_model_info(model_var: ModelVariants) -> Tuple[ModelSelection, str, str]:
"""Return the model path and spec link for a given selection.
Args:
model_var (ModelVariants): The model variant to look up.
Returns:
Tuple[ModelSelection, str, str]:
A triple of ``(model_selection, model_path, link_to_model_spec)`` where
`model_selection` is a ModelSelection enum entry,
`model_path` is an HF repo id or local path, and
`link_to_model_spec` is a repo-root-relative path to the spec ``.txt``.
Raises:
KeyError: If the provided `model` is unknown / not in the mapping.
FileNotFoundError: If the resolved spec file does not exist.
"""
try:
info = _MODEL_MAPPING[model_var]
except KeyError as e:
raise KeyError(f'Unknown model: {model_var!r}') from e
model_selection = ModelSelection(info['model_arch'])
model_path = str(info['model_path'])
spec_path = Path(info['model_spec']).resolve()
if not spec_path.exists():
raise FileNotFoundError(f'Spec file not found: {spec_path}')
return model_selection, model_path, _to_repo_relative(spec_path)
|