Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import torch | |
| import argparse | |
| import torchvision | |
| from pipeline_videogen import VideoGenPipeline | |
| from diffusers.schedulers import DDIMScheduler | |
| from diffusers.models import AutoencoderKL | |
| from diffusers.models import AutoencoderKLTemporalDecoder | |
| from transformers import CLIPTokenizer, CLIPTextModel | |
| from omegaconf import OmegaConf | |
| import os, sys | |
| sys.path.append(os.path.split(sys.path[0])[0]) | |
| from models import get_models | |
| import imageio | |
| from PIL import Image | |
| import numpy as np | |
| from datasets import video_transforms | |
| from torchvision import transforms | |
| from einops import rearrange, repeat | |
| from utils import dct_low_pass_filter, exchanged_mixed_dct_freq | |
| from copy import deepcopy | |
| def prepare_image(path, vae, transform_video, device, dtype=torch.float16): | |
| with open(path, 'rb') as f: | |
| image = Image.open(f).convert('RGB') | |
| image = torch.as_tensor(np.array(image, dtype=np.uint8, copy=True)).unsqueeze(0).permute(0, 3, 1, 2) | |
| image, ori_h, ori_w, crops_coords_top, crops_coords_left = transform_video(image) | |
| image = vae.encode(image.to(dtype=dtype, device=device)).latent_dist.sample().mul_(vae.config.scaling_factor) | |
| image = image.unsqueeze(2) | |
| return image | |
| def main(args): | |
| if args.seed: | |
| torch.manual_seed(args.seed) | |
| torch.set_grad_enabled(False) | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| dtype = torch.float16 # torch.float16 | |
| unet = get_models(args).to(device, dtype=dtype) | |
| if args.enable_vae_temporal_decoder: | |
| if args.use_dct: | |
| vae_for_base_content = AutoencoderKLTemporalDecoder.from_pretrained(args.pretrained_model_path, subfolder="vae_temporal_decoder", torch_dtype=torch.float64).to(device) | |
| else: | |
| vae_for_base_content = AutoencoderKLTemporalDecoder.from_pretrained(args.pretrained_model_path, subfolder="vae_temporal_decoder", torch_dtype=torch.float16).to(device) | |
| vae = deepcopy(vae_for_base_content).to(dtype=dtype) | |
| else: | |
| vae_for_base_content = AutoencoderKL.from_pretrained(args.pretrained_model_path, subfolder="vae",).to(device, dtype=torch.float64) | |
| vae = deepcopy(vae_for_base_content).to(dtype=dtype) | |
| tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_path, subfolder="tokenizer") | |
| text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_path, subfolder="text_encoder", torch_dtype=dtype).to(device) # huge | |
| # set eval mode | |
| unet.eval() | |
| vae.eval() | |
| text_encoder.eval() | |
| scheduler = DDIMScheduler.from_pretrained(args.pretrained_model_path, | |
| subfolder="scheduler", | |
| beta_start=args.beta_start, | |
| beta_end=args.beta_end, | |
| beta_schedule=args.beta_schedule) | |
| videogen_pipeline = VideoGenPipeline(vae=vae, | |
| text_encoder=text_encoder, | |
| tokenizer=tokenizer, | |
| scheduler=scheduler, | |
| unet=unet).to(device) | |
| # videogen_pipeline.enable_xformers_memory_efficient_attention() | |
| # videogen_pipeline.enable_vae_slicing() | |
| if not os.path.exists(args.save_img_path): | |
| os.makedirs(args.save_img_path) | |
| transform_video = video_transforms.Compose([ | |
| video_transforms.ToTensorVideo(), | |
| video_transforms.SDXLCenterCrop((args.image_size[0], args.image_size[1])), # center crop using shor edge, then resize | |
| transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True), | |
| ]) | |
| for i, (image, prompt) in enumerate(args.image_prompts): | |
| if args.use_dct: | |
| base_content = prepare_image("./animated_images/" + image, vae_for_base_content, transform_video, device, dtype=torch.float64).to(device) | |
| else: | |
| base_content = prepare_image("./animated_images/" + image, vae_for_base_content, transform_video, device, dtype=torch.float16).to(device) | |
| if args.use_dct: | |
| # filter params | |
| print("Using DCT!") | |
| base_content_repeat = repeat(base_content, 'b c f h w -> b c (f r) h w', r=15).contiguous() | |
| # define filter | |
| freq_filter = dct_low_pass_filter(dct_coefficients=base_content, | |
| percentage=0.23) | |
| noise = torch.randn(1, 4, 15, 40, 64).to(device) | |
| # add noise to base_content | |
| diffuse_timesteps = torch.full((1,),int(975)) | |
| diffuse_timesteps = diffuse_timesteps.long() | |
| # 3d content | |
| base_content_noise = scheduler.add_noise( | |
| original_samples=base_content_repeat.to(device), | |
| noise=noise, | |
| timesteps=diffuse_timesteps.to(device)) | |
| # 3d content | |
| latents = exchanged_mixed_dct_freq(noise=noise, | |
| base_content=base_content_noise, | |
| LPF_3d=freq_filter).to(dtype=torch.float16) | |
| base_content = base_content.to(dtype=torch.float16) | |
| videos = videogen_pipeline(prompt, | |
| latents=latents if args.use_dct else None, | |
| base_content=base_content, | |
| video_length=args.video_length, | |
| height=args.image_size[0], | |
| width=args.image_size[1], | |
| num_inference_steps=args.num_sampling_steps, | |
| guidance_scale=args.guidance_scale, | |
| motion_bucket_id=args.motion_bucket_id, | |
| enable_vae_temporal_decoder=args.enable_vae_temporal_decoder).video | |
| imageio.mimwrite(args.save_img_path + prompt.replace(' ', '_') + '_%04d' % i + '_%04d' % args.run_time + '-imageio.mp4', videos[0], fps=8, quality=8) # highest quality is 10, lowest is 0 | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--config", type=str, default="./configs/sample.yaml") | |
| args = parser.parse_args() | |
| main(OmegaConf.load(args.config)) | |