File size: 4,966 Bytes
d425e71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
"""Helper functions from official huggingface library of InternVL."""

from typing import List, Optional, Tuple

import torch
import torchvision.transforms as T
from PIL import Image
from torchvision.transforms.functional import InterpolationMode

IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)


def build_transform(input_size: Optional[int] = 448) -> T.Compose:
    """Helper function that transform image.

    Args:
        input_size (int, optional): The input size. Defaults to 448.

    Returns:
        T.Compose: The composed transform.
    """
    MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
    return T.Compose([
        T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
        T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
        T.ToTensor(),
        T.Normalize(mean=MEAN, std=STD)
    ])


def find_closest_aspect_ratio(
        aspect_ratio: float, target_ratios: List[Tuple[float, float]],
        width: int, height: int, image_size: int) -> Tuple[int, int]:
    """Helper function that find closest aspect ratio.

    Args:
        aspect_ratio (float): The existing image aspect ratio.
        target_ratios (list): The target aspect ratios.
        width (int): The original image width.
        height (int): The original image height.
        image_size (int): The target image size.

    Returns:
        tuple: The closest aspect ratio.
    """
    best_ratio_diff = float('inf')
    best_ratio = (1, 1)
    area = width * height
    for ratio in target_ratios:
        target_aspect_ratio = ratio[0] / ratio[1]
        ratio_diff = abs(aspect_ratio - target_aspect_ratio)
        if ratio_diff < best_ratio_diff:
            best_ratio_diff = ratio_diff
            best_ratio = ratio
        elif ratio_diff == best_ratio_diff:
            if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
                best_ratio = ratio
    return best_ratio


def dynamic_preprocess(
        image: Image, min_num: Optional[int] = 1, max_num: Optional[int] = 12,
        image_size: Optional[int] = 448, use_thumbnail: Optional[bool] = False) -> List[Image]:
    """Helper function.

    Args:
        image (Image): The input image.
        min_num (int, optional): The minimum number of image patches. Defaults to 1.
        max_num (int, optional): The maximum number of image patches. Defaults to 12.
        image_size (int, optional): The target image size. Defaults to 448.
        use_thumbnail (bool, optional): Whether to use thumbnail. Defaults to False.

    Returns:
        list: The processed images.
    """
    orig_width, orig_height = image.size
    aspect_ratio = orig_width / orig_height

    # calculate the existing image aspect ratio
    target_ratios = {
        (i, j)
        for n in range(min_num, max_num + 1)
        for i in range(1, n + 1)
        for j in range(1, n + 1)
        if i * j <= max_num and i * j >= min_num
    }
    target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

    # find the closest aspect ratio to the target
    target_aspect_ratio = find_closest_aspect_ratio(
        aspect_ratio, target_ratios, orig_width, orig_height, image_size)

    # calculate the target width and height
    target_width = image_size * target_aspect_ratio[0]
    target_height = image_size * target_aspect_ratio[1]
    blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

    # resize the image
    resized_img = image.resize((target_width, target_height))
    processed_images = []
    for i in range(blocks):
        box = (
            (i % (target_width // image_size)) * image_size,
            (i // (target_width // image_size)) * image_size,
            ((i % (target_width // image_size)) + 1) * image_size,
            ((i // (target_width // image_size)) + 1) * image_size
        )
        # split the image
        split_img = resized_img.crop(box)
        processed_images.append(split_img)
    assert len(processed_images) == blocks
    if use_thumbnail and len(processed_images) != 1:
        thumbnail_img = image.resize((image_size, image_size))
        processed_images.append(thumbnail_img)
    return processed_images


def load_image(image_file: str, input_size: Optional[int] = 448, max_num: Optional[int] = 12) -> torch.Tensor:
    """Load image to pixel values.

    Args:
        image_file (str): The image file path.
        input_size (int, optional): The input size. Defaults to 448.
        max_num (int, optional): The max number of image patches. Defaults to 12.

    Returns:
        torch.Tensor: The corresponding pixel values.
    """
    image = Image.open(image_file).convert('RGB')
    transform = build_transform(input_size=input_size)
    images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
    pixel_values = [transform(image) for image in images]
    pixel_values = torch.stack(pixel_values)
    return pixel_values