"""Helper functions from official huggingface library of InternVL.""" from typing import List, Optional, Tuple import torch import torchvision.transforms as T from PIL import Image from torchvision.transforms.functional import InterpolationMode IMAGENET_MEAN = (0.485, 0.456, 0.406) IMAGENET_STD = (0.229, 0.224, 0.225) def build_transform(input_size: Optional[int] = 448) -> T.Compose: """Helper function that transform image. Args: input_size (int, optional): The input size. Defaults to 448. Returns: T.Compose: The composed transform. """ MEAN, STD = IMAGENET_MEAN, IMAGENET_STD return T.Compose([ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), T.ToTensor(), T.Normalize(mean=MEAN, std=STD) ]) def find_closest_aspect_ratio( aspect_ratio: float, target_ratios: List[Tuple[float, float]], width: int, height: int, image_size: int) -> Tuple[int, int]: """Helper function that find closest aspect ratio. Args: aspect_ratio (float): The existing image aspect ratio. target_ratios (list): The target aspect ratios. width (int): The original image width. height (int): The original image height. image_size (int): The target image size. Returns: tuple: The closest aspect ratio. """ best_ratio_diff = float('inf') best_ratio = (1, 1) area = width * height for ratio in target_ratios: target_aspect_ratio = ratio[0] / ratio[1] ratio_diff = abs(aspect_ratio - target_aspect_ratio) if ratio_diff < best_ratio_diff: best_ratio_diff = ratio_diff best_ratio = ratio elif ratio_diff == best_ratio_diff: if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: best_ratio = ratio return best_ratio def dynamic_preprocess( image: Image, min_num: Optional[int] = 1, max_num: Optional[int] = 12, image_size: Optional[int] = 448, use_thumbnail: Optional[bool] = False) -> List[Image]: """Helper function. Args: image (Image): The input image. min_num (int, optional): The minimum number of image patches. Defaults to 1. max_num (int, optional): The maximum number of image patches. Defaults to 12. image_size (int, optional): The target image size. Defaults to 448. use_thumbnail (bool, optional): Whether to use thumbnail. Defaults to False. Returns: list: The processed images. """ orig_width, orig_height = image.size aspect_ratio = orig_width / orig_height # calculate the existing image aspect ratio target_ratios = { (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if i * j <= max_num and i * j >= min_num } target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) # find the closest aspect ratio to the target target_aspect_ratio = find_closest_aspect_ratio( aspect_ratio, target_ratios, orig_width, orig_height, image_size) # calculate the target width and height target_width = image_size * target_aspect_ratio[0] target_height = image_size * target_aspect_ratio[1] blocks = target_aspect_ratio[0] * target_aspect_ratio[1] # resize the image resized_img = image.resize((target_width, target_height)) processed_images = [] for i in range(blocks): box = ( (i % (target_width // image_size)) * image_size, (i // (target_width // image_size)) * image_size, ((i % (target_width // image_size)) + 1) * image_size, ((i // (target_width // image_size)) + 1) * image_size ) # split the image split_img = resized_img.crop(box) processed_images.append(split_img) assert len(processed_images) == blocks if use_thumbnail and len(processed_images) != 1: thumbnail_img = image.resize((image_size, image_size)) processed_images.append(thumbnail_img) return processed_images def load_image(image_file: str, input_size: Optional[int] = 448, max_num: Optional[int] = 12) -> torch.Tensor: """Load image to pixel values. Args: image_file (str): The image file path. input_size (int, optional): The input size. Defaults to 448. max_num (int, optional): The max number of image patches. Defaults to 12. Returns: torch.Tensor: The corresponding pixel values. """ image = Image.open(image_file).convert('RGB') transform = build_transform(input_size=input_size) images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num) pixel_values = [transform(image) for image in images] pixel_values = torch.stack(pixel_values) return pixel_values