File size: 6,346 Bytes
d425e71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
"""Model info lookup utilities."""

import os
from enum import Enum
from pathlib import Path
from typing import Tuple

from src.models.config import ModelSelection

REPO_ROOT = Path(__file__).resolve().parents[1]
SPECS_DIR = Path(os.getenv('MODEL_SPECS_DIR', REPO_ROOT / 'logs'))

# TODO: To store local model weights in the repo, also define:
# MODELS_DIR = Path(os.getenv('MODELS_DIR', REPO_ROOT / 'checkpoints'))


class ModelVariants(str, Enum):
    """Enum that contains all possible model variants."""
    AYA_VISION_8B = 'aya-vision-8b'
    BLIP2_3B = 'blip2-opt-2.7b'
    COGVLM_17B = 'cogvlm-17b'
    GLAMM_7B = 'glamm-7b'
    INTERNLM_XC_25_7B = 'internlm-xcomposer2.5-7b'
    INTERNVL_25_8B = 'internvl-2.5-8b'
    JANUS_1B = 'janus-pro-1b'
    LLAVA_15_7B = 'llava-1.5-7b'
    MINICPM_O_26_8B = 'minicpm-o-2.6-8b'
    MINICPM_V_20_3B = 'minicpm-v-2.0-2.8b'
    MOLMO_7B = 'molmo-7b'
    PALIGEMMA_3B = 'paligemma-3b'
    PIXTRAL_12B = 'pixtral-12b'
    PERCEPTION_LM_1B = 'perception-lm-1b'
    QWENVL_20_2B = 'qwen2-vl-2b-instruct'
    QWENVL_20_7B = 'qwen2-vl-7b-instruct'
    # TODO: Add more models here as needed.


# ---- Mapping ----
# model_path: can be a local path or a HF repo id string
# model_spec: absolute Path to the .txt file (we'll return a repo-root-relative string)
_MODEL_MAPPING: dict[ModelVariants, dict[ModelSelection, str, str | Path]] = {
    ModelVariants.AYA_VISION_8B: {
        'model_arch': ModelSelection.AYA_VISION,
        'model_path': 'CohereLabs/aya-vision-8b',
        'model_spec': SPECS_DIR / 'CohereLabs' / 'aya-vision-8b.txt',
    },
    ModelVariants.BLIP2_3B: {
        'model_arch': ModelSelection.BLIP2,
        'model_path': 'Salesforce/blip2-opt-2.7b',
        'model_spec': SPECS_DIR / 'Salesforce' / 'blip2-opt-2.7b.txt',
    },
    ModelVariants.COGVLM_17B: {
        'model_arch': ModelSelection.COGVLM,
        'model_path': 'THUDM/cogvlm-chat-hf',
        'model_spec': SPECS_DIR / 'THUDM' / 'cogvlm-chat-hf.txt',
    },
    ModelVariants.GLAMM_7B: {
        'model_arch': ModelSelection.GLAMM,
        'model_path': 'MBZUAI/GLaMM-FullScope',
        'model_spec': SPECS_DIR / 'MBZUAI' / 'GLaMM-FullScope.txt',
    },
    ModelVariants.INTERNLM_XC_25_7B: {
        'model_arch': ModelSelection.INTERNLM_XC,
        'model_path': 'internlm/internlm-xcomposer2d5-7b',
        'model_spec': SPECS_DIR / 'internlm' / 'internlm-xcomposer2d5-7b.txt',
    },
    ModelVariants.INTERNVL_25_8B: {
        'model_arch': ModelSelection.INTERNVL,
        'model_path': 'OpenGVLab/InternVL2_5-8B',
        'model_spec': SPECS_DIR / 'internvl' / 'InternVL2_5-8B.txt',
    },
    ModelVariants.JANUS_1B: {
        'model_arch': ModelSelection.JANUS,
        'model_path': 'deepseek-community/Janus-Pro-1B',
        'model_spec': SPECS_DIR / 'deepseek-community' / 'Janus-Pro-1B.txt',
    },
    ModelVariants.LLAVA_15_7B: {
        'model_arch': ModelSelection.LLAVA,
        'model_path': 'llava-hf/llava-1.5-7b-hf',
        'model_spec': SPECS_DIR / 'llava-hf' / 'llava-1.5-7b-hf.txt',
    },
    ModelVariants.MINICPM_O_26_8B: {
        'model_arch': ModelSelection.MINICPM,
        'model_path': 'openbmb/MiniCPM-o-2_6',
        'model_spec': SPECS_DIR / 'openbmb' / 'MiniCPM-o-2_6.txt',
    },
    ModelVariants.MINICPM_V_20_3B: {
        'model_arch': ModelSelection.MINICPM,
        'model_path': 'compling/MiniCPM-V-2',
        'model_spec': SPECS_DIR / 'wonderwind271' / 'MiniCPM-V-2.txt',
    },
    ModelVariants.MOLMO_7B: {
        'model_arch': ModelSelection.MOLMO,
        'model_path': 'allenai/Molmo-7B-D-0924',
        'model_spec': SPECS_DIR / 'allenai' / 'Molmo-7B-D-0924.txt',
    },
    ModelVariants.PALIGEMMA_3B: {
        'model_arch': ModelSelection.PALIGEMMA,
        'model_path': 'google/paligemma-3b-mix-224',
        'model_spec': SPECS_DIR / 'paligemma' / 'paligemma-3b.txt',
    },
    ModelVariants.PIXTRAL_12B: {
        'model_arch': ModelSelection.PIXTRAL,
        'model_path': 'mistralai/Pixtral-12B-2409',
        'model_spec': SPECS_DIR / 'mistralai' / 'Pixtral-12B-2409.txt',
    },
    ModelVariants.PERCEPTION_LM_1B: {
        'model_arch': ModelSelection.PLM,
        'model_path': 'facebook/Perception-LM-1B',
        'model_spec': SPECS_DIR / 'facebook' / 'Perception-LM-1B.txt',
    },
    ModelVariants.QWENVL_20_2B: {
        'model_arch': ModelSelection.QWEN,
        'model_path': 'Qwen/Qwen2-VL-2B-Instruct',
        'model_spec': SPECS_DIR / 'Qwen' / 'Qwen2-VL-2B-Instruct.txt',
    },
    ModelVariants.QWENVL_20_7B: {
        'model_arch': ModelSelection.QWEN,
        'model_path': 'Qwen/Qwen2-VL-7B-Instruct',
        'model_spec': SPECS_DIR / 'Qwen' / 'Qwen2-VL-7B-Instruct.txt',
    },
    # TODO: Add more models here as needed.
}


def _to_repo_relative(p: Path) -> str:
    """Convert a path to a repo-root–relative string if possible.

    Args:
        p (Path): The path to convert.

    Returns:
        str: `p` relative to ``REPO_ROOT`` if `p` is within it; otherwise the
            absolute path as a string.
    """
    try:
        return str(p.resolve().relative_to(REPO_ROOT))
    except ValueError:
        return str(p)


def get_model_info(model_var: ModelVariants) -> Tuple[ModelSelection, str, str]:
    """Return the model path and spec link for a given selection.

    Args:
        model_var (ModelVariants): The model variant to look up.

    Returns:
        Tuple[ModelSelection, str, str]:
            A triple of ``(model_selection, model_path, link_to_model_spec)`` where
            `model_selection` is a ModelSelection enum entry,
            `model_path` is an HF repo id or local path, and
            `link_to_model_spec` is a repo-root-relative path to the spec ``.txt``.

    Raises:
        KeyError: If the provided `model` is unknown / not in the mapping.
        FileNotFoundError: If the resolved spec file does not exist.
    """
    try:
        info = _MODEL_MAPPING[model_var]
    except KeyError as e:
        raise KeyError(f'Unknown model: {model_var!r}') from e

    model_selection = ModelSelection(info['model_arch'])
    model_path = str(info['model_path'])
    spec_path = Path(info['model_spec']).resolve()

    if not spec_path.exists():
        raise FileNotFoundError(f'Spec file not found: {spec_path}')

    return model_selection, model_path, _to_repo_relative(spec_path)